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Abstract: A matrix Kalman filter (MKF) has been implemented for an integrated 
navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original 
nonlinear process model in a pseudo-linear process model. We employ the observability 
rank criterion based on Lie derivatives to verify the conditions under which the nonlinear 
system is observable. It has been proved that such observability conditions are: (a) at least 
one degree of rotational freedom is excited, and (b) at least two linearly independent 
horizontal lines and one vertical line are observed. Experimental results have validated the 
correctness of these observability conditions. 

Keywords: matrix Kalman filter; Lie derivatives; observability of nonlinear systems; 
navigation; vision; inertial measurement unit 

 

1. Introduction  

Inertial navigation systems (INS) have been widely used in many systems, such as ground vehicles, 
airplanes, helicopters, robotic systems, etc. However, INS drift will lead to exponential growth of 
errors in the navigation solutions due to the double integration of acceleration signals within inertial 
navigation computations. Therefore, to overcome such a problem, it is a very common practice to 
integrate INS with other sensors, which can calibrate the inertial sensor errors. In most outdoor 
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applications, a Kalman filter estimator can be used for optimally combining both IMU and GPS 
measurements [1]. However, an indoor navigation system cannot use GPS since its signals are  
not available. 

An alternative approach to calibrate INS errors is via the use of other sensors, such as cameras and 
magnetic sensors. Combining these two sensors to form a vision-aided inertial navigation system  
(V-INS) has recently become a popular topic of research [2]. By sensing the Earth’s magnetic field a 
magnetic sensor can provide a drift-free heading estimate. Accurate 3-D orientation estimates of a rigid 
body by inertial/magnetic sensing were exploited in [3], where the aiding sensors (accelerometer and 
magnetic sensor) helped mitigate low-frequency gyro drift errors, while, in turn, the signals from the 
aiding sensors, which are prone to relatively high-frequency errors, are smoothed using gyro data. 
They are all based on the concept of vector matching, which requires, in principle, the measurements 
of constant reference vectors (e.g., gravity and the Earth’s magnetic field) [4].  

In this paper, we present a matrix Kalman filter (MKF) in which the estimate of the state matrix is 
expressed in terms of the matrix parameters of the original plant. The MKF has the statistical 
properties of the ordinary EKF, while retaining the advantages of a compact matrix notation by 
expressing the estimated matrix in terms of the original plant parameters [5].  

The major contribution of this paper is to elucidate under which conditions a MKF-based nonlinear 
system for indoor navigation using visual/inertial/magnetic sensors is observable; in other words, the 
conditions when sufficient information is available for estimating a state matrix that contains, in the 
present case, the body attitude matrix, the gyro bias vector, relative velocity vector, the dual part of 
landmark and the magnetic variation superimposed to the magnetic reference vector. For the purpose 
of orientation determination, an accurately known homogeneous magnetic field in the environment is 
needed. Magnetic homogeneity is difficult to achieve, especially indoors, due to the presence of iron 
construction materials in floors, walls and ceilings, or to interferences from various types of equipment. 
In order to compensate for magnetic variations, a first-order Gauss-Markov vector random process is 
chosen to model the magnetic variation. To the best of our knowledge, there has been no such 
observability analysis so far for the integrated navigation systems in 3-D. We have extended the 
current work for the observability analysis for an orientation system described in [6], to the 3-D 
navigation systems based on inertial/visual/magnetic sensors. 

2. Sensor Modeling  

2.1. Inertial Sensor 

Without loss of generality, the navigation reference frame is selected as the local-level frame 
(North-East-Down). Denote the navigation frame by n, the INS body frame by b, the camera frame by 
c and the inertial frame by i. Using gyros/accelerometers outputs, the relative velocity vn and the body 
attitude matrix Cb 

n satisfy the kinematic equations as [1,7]: 

 (1) 

 (2)

 (3)

n n= −ξ v

( )n n b n
b a= − +v C f b g

,b b b b b
n nb n nb ib g⎡ ⎤= − × = −⎣ ⎦C ω C ω ω b
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 (4)

where ξn is an arbitrary point on the observed line, rb is the lever arm from the IMU to the camera, as 
shown in Figure 1. ba and bg are 3 × 1 vectors that describe the biases affecting the accelerometer and 
gyro measurements, respectively. ba can be compensated on time scales up to few hours, using the 
procedure described in [8]. bg are modeled as random walk processes, driven by the white Gaussian 
noise vectors nωg. [ωb 

nb×] is the skew symmetric matrix of ωb 
nb. In the context of MEMS sensors, the 

component in the gyro output due to the Earth’s rotation can be neglected as compared to the sensor 
errors. 

Figure 1. Geometry of visual/inertial/magnetic sensor based navigation. 

 

2.2. Visual Sensor 

The line point is taken as line representation, which is defined as the intersection of a line feature 
with a line passing through the image origin that is perpendicular to the line feature. The line point is 
unique for all lines except the lines passing through the origin. The line point is calculated by Goddard 
as [9]: 

 (5)

Line features are represented by quaternion. Î = l + εm, where l is the unit direction vector of the 
observed line and m is related to the position by m = p × 1. In the n-frame:  

 (6)

while in the c-frame: 

 (7)

where rb can be ignored when the IMU and the camera are mounted closely together. 
If relative position ξn is orthogonal to ln, that is, ξn·ln = 0, then we can obtain: 

 (8)

That is to say, the norm of mn is the minimum distance from the vehicle to the observed line. Using 
Equation (1), we obtain: 

g gω=b n
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For simplification, only vertical lines  and horizontal lines  are chosen as landmarks. According 
to Equation (5), we obtain: 

 (10)

A monocular camera is not enough to calculate mz due to its inherent limitation of depth information 
deficiency. In order to solve this problem, we can use stereo cameras or a monocular camera with 
height information to obtain mz. 

2.3. Magnetic Sensor  

A first-order Gauss-Markov vector random process with statistically independent components is 
chosen to model magnetic variations as follows [10]: 

 (11)
where α is a positive constant, and nωh is white Gaussian noise. 

3. MKF Algorithm  

3.1. Process Model  

The evolving state is described as follows: 

 (12)

where mn is the relative distance of the vehicle with respect to the observed line, vn is the relative velocity. 
The relative position of the vehicle with respect to the observed line, , can be calculated as follows: 

(1) Calculate the point of intersection of the observed lines. According to Equation (6), we obtain: 

 (13)

(2) Calculate the translation along the observed line direction from the intersection to the vertical 
point. According to Equation (8), we obtain: 

 (14)

Because the unique of perpendicular point, the translation along the observed line direction, ρ, is 
also uniqueness. From Equation (14), we obtain: 

 (15)
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(3) Calculate the relative position: 

 (16)

The discretization of Equation (3) gives the following equation [11]: 

 (17)

where Фk is the transition matrix from time tk to time tk+1 that corresponds to –[ωb 
ib×]. We assume that 

ωb 
ib is piece wisely constant in the tiny time intervals Δt = tk+1 − tk, and then, Фk in Equation (17) can be 

approximated as: 

 (18)

Furthermore, wk can be written as: 
 (19)

where h.o.t denotes the terms of the second order Δt2 and higher. Note that the process noise matrix, 
wk, is state dependent, and that the first-order term is linear in the components of the white Gaussian 
noise vectors ng. 

Discretizing Equations (2), (4), (9), (11) produces: 
 (20)

 (21)

 (22)

 (23)

Combining Equations (17), (20)–(23) together, we obtain the dynamic model as: 

 (24)

where the dynamic matrices, , , are defined as: 

 (25)

where Eij denotes a 8 × 8 matrix with 1 at position (ij) and 0 elsewhere; 
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 (26)

and the noise matrix, Wk, is defined as: 

 (27)

The process noise covariance matrix is: 

 (28)

where, as defined by [11]:  

 (29)

L is the 9 × 3 matrix defined as: 

 (30)

with e1 = [1 0 0]T, e2 = [0 1 0]T, and e3 = [0 0 1]T. 
The process Equation (24) is not linear because in the matrix , r = 2, 3, 4, are the functions of 

elements of Cb 
nk. One way of overcoming this difficulty is to substitute  for Cb 

nk in the process 
equation. This substitution yields a pseudo-linear process equation. 

3.2. Measurement Model  

The matrix measurement equation: 

 (31)

where the measurement matrices are: 

 (32)

and the measurement noise covariance matrix is given as: 

 (33)
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3.3. Update  

Putting m = 3, n = 8, p = 3, q = 2, μ= 8, v = 2 into Equations described in [5], we can obtain time 
update and measurement update equations. However, due to the existence of the input matrix, the time 
update equation below is not the same as that given in [15]: 

 (34)

 (35)

 (36)

Measurement update equations: 

 (37)

 (38)

 (39)

 (40)

 (41)

where  denotes the Kronecker product [12],  is a 3 × 3 submatrix of the 24 × 6 matrix Kk+1 
defined by: 

 (42)

and Elj is a 2 × 8 matrix with 1 at position (ij) and 0 elsewhere: 

 (43)

3.4. Orthogonalization  

The Kalman filter is not designed to preserve any relationship among the components of the estimated 
state matrix . It would not preserve the orthogonality. Iterative brute-force orthogonalization is 
presented for its low computation load [11]. The iterative brute-force procedure is as follows [13]: 

 (44)

Although this algorithm is suboptimal, it is much simpler than the optimal algorithm given by 
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orthogonality can be usually reached in all practical applications after just one or two iterations of 
Equation (44): 

 (45)

4. Observability Analysis  

A system is observable if its states at a certain time instant can be uniquely determined given a 
finite sequence of its outputs [15]. Intuitively, observability means that the measurements of an 
observable system can provide sufficient geometric information for estimating its states. In contrast, 
the state vector of an unobservable system cannot be recovered regardless of the duration of the 
estimation process. 

In this paper, we study the observability of the nonlinear system describing the 
visual/inertial/magnetic sensor based navigation process. The system state vector is chosen as follows: 

 (46)

where c is defined as: 

 (47)

Equation (3) can be rewritten as: 

 (48) 

For arbitrary 3 × 1 vector p, we define: 
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Also, note that f0 is a 24 × 1 vector, while  and  are both compact representations of three 
vectors of dimension 24 × 1, i.e., 

 (51)

where, for i = 1,2,3, fli denotes the i th column vector comprising  and ωx, ωy, and ωz are the scalar 
components of the rotational velocity vector. 

The measurement functions are as follows: 

 (52)
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where: 
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Furthermore, we enforce the orthogonal constraints by employing the following additional 
measurement equations: 

 (57)
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 (61)

Therefore, the gradients of the zeroth-order Lie derivatives are exactly the same as the Jacobians of 
the corresponding measurement functions: 

 (62)

 (63)

 (64)

 (65)

where: 
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three column vectors. Similarly, we can also write the resultant Lie derivative in a compact form (i.e., 
a 3 × 3 matrix): 

 (71)

Stacking the gradients of the three columns together gives: 

 (72)

where the matrices: 

 (73)

of dimensions 9 × 9 and 9 × 3, have the block-row elements (for i = 1,2,3) as follows: 

 (74)

Stacking together all the previously computed gradients of the Lie derivatives, we form the 
observability matrix  as: 

 (75)

In order to prove that the system described by Equations (50)–(57) is observable, we show that the 
matrix  is full rank (i.e., the state space of the system is spanned by the gradients of the Lie 
derivatives of the measurement functions [16,17]). Before presenting the main result of this section, we 
first present the following two lemmas whose proofs are detailed in Appendixs B and C, respectively. 

Lemma 1: The 15 × 12 matrix: 

 (76)

is rank 9 if at least one degree of rotational freedom is excited. 
Lemma 2: The 6 × 6 matrix: 

 (77)

is full rank if two linearly independent horizontal lines are observed. 
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The observability matrix  (cf. Equation (75)) is full rank when: (a) at least one degree of rotational 
freedom is excited; (b) at least one vertical line and two linearly independent horizontal lines are 
observed. The proofs are given in Appendix D. 

5. Experimental Results  

5.1. Hardware Description 

In order to demonstrate the validity of the proposed algorithm in realistic situations, we conducted 
indoor experiments using a testbed that consists of an ISIS IMU, a Firewire camera, a magnetometer, 
and a computer for data acquisition. The IMU, the camera, and the magnetometer were rigidly 
mounted on the chassis and their relative pose did not change during the experiment. The 
magnetometer was placed far from current wires, computer, and ferromagnetic materials. The raw  
data were delivered through an USB interface to the computer. The intrinsic parameters of the camera 
and transformation among the IMU, the camera and the magnetometer were calibrated prior to the 
experiment and were treated as constants. A monocular camera cannot determine the depth 
information. In order to solve the problem, the height of the camera from the ground plane was 
measured, and the lines which are on the ground and perpendicular to the ground were chosen as 
landmarks. We used basic trigonometry to determine the depth information. mc can be calculated as 
measurements. Accuracies of the sensors are listed in Table 1. The IMU, camera and magnetometer 
were electronically time-synchronized.  

Table 1. Accuracies of the Sensors. 

Sensors Number Accuracies Sampling Rates 
IMU 1 gyro drift: <0.01°/s (short term) 

accelerometer bias: ±2 mg (short term) 
100 Hz 

Camera  1 Resolution: 656 × 490 
focus length: 25 mm 
field of view: 60° 

10 Hz 

Magnetometer 1 :10 u.a./s(×10−3) 
:10 s−1 

:1 mGauss 

100 Hz 

5.2. Experiment Profile  

A short distance experiment was carried out in the hallway. The testbed was rigidly mounted on the 
chassis of a pushcart. The estimated 3-D trajectory of the pushcart can be seen in Figure 2. The initial 
position of the pushcart is denoted by ‘*’. 

The line features were extracted using the Hough transform. The line-points can be easily calculated 
with the detection values (ρ,ө) from the Hough transform. It was assumed that the camera 
measurements were corrupted by additive white Gaussian noise with a standard deviation of 2 pixels. 
The actual pixel noise is less than 2 pixels. However, in order to compensate the existence of the 
unmodeled nonlinearities and imperfect camera calibration, the noise standard deviation was increased 
to 2 pixels.  

O

hbσ
α

hσ
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Figure 2. The estimated 3-D trajectory of the pushcart. 

 

5.3. Algorithm Performance  

The trajectory of the pushcart included two loops. The final position estimate, expressed with 
respect to the starting pose, is [0.81,0.59,0.06]T m. From the initial and final parking spots of the 
pushcart, it is known that the true final position expressed with respect to the initial pose is 
approximately [0,0,0]T m. Thus, the final position error is approximately 1 m at the end of a trajectory 
of 100 m, i.e., an error of 1% of the travelled distance. 

It is noteworthy that the camera motion was almost in parallel to the optical axis, a condition which 
is particularly adverse for the image-based motion estimation algorithms [18]. In Figure 3, the  
3σ bounds for the errors in the attitude matrix and the velocities along the three axes are shown. The 
plotted values are 3-times the square roots of the corresponding diagonal elements of the state 
covariance matrix. Position errors were mainly caused by the precision of visual measurement and 
attitude estimate, especially attitude estimate. Because the steel framed buildings affect the magnetic 
field, the precision of attitude estimate by inertial/magnetic sensors is not high. 

Figure 3. The 3σ bounds for the errors in the attitude matrix and the velocities in the n frame. 
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Figure 3. Cont. 

(c) (d) 

6. Conclusions  

In this paper, we have studied observability of a MKF-based algorithm for indoor navigation using 
visual/inertial/magnetic sensors. The estimation algorithm uses a compact matrix notation to produce 
the matrix estimate and the estimation error covariance matrix. The MKF is a natural and 
straightforward extension of the ordinary KF. Compared with the ordinary KF, the MKF model 
consists of both pseudo-linear process model and nonlinear measurement model. 

The observability of the nonlinear system describing the integrated navigation with 
visual/inertial/magnetic sensors was investigated by employing the observability rank conditions 
defined with the Lie derivatives. The pseudo-linear process help simplifying the gradient operator in 
the process of observability analysis. This paper has for the first time proved that the observability 
matrix is full rank when: (a) at least one degree of rotational freedom is excited; (b) at least two 
linearly independent horizontal lines and one vertical line are observed. When these conditions are 
satisfied, the state matrix that contains the body attitude matrix, the gyro bias vector, relative velocity 
vector, the dual part of landmark and the magnetic variation superimposed to the magnetic reference 
vector are observable. The indoor experimental results have demonstrated the correctness of 
observability conditions. 
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Appendix A 

For arbitrary two vector p and q 
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Appendix B 

We compute  and γ: 

 (B1) 

 (B2)

where h + bh = [h1 h2 h3]T. The variables, shown on the right side and next to the row numbers indicate 
the control input that is involved in using the corresponding row numbers: when a row is retained in 
the observability matrix (e.g., the second row), the underlying assumption is that the corresponding 
control input (i.e., ωx) is nonzero. 

If none of the components in h + bh is zero, we can obtain: 

 (B3) 

 (B4) 

 (B5) 

It is worth-mentioning that each selection of the rows is based on two nonzero components of  
ωb 

ib = [ωx ωy ωz]T. For example, we can use either Equation (B3) which assumes that ωy and ωz are 
nonzero, or Equation (B4) which assumes that ωx  and ωz are nonzero, or Equation (B5) which assumes 
that ωx and ωy are nonzero. 

Only if the rotational axis does not coincide with b coordinate axis, will one degree of rotation have 
two nonzero components of ωb 

ib. The rank of A is 9 if at last one degree of rotational freedom  
is excited. 
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Appendix C 

 (C1) 

Note that  is full rank. 

 (C2) 

where: 
 (C3) 

 (C4) 

det(B) = 0 when: (a); mh1 = mh2= 0 (b) ln 
h and mn 

v  are linearly dependent. Only (a) and (b) are both 
satisfied, B is not full rank. To avoid the situation, two linearly independent horizontal lines are 
observed or the line in the plane (zn = 0) is not chosen. In practice, the former is more feasible. Even 
one of horizontal line is linearly dependent with mn 

v , the another is linearly independent with mn 
v . Then, 

(b) is not satisfied. So B is full rank if two linearly independent horizontal lines are observed. 

Appendix D 

Step (1)  

Based on Lemma 1, the rank of A is 9. We diagonalize it with the Gaussian elimination: 
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Then we can easily eliminate all other elements of the first columns: 
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Step (2)  
 
We can eliminate all other elements of the fourth and fifth columns using Cc 

bC
b 
n, respectively: 

 (D3) 

Step (3) 
 
Based on Lemma 2, B is full rank, thus we diagonalize it with the Gaussian elimination: 

 (D4) 

Note that Cc 
bC

b 
n and Cb 

n are both full rank. It is easy to see the matrix is full rank, indicating that the 
matrix  is also full rank. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 
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