
Sensors 2012, 12, 8930-8954; doi:10.3390/s120708930

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Enabling Flexible and Continuous Capability Invocation in

Mobile Prosumer Environments

Ramon Alcarria
1,
*, Tomas Robles

1
, Augusto Morales

1
, Diego López-de-Ipiña

2
 and

Unai Aguilera
2

1
 Department of Telematics Engineering, Technical University of Madrid, Avenida Complutense n. 30,

Ciudad Universitaria, 28040 Madrid, Spain; E-Mails: trobles@dit.upm.es (T.R.);

amorales@dit.upm.es (A.M.)
2
 Deusto Institute of Technology, University of Deusto, Avda. Universidades 24, 48007 Bilbao,

Spain; E-Mails: dipina@deusto.es (D.L.-I.); unai.aguilera@deusto.es (U.A.)

* Author to whom correspondence should be addressed; E-Mail: ralcarria@dit.upm.es;

Tel.: +34-915-495-700 (ext. 3035); Fax: +34-915-439-652.

Received: 22 March 2012; in revised form: 17 June 2012 / Accepted: 19 June 2012 /

Published: 28 June 2012

Abstract: Mobile prosumer environments require the communication with heterogeneous

devices during the execution of mobile services. These environments integrate sensors,

actuators and smart devices, whose availability continuously changes. The aim of this

paper is to design a reference architecture for implementing a model for continuous service

execution and access to capabilities, i.e., the functionalities provided by these devices. The

defined architecture follows a set of software engineering patterns and includes some

communication paradigms to cope with the heterogeneity of sensors, actuators, controllers

and other devices in the environment. In addition, we stress the importance of the

flexibility in capability invocation by allowing the communication middleware to select the

access technology and change the communication paradigm when dealing with smart

devices, and by describing and evaluating two algorithms for resource access management.

Keywords: prosumer; software engineering; ubiquitous computing; communication

paradigms; resource management

OPEN ACCESS

Sensors 2012, 12 8931

1. Introduction

Uniform access to resources and devices is one of the most discussed topics in ubiquitous

computing related work. This is demonstrated by the large amount of work on communication

middleware available today [1,2]. Continuous service execution requires addressing device

interoperability problems, due to the wide heterogeneous nature of existing devices. The most common

interoperability issues are related either to technology and access protocols or the format of the

exchanged data, that is, the set of rules that must be taken into account to interpret the data once

obtained. This work deals with the first category, which includes interoperability issues related to

communication paradigms. Communication paradigms are often bounded to the employed protocol but

sometimes they are decoupled. Connection-oriented, synchronous or asynchronous, message-based or

service-based communications are considered in this category. This paper contributes to solve some of

the issues related to communication middleware, regarding flexible and continuous service executions.

For this, we describe the design and validation of a middleware solution for continuous capability

access whilst service execution is taking place in ubiquitous environments. The main contribution of

the paper is the definition of the communication middleware’s architecture and its integration with

other interdependent subsystems. Also, an implementation of this resource access middleware is

proposed that integrates a set of access technologies and communication paradigms, which are

commonly used and requested by available capabilities.

The presented middleware contributions are based on the work done in the mIO! project, which

aims at the provision and consumption of prosumer services in a mobile environment. The term

prosumer [3] (as an acronym formed by the fusion of the words producer and consumer) is applied to

those users that are at the same time consumers and producers of services or contents. In our view,

these users, placed in the center of device-rich environments, uses their smartphone to design, compose

and configure new services with the help of creation tools. In mobile prosumer environments, the

generated services use the available functionalities offered by surrounding devices and nearby

elements. The middleware will try to guarantee that the service execution is maintained even though

the used elements may change or disappear.

Mobile prosumer environments establish some requirements that determine the design of the

proposed architecture. Focusing on non-expert users, a high level of abstraction is required in order to

enable users to create their own services in an easy way. Besides, the architecture needs to adapt to

changes in the availability of resources and services, as well as to provide a communication

infrastructure for uniform resource access. For further information about the prosumer concept and the

mIO! architecture the reader is referred to our previous work [4]. Based on the requirements of the

mobile prosumer environment, the service must present a logical structure defined by different layers,

described in the next Section. Section 3 analyses the communication paradigms currently used in

communication middleware. Section 4 describes the overall architecture, which has been designed

using various design patterns in order to meet the requirements imposed by the ubiquitous environment

and the studied communication paradigms. Sections 5 and 6 describe the integration between the

resolution and capability invocation processes while Sections 7 and 8 make a contribution to the

communication with smart devices and the problem of resource and connection management

Sensors 2012, 12 8932

respectively. Finally, the paper concludes with a validation of the designed system, related work and

some conclusions of the proposed solution.

2. Service Logical Model

The provision of a higher level of abstraction for prosumer users leads to the following concepts:

Service, as a unit supplied and consumed by the prosumer, Component, which represents a basic and

functional unit used by a service, and Capability, which is the implementation of the functionality

defined by a component and provided by some element (hardware or software). It is also necessary to

introduce the concept of Orchestration, which manages the interaction between the different

components of a service, Resolution, which manages the association of capabilities to components and,

finally, Invocation, which provides a uniform access to the infrastructure capabilities.

A service can be defined in many ways, depending on the state of the life cycle in which the service

is. We define the logical structure of a service by different levels: the service level, the component

level and the capability level. To illustrate these concepts we present the example of a simple

prosumer service, called Sport Tracker, which aims to access the location information of a user and to

represent it on a map along with information about his heartbeat. This service consists of three

components: a Map provider, a Location provider and a Pulse provider. These abstract services

provide an interface that must be implemented so that the composed service can be executed. For

example, the Location component needs to be resolved into a GPS device or a GPS capability (e.g.,

offered by a mobile phone) in order to obtain the information about the user’s location. Figure 1 shows

the proposed service logical model, adapted to this simple example service.

Figure 1. Service logical parts.

The three-level model is explained below:

The first level is the service level, where services are seen as a software structure that can be

provided and consumed in a mobile device, with the capability of performing tasks where the different

components used internally remain hidden. Service behavior and orchestration logic are specified

through a Service Description Language (SDL) document.

Component level

Service level

Capability level

Sport Tracker

Location Map Pulse

Mobile

GPS
Car

GPS

Google

Maps
Ovi

Maps

Bluetooth

sensor

Orchestration process

Resolution process

Capability Invocation

Resources

Sensors 2012, 12 8933

Continuing with the component level, the service is split into different logical units called

components, which interact according to the logic defined by the service. A component is a basic and

functional unit of a service. It is a high level functional abstraction that is implemented by a given

capability depending on the service execution conditions. Components are used by the system to make

the creation process easier and provide the adequate abstraction level so that a user can understand

their functionality whereas the implementation details remain hidden. In order to make a step towards

the new mobile prosumer environment, developers must implement and publish a big number of

different components, which cover all the creation possibilities that a user could wish.

The orchestration process manages the interaction among components, i.e., how the components

are interconnected to compose services, how are the components managed and the data exchanged

inside the architecture and how the components obtain the appropriate capability to implement their

functionality. This process takes place during creation time and is performed by the creation subsystem.

Finally, in the capability level a service is seen as a set of capabilities which offer the functionalities

that are demanded by the service. Capabilities generally access to local (in-device), nearby or remote

resources and are designed to achieve the components’ objectives. The division between the component

and the capability models is made for two reasons. First, the orchestration logic is decoupled from the

implementation. This way, a component can be resolved into different capabilities depending on the

service execution conditions and the preferences given by users in the creation process. Second,

components are defined as functionalities that are easy to understand for non-expert users in order to

help them to create simple services.

The resolution process assigns, during execution time, each component to the best available

capability that can implement it. This process takes place in the harmonization subsystem. Finding the

optimal capability depends on multiple factors, for example, the configuration options established by

the user during creation time or component requirements.

In the Sport Tracker’s example scenario, since there is only one compatible capability for the Pulse

component, it can only be mapped to the Bluetooth sensor capability whereas the Map component can

choose a map provider based on user preferences or service restrictions. A component, by this way,

defines some requirements so that the election of the capability is the optimal one.

The capability invocation process, which is the main topic of this paper, is the one responsible for

requesting and obtaining all the required resources. An effective coordination between the resolution

and the invocation processes will enable continuous mobile service execution in dynamic environments.

In these environments, the capabilities can appear and disappear at any time and the wide variety of

sensors, actuators and other devices makes necessary to design different mechanisms for the access

and invocation of heterogeneous capabilities. This process takes place in the Capability Middleware

and is explained in section 4, along with the Creation, Execution and Harmonization subsystems.

3. Communication Paradigms in Capability Access

Most mobile middleware solutions for resource access include only one communication paradigm,

ignoring the fact that device configurations and conditions in such environments are extremely varied.

Therefore, we have designed a capability access middleware that includes several communication

paradigms, classified under three criteria:

Sensors 2012, 12 8934

- Coordination Mechanism: Differentiates between synchronous or asynchronous communication

models.

- Notification Model: determines if consumers explicitly retrieve new messages or are notified

when new messages are produced (synchronous or asynchronous notification).

- Connection Orientation: many middleware platforms employ the notion of message as a

fundamental building block (Message-oriented Middleware). Other middlewares use the

concept of session to communicate with resources [5], providing channel and transaction

management [6]. A connection oriented middleware uses sessions instead of single message

interchange as the most natural method of communication.

The studied paradigms are described below. Table 1 shows the features of these paradigms according

to defined criteria and the requirements that they impose on the design of system’s architecture,

presented in the next section.

Table 1. Communication paradigms and features.

Paradigm
Coordination

mechanism

Notification

model

Connection

Orientation

Connection

initiated by

Design requirements

Request

/Reply

Synchronous Synchronous Consumer

(Middleware)

Client-server model

QP2P Asynchronous Synchronous Producer/

Consumer

Messages are retrieved

in a predefined order

Tuple Spaces Asynchronous Synchronous Intermediated by a

tuple space service

Publish-

Subscribe

Asynchronous Asynchronous Event Channel

Service

Event channel service

must be external

Request-Reply model: a synchronous model is adopted in situations that require the communicating

entities to be connected simultaneously. The sending entity delegates the control to the receiving

entity, which performs some processing and responds, allowing the first to continue its execution.

QP2P (Queue-based Point-to-point Paradigm): distributed queues are used for sending and

receiving messages. Using this model, messages are obtained in a predefined order based on queue

type (FIFO, LIFO and so on). Producers and consumers are fully decoupled.

Tuple Spaces: this paradigm provides a distributed shared memory for the exchange of tuples

between various entities, based on the Linda’s model of communication [7]. Tuples are data structures

that can be inserted, modified and removed from the shared space. Like QP2P, the Tuple Spaces

paradigm uses an indirect model, mediated by a Tuple Space Service, but in this case the consumer

gets messages (tuples) by requesting them directly to this service.

Publish-Subscribe: communicating entities exchange messages by publishing events and

subscribing to them. Generally, an intermediate service called Event Channel [8] is introduced, which

registers the subscriptions and forwards the events published. In pub-sub systems, message delivery

depends fully on the actions of the receivers, which frequently are unknown to the senders.

Sensors 2012, 12 8935

4. Overall Architecture for Service Orchestration, Resolution and Invocation

The service provision and consumption platform described in this paper is designed for the mobile

device of the prosumer user, and consists of a set of subsystems (see Figure 2) which perform the

functions of orchestration, resolution and capability invocation. The design of these subsystems is

affected by the communication paradigms that address the capability access, which relate to the need

for external services (services not included in the mobile phone) to manage deployed tuples and

publication/subscription records (4a) and the environmental requirements for mobile prosumer users,

stated in the introduction section.

Figure 2. Overall architecture.

Creation Subsystem (1)

Execution Subsystem (2)

Harmonization Subsystem (3)

Resolve

component

Capability

Discovery

Capability

Request
Caps

Component

Resolution

Component

Resolved

Capability

Repository

(3b)

Component

Invocation

Capability

Invocation

Service Orchestration

Result /Events

Sync / Async

Invocation Manager

Comm Paradigms Connection

Drivers (4c)

Shared Resources

Controller (4e)

BT Sock Rest Local
R-R QP2P TS P-S

Result Rendering

External Services

Capability

Access

Middleware (4)

Tuple Space

Service

Pub-Sub

Service

Discovery API Invocation API (4b)

Callback

method

Execution

Result

SDL

(1a)

(3c)(3a)

(4a)

Communication

Manager (4d)

Table 2. Requirements, patterns and design implications.

Requisite Associated pattern Application Design implications

Capability selection

strategies

Strategy Harmonizer Inclusion of selection strategies in the form of

plugins. Plugin management.

Low coupling in

arch. modules

Command Sync/Async

operations
Definition of Async/Sync operation and processors.

Asynchronous

communication

Proactor Invocation and

discovery API

Inversion control mechanism: Callback and hook

method definition in harmonizer.

Capability Access

reusability

Acceptor /Connector Communication

paradigms

Pool of service handlers for each connection

driver. Bidirectional communication in drivers.

Efficient resource

management

Monitor Object Shared resource

controller
Concurrency management in limited resources

Sensors 2012, 12 8936

Design patterns are used to address the requirements of the prosumer environment in an elegant and

effective way [9]. The application of these patterns can impact the ability of systems to achieve their

quality attribute goals, and, therefore, they affect the system architecture and help to address key issues

that are resolved in the following sections. Table 2 shows some requirements from the prosumer

environment, the associated pattern that has been chosen to deal with each requirement and the

implications in the overall architecture. The proposed subsystems are:

Creation Environment (1). It provides mechanisms for service creation and composition by

non-expert users through component interconnection and customization. Specifically, the user drags

and drops some components into the creation environment and establishes some connections between

them. This is possible because the platform provides a component repository in which components are

published by external developers so that the creator can use them. The creator configures the

components in order to set restrictions that will be analyzed at component resolution time. This

environment performs the service orchestration process, resulting in the generation of the SDL

document (1a), which describes the set of components required for the service to run properly, in

addition to a number of restrictions that will be used by the harmonizer for optimal component

resolution into capabilities.

Execution Environment (2). It is responsible for processing the SDL document and generating the

graphical visualization of the service. This environment starts the process of component resolution,

which is carried out by the Harmonizer.

Harmonizer (3). Its main function is to make the matchmaking between the component to execute

and a compatible capability (3a) from those available at the capability repository (3b). The aim of the

Harmonizer is to select the best capability for each component grounded on different sources of

information (user profile, customization options in components, context information, capability

definition and so on). We use the Strategy pattern [10] to manage and apply different algorithm

families to capability selection strategies.

Capability Access Middleware (4). It performs capability discovery and invocation tasks and

manages the events received, providing a uniform interface to the Harmonizer for data access (4b).

Invocations are processed by some synchronous and asynchronous communication processors, which

depend on the communication paradigm. We use the Command pattern [10] to encapsulate all the

necessary information to process a sync/async invocation. To deal with asynchronous communication

we have chosen to use the Proactor pattern [10], that uses the inversion control mechanism (in callback

methods, 3c) to decouple application-independent asynchrony mechanisms from application-specific

functionality. Callback methods are invoked when an event appears, such as a message arrival to the

Access Middleware through a connection to a capability and perform application-specific processing.

The component resolution process as well as the synchronous and asynchronous invocation

management is further explained in Section 4.

An important requirement to be considered in environments with a large amount of heterogeneous

capabilities is how to provide mechanisms for effective reuse of communication technologies during

resource accessing. The Capability Access Middleware represents the fundamental level of reusability

and follows the Acceptor/Connector pattern [10], which decouples the connection among tasks from

the processing performed once the connection was carried out. This is achieved using various

connection drivers (4c). In Section 5 we develop the key aspects of event and connection management.

Sensors 2012, 12 8937

In order to achieve flexible communication with smart devices the access middleware is able to

change the communication paradigm in real time. The Communication Manager module (4d) receives

information from the Invocation Manager and decides whether the paradigm change is appropriated,

regarding the invocation frequency, the number of running services and the nature of the smart device.

Section 7 describes the Communication Manager in detail.

An access middleware for mobile environments is characterized, from the ubiquitous computing

point of view, by the large number of connections and disconnections that occur in a continuously

changing environment and the appearance and disappearance of new capabilities. Proper management

of resources is needed for efficient capability access. This management is facilitated by the use of the

Monitor Object pattern [10] (4e) which synchronizes method execution to ensure that only one method

runs within an object at a time. It also allows an object's methods to cooperatively schedule their

execution sequences. Section 8 describes resource management in detail and the optimization

algorithms we have defined for the Middleware.

5. Continuous Component Resolution in Mobile Environments

The harmonization subsystem provides a continuous component resolution process. The resolution

is carried out using capabilities that are available in the user's current context. These capabilities are

accessible in the own mobile device (e.g., GPS device), by proximity (e.g., printers, screens, etc.) or

they are globally accessible, using telecommunication networks (e.g., 3G, GSM, etc.). Since these

capabilities may disappear, the resolution process does not only take place at the beginning of each

capability usage but also occurs when the Harmonizer determines that a change of capability is

appropriate or necessary (e.g., a user with a GPS device enters an indoor environment). This subsystem

also incorporates other advanced features, such as the suspension of running services and the detection

of those new available capabilities that impeded a service execution.

The selection of the optimal capability for each component is done taking into account the user’s

preferences (e.g., higher priority for cheapest or closest devices) and component and capability

descriptions, expressed using a XML language (see [4] for more details). A set of conditions can be

defined to act as restrictions over a property, using comparison operators (i.e., ==, >=, <=, =, !=).

These conditions are converted to other query languages like SPARQL or SQL to perform the

matching process. The usage of an XML language decouples the restriction representation from a

specific storage and matching technology and enables to perform capability selection in devices with

more limited computational resources.

The selection of the optimal capability for a specific component is a problem which depends on the

current user’s context, his preferences and the available capabilities. For example, price, proximity or

the capability’s underlying communication protocol are possible aspects which could be applied and

combined in different forms for selection. Due to the existence of multiple applicable possibilities and

combinations, a single selection algorithm could not be always applied and, if possible, it would be too

difficult to extend by including new functionalities.

To avoid the previous problems, the Harmonizer applies the Strategy pattern, which is a design

pattern that defines a common interface for a family of algorithms, allowing the applied algorithm to

be interchangeable, independently of the element using it. Each capability selection strategy can be

Sensors 2012, 12 8938

managed individually and, furthermore, applied by the Harmonizer depending on the current user’s

needs. In addition, the usage of this pattern allows for the inclusion of new selection strategies

dynamically, in the form of plugins, without the need of redeploying the whole application in the

mobile device. An application of the Strategy pattern to the domain of data sorting, which is closely

related to the selection of the best available capability, is explained in [11].

Once the resolution process has finished, the Harmonizer is responsible for transmitting any

component invocation performed by the Execution Subsystem to the Capability Middleware and

returning the execution results to the Result Rendering module (see Figure 2). The messages exchanged

among the Execution, Harmonization and Capability Middleware subsystems are Java Objects, which

encapsulate the transmitted parameters. The Invocation API (see Figure 3) contains generic methods

for capability invocation, distinguishing between synchronous and asynchronous invocations.

Figure 3. Capability Invocation API.

The invokeSync method returns the result of the synchronous invocation through the Invocation

Manager (see Figure 4). The capabilityId parameter indicates the selected capability and the

invocationArgs parameter is a String array that contains the name of the method to be invoked and the

parameters required for the method to run properly. This method returns a Java Object as a result,

which is transmitted to the execution environment. After the Invocation Manager receives the

synchronous access request, it creates a Synchronous Operation, designed by following the Command

design pattern, which encapsulates all the necessary information to process the request (capability

identification, capabilityId; arguments needed to perform the invocation, invocationArgs; driver

identification, driverId) and defines an execute() method. This method performs the invocation request

through a Driver, which controls the access technology, using capabilityId and invocationArgs. After

that, the Invocation Manager selects a Synchronous Operation Processor to perform the Synchronous

Operation in a new thread. There exist a limited number of Operation Processors, according to the

number of Communication Paradigms that this middleware supports.

Figure 4. Interaction diagram of synchronous invocation.

Harmonizer
Invocation

Manager

Sync. Op.

Processor

Synchronous

Operation

invokeSync
capabilityId

invocationArgs

capabilityId

invocationArgs

Driver

define Sync. Op.

select()
execute()

sync result
sync result

result

Object invokeSync (int capabilityId, String invocationArgs);

void invokeAsync (int capabilityId, String invocationArgs, CapabilityHandler cHandler);

void cancelAsync (int capabilityId);

Sensors 2012, 12 8939

In the case of the asynchronous call (invokeAsync method), the common solution is to use a

multi-threaded technique to perform operations in parallel (synchronous multi-threading). Every

requested operation is executed in a thread that is scheduled by a manager. It is easy to write code for

one thread, but the synchronization among many threads is a challenging task [12]. Nevertheless, in

our work, the inversion mechanism provided by the Proactor pattern is used. The Proactor architecture

pattern demultiplexes and dispatches completion events that are triggered by the completion of

asynchronous operations. These completion events are dispatched to concrete service handlers that

process them. Figure 5 shows the developed implementation of the Proactor pattern for asynchronous

communication between the Harmonizer and the Capability Middleware subsystems.

Figure 5. Interaction diagram of asynchronous invocation.

Harmonizer
Invocation

Manager

Async. Op.

Processor

Asynchronous

Operation

Capability

Handler

invokeAsync
capabilityId

invocationArgs

capabilityHandler

capabilityId

invocationArgs

Driver

define Async. Op.

register
Async. Op.

Async. Processor

capabilityHandler

select()
execute()return

completion event
Async result

result

cancelAsync
capabilityId

unregister()
close()

OK
OK

return

completion event
Async result

result

The Harmonizer consumes the API provided by the Middleware and invokes the invokeAsync

(capabilityId, invocationArgs, capabilityHandler) method, where capablityHandler is the reference to

an object that can process the asynchronous result once it is received. The invokeAsync method is

implemented by the Invocation Manager, which has two different roles: on one hand it defines the

Asynchronous Operation as in the synchronous case and on the other hand registers the Asynchronous

Operation with the capabilityHandler provided by the Harmonizer. Thus, once the asynchronous

invocation is completed and the result is returned, the Invocation Manager can retrieve the Capability

Handler from the registry and send it the result.

Once the registration is performed, the Invocation Manager selects an Asynchronous Operation

Processor to perform the Asynchronous Operation in a new thread. When the operation finishes

executing, a completion event is generated by the Asynchronous Operation Processor, which notifies

the Invocation Manager. Then, the Invocation Manager dispatches to the associated capability handler,

which processes the results of the asynchronous operation.

Sensors 2012, 12 8940

When the execution environment does not wish to receive asynchronous invocation results from

capabilities, either because the service is over or the service execution logic no longer requires

asynchronous access to data, the Harmonizer uses the cancelAsync API method, to cancel the event

subscription. This invocation requests the Asynchronous Processor that is processing the Asynchronous

Operation to terminate the connection to the capability. Once the connection has been completed, the

Invocation Manager unregisters the Asynchronous Operation and returns a message indicating whether

everything went well or not.

6. Communication Architecture

A middleware that provides a single communication paradigm could not cope with the variety of

sensors, actuators, controllers and other devices that act as capabilities in our environment, making

their use very limited. This middleware solution offers a set of communication paradigms ranging from

the traditional synchronous model to different variations of the asynchronous model.

We define a Synchronous/Asynchronous Operation Processor as an entity chosen by the Invocation

Manager to perform a sync/async operation. This operation may return an immediate result, as in the

case of synchronous invocation or it may generate a series of events routed toward a Capability

Handler, which is responsible for their processing. The way events containing invocation results are

handled depends on the type of communication paradigm applied; therefore, there must be as many

Operation Processors as Communication Paradigms are supported by the Middleware.

In the Capability Access Middleware we have implemented support for Request-Reply, QP2P

and Publish-Subscribe communication models. The implications on the proposed architecture are

described below:

- Request-Reply: the Operation Processor defined for this synchronous model runs directly the

invocation operation, blocking the execution and awaiting the outcome, which is returned as a

synchronous result. In order to avoid blocking problems on long-lasting requests, the

Harmonizer controls the invocation requests using threads.

- QP2P: the Operation Processor, through a queue used for sending messages, has the possibility

to handle asynchronous capability invocation in an independent way. In addition, it can also

wait to receive some execution orders in order to make complex capability invocations. By

having a queue for the receiving messages, the Operation Processor can return Completion

Events composed of several responses. This is useful to send several responses received from

the capability in a single message to the upper layers. For example, this paradigm is useful

when accessing the Bluetooth pulse oximeter microX Medical RGB model [13], since the

information it provides is composed of two messages containing the values of pulse and

oxygen saturation. Instead, the capability handler for this device needs access to the two values

at once. We consider the most correct way of dealing with this device is to wait to have the two

values to produce a composite completion event.

- Publish-Subscribe: this paradigm provides Subscribers with the ability to express their interest

in a topic or set of topics in order to be notified subsequently of any incoming events generated

by a Publisher, which match the registered interest. This middleware integrates a topic-based

publish-subscribe mechanism with the addition of an external service called Event Channel,

Sensors 2012, 12 8941

which provides storage and management for subscriptions and efficient delivery of events.

When the Operation Processor needs to subscribe to any capability, it creates an object of the

class Topic with the information of the capability and an object of type Subscriber, which

subscribes to the topic. The Subscriber object implements the method notify (Message m),

which will receive messages published by the capability.

Because of the need to establish and maintain connections that use scarce resources in the mobile

terminal (Bluetooth stack and ports), a Resource Controller Module has been incorporated to the

proposed middleware for connection management, which optimizes connection duration and reduces

data access delay. In the previous section, we described the usefulness of the connection drivers to

decouple the invocation processing from the technology used for capability access. In order to

implement this decoupling, we have used the Acceptor/Connector pattern, which defines two entities

called Acceptor and Connector. The Acceptor is responsible for creating an endpoint that passively

listens to connection requests in a particular address. The Connector connects to a remote Acceptor.

In this pattern, there is an element called ServiceHandler, which provides a hook method that is called

by an Acceptor or Connector to activate the application service when the connection is established.

Once a Service Handler is completely initialized by an Acceptor or Connector factory it typically does

not interact with these components any further.

Invocation drivers contain an Acceptor and Connector entities. The former listens to capability

connection requests while the latter (that is the one used most often) makes requests over external

capabilities. ServiceHandlers adapt and uniform the invocation result and deliver it to the Sync/Async

Operation Processor for further processing.

Figure 6 shows an implementation of the communication between the Access Driver, the Operation

Processor that executes it and the Resource Controller. In each driver there is a pool of ServiceHandlers,

managing information from different types of capabilities. This design seeks to standardize data from

heterogeneous devices so that can be recognized by Middleware’s upper layers (Harmonizer and

Execution subsystem). Between the drivers and the Resource Controller, two interfaces are defined,

Resource API and Connection API, which exchange messages for controlling resources, an issue that

we describe in the next section.

Figure 6. Internal driver communication.

Resource Controller

Driver

Resource

Database Decissor

Resource API

Connection API

Acceptor

Connector

Serv. Handler

Serv. Handler

Serv. Handler

Resource

Management

Operation

Processor
Sync/Async

result

execute()

Comm.

paradigm

Sensors 2012, 12 8942

7. Communication with Smart Devices

The capabilities that are commonly accessed by the described middleware often restrict the

communication paradigm used. For example, the Request-Reply paradigm determines the behavior of

many devices and sensors that transmit the contained information when receiving a request message.

Other devices also support asynchronous transmission, allowing them to send data sequentially, without

needing to continuously receive request messages from consumer services [14]. This allows them to

save resources, as they don’t process request messages for each data to be transmitted. However,

sending data without knowing their demand may not have an acceptable performance, since the device

does not know a priori if there are other entities willing to consume the information it provides.

We call smart devices to those devices that support various communication paradigms, responding

to synchronous and asynchronous information requests. In this section we describe how the push/pull

model, deeply studied in the literature of wireless sensor networks [14,15], is integrated in our model

with the support of the Request-Reply and the Publish-Subscribe communication paradigms.

Interoperability problems in communication (in terms of technologies, protocols and format of

exchanged data) between the smart device and the middleware are outside the scope of the paper.

Thus, we say that the use of a specific communication model is automatically performed by the smart

device when it receives a data request in the language or protocol supported by the paradigm. The

proposed middleware allows changes in the selected communication paradigm at two levels. At the

service level, the change is produced by the alternated use of the invokeSync and the invokeAsync

methods when calling the capability access middleware. At the communication level, it is produced by

the choice of the correct service handler inside a communication driver. In this section we focus on the

paradigm change at the communication level.

The middleware defined in this paper detects if the capability corresponds to a smart device through

the discovery module, which accesses the capability description document and identifies all the needed

parameters to invoke it. Flexible communication with smart devices (being able to change the

communication paradigm on demand) reduces the number of transmissions between the communication

middleware and the smart device.

7.1. Communication Paradigm Change

In this section we study under what conditions the paradigm change process is activated and how

the capability access middleware supports the change in the communication model without affecting

the upper level (communication with the harmonizer) and the communication quality with the device.

The use of a Publish-Subscribe communication model instead of the Request-reply model eliminates

the request messages generated by the middleware. In contrast, the frequency of publication messages

must be synchronized with the frequency of information request from the execution environments to

avoid sending publications of data that will not be used or having delay or synchronization problems.

Thus, the middleware request a subscription to the content generated by a smart device with a given

publication rate. This rate will be accepted by the smart device if it has the necessary resources (the

requested publication rate is lesser that the maximum sampling rate). To resolve synchronization

Sensors 2012, 12 8943

problems between the middleware and the intelligent devices, the middleware is able to send back a

subscription message with a new requested publication rate.

The proposed service model considers that the execution environment may be running different

services that access the same intelligent device with different invocation rates or single invocations

(e.g., the invocations produced by user interaction with interface elements such as buttons). The

invocation manager maintains a table with the identifier of the smart capabilities and its request

frequency (f). At the beginning of service execution, f is unknown, but it is learned after receiving a

number (n) of invocation requests separated by an interval T = 1/f. Due to the difficulty to deal with

periodic invocations with different periods on the same capability, we have decided to give priority to

the periodic invocation with higher frequency and use the Publish-Subscribe paradigm, whereas other

periodic and single invocations will be performed by using Request-Reply. For each received

invocation request, the invocation manager applies the process described in Figure 7.

Figure 7. Communication paradigm selection process.

Invocation i

Use Request-

Reply

Use Request-

Reply

∃ Seci frec(Seci) > fc Seci ∈ Table
fc := frec(Seci)

send subscribe(fc)

Add Seci to Table

YES

NO

YES YES

NO NO

If the received invocation is part of a sequence of invocations the process checks whether the

sequence frequency is higher than the current frequency fc, which is currently used in Pub-Sub

invocations. If the new frequency is higher the process assigns this frequency to the Pub-Sub

invocations, replacing fc and sending a new Subscribe message with the new requested publication

rate. Otherwise the invocation is done using Request-Reply.

Being I:= {i1, i2,…, ic} the set of invocations received by the middleware at the times t1 to tc, and

T12 = t2 − t1, in order to check if the invocation ic ∈ I, received in tc, corresponds to a sequence, the

algorithm described in pseudocode in Algorithm 1 is applied. This algorithm checks if a received

invocation corresponds to a sequence. To do that, it calculates the time differences between all the

stored invocations and checks for periods between invocations that match n times.

Algorithm 1. Sequence check algorithm.

1: i:= c – 1;

2: calculate Tic;

3: for 1 to n:

4: if j ∈ {1,…, i–1} / Tic = Tji;

5: then i:= i – 1; goto 2;

6: else save (j) in results; c:= i; i:= j;

7: if results.length < n return false;

8: else return true;

Sensors 2012, 12 8944

7.2. Architecture Implications

As indicated in Section 5, there exist a limited number of Operation Processors, according to the

number of Communication Paradigms that this middleware supports. Therefore, in the Communication

Paradigm change process, the original Sync/Async Operation Processor will be maintained, depending

on the method invoked by the Harmonizer, invokeSync or invokeAsync.

Regarding the system architecture, the change of the communication paradigm in periodic invocation

to smart capabilities can only be performed when the invocationArgs of the periodic invocations are

the same. If not, these invocations cannot be considered as periodic and they are treated individually,

as single invocations. Therefore, the considered periodic invocations generate the same Synchronous

or Asynchronous Operation object, which contains the capability identifier capabilityId, the invocation

arguments invocationArgs, and the Driver that will perform the invocation. This driver, specifically

designed to access the smart capability, manages the paradigm change through the service handlers

that it contains. These service handlers are adapted to the communication paradigms supported by the

smart device.

The paradigm is chosen by the Communication Manager module, which consumes information

from the Invocation Manager, regarding the number of invocations and the time in which they occur.

The Communication Manager communicates with connection drivers via the Connection API,

indicating which service handler should handle the invocation and the parameters to use (invocation

period, subscription and unsubscription information).

Figure 8 shows an interaction diagram of a Request-Reply to Publish-Subscribe paradigm change.

The communication module, in the first invocation, selects the Service Handler that uses the

Request-Reply paradigm. In the second invocation the Communication Module decides to change the

paradigm to Publish-Subscribe. Therefore the communication module selects the P-S service handler

and sends it some parameters such as requested publication frequency or whether a subscription or

unsubscription is required.

Figure 8. Interaction diagram of a Request-Reply to Publish-Subscribe paradigm change.

Async. Op.

Processor
Driver

Communication

Module

Service

Handler (R-R)

Service

Handler (P-S)

invokeSync

request

invoke()

Change to P-S
return

result

request handler

selected handler

reply

invokeSync

invoke()

request handler
select (params)

selected handler

subscribe

publish
result

return

Synchronous

operation

Synchronous

operation

select (params)

Sensors 2012, 12 8945

After the last interaction described in the interaction diagram the Service Handler (P-S) will receive

publications form the smart device without having to send the subscribe message again. Section 9

shows a validation of the paradigm change in a typical service execution scenario from Mobile

Prosumer Environments.

8. Resource Management for Capability Discovery and Invocation

The environment described in our work defines capability access as a fundamental mechanism for a

prosumer service since it enables to obtain the needed functionality at execution time. In the previous

section we considered that these services request access to capabilities for repetitive invocations with a

constant frequency. These invocations concurrently use resources of the mobile terminal that can be

considered as limited (communication ports and Bluetooth stack). Therefore, we have defined

mechanisms for resource management by using the Monitor Object concurrency pattern. This pattern

synchronizes method execution to make sure that only one method is executed at a time. Thus,

different drivers can concurrently attempt to access a common resource, but an internal mechanism

will synchronize access to it, allowing access to one driver at a time. In Java, synchronized methods

are used for this task. Figure 9 shows how a driver obtains a resource and uses it: first the driver should

contact the Resource API for a Resource Object, then it establishes the priority to acquire the resource

and, after using the resource, the driver releases it.

Figure 9. Resource request in drivers.

The Decissor module, in the Resource Controller, selects which invocation acquires the resource

based on profiles. If the selected profile (by user preferences or depending on the capability type) seeks

to reduce energy consumption in the Access Middleware, it will minimize the parameter
 . This

parameter defines the average utilization rate of a resource for connections with an X capability, given

that maintaining an open connection without being used increases battery consumption (from 6.6 mW

in stand-by state to 69 mW in connected state for Bluetooth in the work of Cano et al. [16]). But if the

objective is to minimize the invocation delay, the middleware adopts a profile that attempts to increase

 , so that connections are always active (see delay analysis in the validation section). We have

implemented these two profiles with two algorithms called ESA (Energy Saving Algorithm) and SOA

(Session Optimization Algorithm).

The ESA algorithm is simple: When the driver requests a resource to perform a capability

connection, the Resource Controller blocks the request until the resource has become free. When the

driver stops using the resource, it can invoke setPriority(Priority.LOW) or releaseResource() to

indicate that it does not need this resource for a while.

Resource res = getResource (resourceId);

res.setPriority(Priority.HIGH);

doSomething(resource);

res.setPriority(Priority.LOW);

releaseResource(resourceId);

Sensors 2012, 12 8946

The SOA algorithm is described in Algorithm 2. Be Rx a resource X, QHx and QLx priority and

non-priority invocation queues that use Rx, and ICy an invocation to Y capability, the Decissor applies

the algorithm when it receives a resource request.

Algorithm 2. Pseudocode of Session Optimization Algorithm.

In order to release and assign resources, the Decissor interacts with the Connection API for

communicating to drivers. Finally, there is also a thread that assigns Rx to the first element of QHx and,

if QHx is empty, to the first element of QLx.

9. Validation

This work has been validated as part of a prototype implementation that consists of a Creation

Environment, Execution Environment, Harmonizer [4] and Access Middleware, according to the mIO!

project’s architecture devised for mobile service provision. Section 9.1 describes the implementation

of the Capability Access Middleware and the communication with smart devices whereas Section 9.2

presents a performance evaluation of the two algorithms for resource management.

9.1. Prototype Evaluation

The developed middleware follows the architecture described in Figure 2, integrating the Request-

Reply, QP2P and Publish-Subscribe communication paradigms and the explained design patterns. The

discovery module and some drivers that control capability access have also been developed, using

REST, Bluetooth (RFCOMM and OBEX), SOAP and Java local access. For this proof of concept, we

have tested access to Google Maps and Ovi Maps using REST, control of an UPnP / DLNA network

hard drive (Model Media Iomega Home Network Drive) through SOAP and connection to a B600

FRWD heart rate monitor and a BT microX Medical RGB [13] pulse oximeter.

(
,) setPriority (Priority.HIGH)

1: add to

2: if is used by
with Priority.LOW then

3: release() from

4: assign() to first element of
5: wait() until is assigned to

6: return
(

,) setPriority (Priority.LOW)

1: add to

2: if is not used then

3: assign() to first element of

4: wait() until is assigned to

5: return
(

,) releaseResource ()

1: release() from

2: assign() to first element of

Sensors 2012, 12 8947

The capability access middleware has been implemented in Java ME, integrated with the

Harmonization Subsystem and tested in a Nokia N97 and Nokia 5800 XpressMusic (O.S. Symbian

S60 5° Ed) devices.

To evaluate the communication with smart devices the mobile terminal has been used to simulate a

set of smart sensors that support the Request-Reply and Publish-Subscribe paradigms. We define a

realistic service execution scenario in which there are three services running simultaneously and

accessing the capability offered by a smart device as described in Table 3. The n parameter, used by

the communication manager, indicates the amount of invocations with the same frequency that are

needed to consider those invocations within the same sequence. The δ parameter enables to establish a

margin of variation to recognize invocations within the same sequence. With the values of δ and n

shown in this table no error was found in recognizing the invocation frequencies of Services 1, 2 and 3,

although their invocation frequency is very close.

Table 3. Service Execution Scenario.

Services Start Time (s) Duration (s) Invocation Frequency (Inv/s)

Serv. #1 0.0 100 1

Serv. #2 3.39 27.6 1.087

Serv. #3 50.32 33 0.909

Communication Manager parameters δ = 10 ms n = 3 invocations

Figure 10 represents the behavior of the communication middleware when receiving the invocations

described in Table 3. Γx is the average number of transmissions performed by the communication

middleware with the device that simulates the behavior of the smart services. The difference becomes

noticeable once Service #2 starts, in the second 3.29, from which the application of the paradigm

change model saves up to 25% of the transmissions. From 160 total invocations to the intelligent

device, that is, 320 Request-Reply transmissions, the use of the paradigm change model reduces this

number to 224, that is, a 70%.

Figure 10. Transmission comparison in Service Execution Scenario.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Request-

Reply

Paradigm

change

time (s)

Γx

Sensors 2012, 12 8948

9.2. Performance Comparison

As a proof of concept for resource management we present a performance evaluation of capability

access using the internal Bluetooth capability (through JSR 82) of the mobile terminal that is executing

the Capability Access Middleware. The aim of this study is to compare the behavior of the Resource

Controller for each of the defined algorithms (ESA and SOA) in these two use cases:

Case #1: The system runs a service that accesses the Bluetooth resource every 6 seconds.

Case #2: The system runs two services accessing via Bluetooth to different capabilities

periodically, with a frequency of 5 and 12 seconds.

In these cases we are not taking into account the discovery time and we assume that the Bluetooth

service accessed is known. If Bluetooth capabilities were unknown, the Discovery module (which also

uses the Bluetooth resource) would be needed. Thus, discovery is modeled as another capability that

accesses resources for the Resource Controller’s point of view.

As mentioned in Section 8 and for the Bluetooth case, the ESA algorithm purpose is to optimize

power consumption by minimizing the utilization of the Bluetooth resource. On the other hand, the

SOA algorithm purpose is to minimize the Bluetooth capability access whilst maintaining the

connection with the Bluetooth resource as long as possible. We found that the average delay for data

access using the studied Bluetooth capability (BT microX Medical RGB pulse oximeter) corresponds

to 3,953 ms (0.2 standard deviation) and 1,988 ms (0.3 standard deviation) if the connection was

already established before. Figure 11 analyzes the value of
 (Average resource usage rate for

connections with studied capabilities) for both use cases and ESA and SOA algorithms, knowing that a

low value of
 optimizes power consumption, while a value of

 close to 100% determine a lower

access delay.

Figure 11. Average resource utilization for Bluetooth in Case #1 (left) and Case #2 (right).

These figures show that the difference between the two algorithms in terms of channel usage for

connections is clear. In Case #1 with ESA algorithm the average resource usage for connections tends

to 100% as time passes, due to the fact that the Middleware creates a single connection, which holds

every invocation (20 invocations in 1 connection for 120 seconds). In the case of SOA, the resource is

used just to receive the capability data, which corresponds to about 50% utilization. In Case #2 (which

is a more realistic behavior for a multi-execution environment), the difference in values, although

Sensors 2012, 12 8949

significant, is not as extreme; since in both cases it is necessary to make disconnections (22 versus 15)

to release the resource in order to be used by other capabilities.

10. Related Work

This section concentrates on reviewing previous work on communication middleware in continuous

service execution environments. Continuous service execution, studied as service roaming in related

work [17,18], enables the consumption of services in a mobile environment. Services are only valid in

a specific scope, becoming useless where the user moves outside it. Context changes are monitored to

check for valid scopes during the execution, triggering the search for other compatible services when

current scope changes. Ontologies and service roaming are used in conjunction in [19]. However, none

of these approaches takes into account the particular characteristics of micro-services in prosumer

environments, where users create their own services, which are provided to others. For detailed study

of service provision in mobile prosumer environments the authors refer to their previous work [4].

There are many types of communication middlewares, Message Oriented (MoM), Remote Procedure

Call (RPC), Object Request Broker (ORB) and even Service-oriented Architecture Middlewares [20].

While traditional middleware platforms typically employ synchronous, RPC-style client/server

interactions, MoMs provide asynchronous, peer-to-peer style interactions, leading to a more loosely

coupled architecture which is more adequate for dynamic mobile environments [21]. Related work in

communication middleware for dynamic environments (such as the mobile prosumer environment)

provide flexibility and reconfiguration to their systems in two levels, in the architectural and

development model level and in the communication support level.

In the architecture level, some research has enhanced CORBA-based middleware to become flexible,

customizable and lightweight. For example, UIC [22], based on dynamicTAO [23], an extension of

CORBA, provides a reflective architecture that detects the presence of a remote device and loads at

runtime the adequate communication driver to manage the connection. To achieve adaptability and

flexibility, in addition to use reflective techniques, they are also employed some real time refactoring

techniques for models [24], detecting antipatterns and ill-structures, and also for the programming

level, as in the work of Binley et al. [25], who use AspectJ to refactor OOP (Object Oriented

Programming) programs into equivalent AOP (Aspect Oriented Programming) programs. Other

works [26] opt to generate architecture-level programs, providing flexibility by modeling of variation

points and design patterns at various architecture levels. The adaptability to requirements of new

environments or locations is also tacked in the literature. AmbientSoaML [27] introduces ambients

(bounded places where computation occurs) in Service oriented architecture Modeling Language

(SoaML) to extend this metamodel with mobility concerns and decoupling them from the business

logic. The concept of ambient is also introduced in the work of Ali et al. [28] in the form of connectors

that offer mobility services to architectural elements and coordinate element boundaries. The notions

of adaptability and separation of concerns of these two approaches are also addressed in our work by

using communication paradigms and design patterns respectively. However, the scope of our work is

different, as we focus on a programming perspective and the works of Ali et al. in the metamodel design.

With regard to the communication support level we highlight the works in reconfigurable

communication middleware. The PLA middleware [29] has been designed as a flexible and

Sensors 2012, 12 8950

lightweight middleware for ubiquitous computing, aimed for mobile terminals. The main difference

with our proposal, from the point of view of software engineering, is that they combine minimal

fine-grained components and use a mixin layer approach [30] to tailor the architecture to fit in a

specific scenario. MUSIC [31] also extends a generic middleware, which seamlessly supports

component-based and service-based configurations. The functionality provided by a component can be

dynamically configured to adapt the framework to different environments. In our work does not extend

or particularize a basic middleware core but it develops a complete solution which focuses in mobile

prosumer environments and is designed specifically for it.

Integrating communication paradigms in Access Middleware has been tackled in [21], proposing an

architecture which supports the traditional synchronous model and different variations of the so-called

asynchronous models. Other works, as GREEN [32], focus in the concept of reconfiguration in

continuous execution environments, and provide a reconfigurable middleware (according to application

requirements and context information) that supports publish-subscribe interaction types (topic-based,

content-based and location-based) but only for one communication paradigm.

In ubiquitous computing environments, devices might not be connected at all times. Several proposals

take this into account and support that devices enter and leave networks on an ad hoc basis. This

behavior can be modeled by using P2P networks [33], in which devices are peers and communicate via

ad hoc protocols. To locate these devices, some content-based techniques are used, such as Distributed

Hash Tables (DHT). Other works [34] introduce the concept of Ubiquitous Consumer Wireless World

(UCWW), where the consumer changes its access network provider to use available and suitable

services in a continuous way, following the “always best connected and best served” paradigm.

Related works in resource management are divided between those that provide mechanisms for

overload prevention, that is, provide message prioritization and load balancing [35], and those which

rely on adaptation mechanisms that change the access protocol or session QoS parameters. Regarding

the latter, MUM [36] proposes a dynamic and flexible middleware to support continuous services to

mobile users by migrating the session state in response to user movements during service provisioning.

It also integrates some sync/async client/server paradigms but it focuses in session management and

preservation rather than device access or architectural issues. In [6], a Session Initiation Protocol

middleware is provided for session management, which also provides resource reservation and QoS

management for user services. However, resource reservation is done at the session level, through SDP

(Session Description Protocol). Our work supports session management by the Harmonizer and the

connection-oriented communication paradigms (request-reply and publish-subscribe), and also enables

physical resource reservation, as in the Bluetooth case, analyzed in detail in Section 8.

11. Conclusions and Future Work

This paper proposes a solution for enabling flexible and continuous capability invocation in

ubiquitous environments. This solution is focused in mobile prosumer environments, in which the user

is the center of the environment and his mobile phone is the gateway for interacting with the

surrounding capabilities. The requirements imposed by this environment determine the existence of

three processes: Orchestration, Resolution and Capability Invocation. Focusing on the latter, our main

contribution in this work is specified by the definition and implementation of an architecture for a

Sensors 2012, 12 8951

communication middleware and its integration with other dependent subsystems, such the Harmonizer,

as part of an overall architecture for the mIO! project. This architecture has been developed following

the design patterns Strategy, Command, Proactor, Acceptor/Connector and Monitor Object [10], in

order to meet the requirements of strategy-based resolution, low coupling, asynchronism, reusability

and efficient resource management respectively.

The communication paradigms that are present in the Access Middleware (Request-Reply, QP2P

and Publish-Subscribe) allow it to cope with the heterogeneity of sensors, actuators, controllers and

other devices in the environment. The middleware implementation fulfills the task of decoupling

capability access from the selection of the optimal capability and from the processing of the generated

information. In order to deal with the so called smart devices, the developed middleware supports the

automatic communication paradigm change. We focus in the push/pull model, describing the change

from the Request-reply to the Publish-Subscribe paradigm and vice versa. In the evaluation section we

determine that using the described paradigm change model and algorithm we can save up to 25% of

the transmissions between the communication middleware and the smart devices.

Finally, we have made a contribution related to the management of limited resources in the mobile

terminal that performs capability access by comparing the performance of two algorithms for

Bluetooth access in terms of energy consumption and data access delay. This leads to the conclusion

that the Access Middleware must be able to decide which algorithm to use depending on the

parameter to optimize (delay or consumption), which will be given by user preferences or provided by

contextual information.

In the same way that the Harmonizer incorporates different decision strategies for component

resolution, as future work we plan to extend the communications middleware architecture to improve

the intelligent selection of the optimal communication paradigm. Also, we consider the concept of

dynamic service deployment [37] in the form of OSGi bundles, applied to automatic driver deployment

in the communication middleware so that we can extend our current work to new and heterogeneous

capabilities.

Acknowledgments

The authors would like to thank to the anonymous referees for comments and recommendations for

the paper improvement.

References

1. Hadim, S.; Mohamed, N. Middleware for Wireless Sensor Networks: A Survey. In Proceedings of

the 1st International Conference on Communication System Software and Middleware, Verona,

Italy, 1–3 July 2006; pp. 1–7.

2. Molla, M.M.; Ahamed, S.I. A Survey of Middleware for Sensor Network and Challenges. In

Proceedings of the International Conference on Parallel Processing Workshops, Columbus, OH,

USA, 14–18 August 2006; pp. 223–228.

3. Alcarria, R.; Robles, T.; Morales, A.; González-Miranda, S. New Service Development Method

for Prosumer Environments. In Proceedings of the 6th International Conference on Digital

Society, Valencia, Spain, 30 January–4 February 2012; pp. 86–91.

Sensors 2012, 12 8952

4. Aguilera, U.; Almeida, A.; Orduña, P.; López-de-Ipiña, D.; de las Heras, R. Continuous Service

Execution in Mobile Prosumer Environments. In Proceedings of the 4th Symposium of Ubiquitous

Computing and Ambient Intelligence, Valencia, Spain, 7–10 September 2010; pp. 229–238.

5. Fähndrich, M.; Aiken, M.; Hawblitzel, C.; Hodson, O.; Hunt, G.; Larus, J.R.; Levi, S. Language

Support for Fast and Reliable Message-Based Communication in Singularity OS. In Proceedings

of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems, Leuven, Belgium,

18–21 April 2006; pp. 177–190.

6. Guenkova-Luy, T.; Schmidt, H.; Schorr, A.; Hauck, F.J.; Kassler, A. A Session-Initiation-Protocol-

Based Middleware for Multi-Application Management. In Proceedings of the IEEE International

Conference on Communications, Glasgow, Scotland, 24–28 June 2007; pp. 1582–1587.

7. Gelernter, D. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 1985, 7,

80–112.

8. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many faces of publish/subscribe.

ACM Comput. Surv. 2003, 35, 114–131.

9. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented Software; Addison-Wesley Professional: Boston, MA, USA, 1994.

10. Buschmann, F.; Henney, K.; Schmidt, D.D. Pattern-Oriented Software Architecture: On Patterns

and Pattern Languages; John Wiley & Sons: Hoboken, NJ, USA, 2007.

11. Nguyen, D.Z.; Wong, S.B. Design Patterns for Sorting. In Proceedings of the 32nd SIGCSE

Technical Symposium on Computer Science Education, Charlotte, NC, USA, 2001; pp. 263–267.

12. Cheng, L.; Wang, Z.; Huang, X. A Stream-Based Communication Framework for Network

Control System. In Proceedings of the 3rd International Conference on Biomedical Engineering

and Informatics, Yantai, China, 16–18 October 2010; Volume 7, pp. 2828–2833.

13. RGB Medical Devices. Available online: http://www.rgb-medical.com/ (accessed on 16 June 2012).

14. Bose, R.; Helal, A. Sensor-Aware Adaptive Push-Pull Query Processing in Wireless Sensor

Networks. In Proceeding of the 6th International Conference on Intelligent Environments,

Kuala Lumpur, Malaysia, 20–21 July 2010; pp. 243–248.

15. Liu, X.; Huang, Q.; Zhang, Y. Balancing Push and Pull for Efficient Information Discovery in

Large-Scale Sensor Networks. IEEE Trans. Mob. Comput. 2007, 6, 241–251.

16. Cano, J.C.; Cano, J.M.; González, E.; Calafate, C.; Manzoni, P. Evaluation of the Energetic

Impact of Bluetooth Low-Power Modes for Ubiquitous Computing Applications. In Proceedings

of the 3rd ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor

and Ubiquitous Networks, Torremolinos, Spain, 2–6 October 2006; pp. 1–8.

17. Gartmann, R.; Holtkamp, B.; Weissenberg, N.; Li, G. Service Roaming in Mobile Applications.

In Proceedings of the IEEE International Conference on Services Computing, Orlando, FL, USA,

11–15 July 2005; Volume 1, pp. 121–128.

18. Chin, A.; Kontogiannis, K. m-Roam: A Service Invocation and Roaming Framework for Pervasive

Computing. In Proceedings of the 18th International Conference on Advanced Information

Networking and Applications, Fukuoka, Japan, 29–31 March 2004; Volume 2, p. 385.

19. Weißenberg, N.; Gartmann, R.; Voisard, A. An ontology-based approach to personalized

situation-aware mobile service supply. GeoInformatica 2006, 10, 55–90.

Sensors 2012, 12 8953

20. Ibrahim, N. Orthogonal Classification of Middleware Technologies. In Proceedings of the 3rd

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies,

Sliema, Malta, 11–16 October 2009; pp. 46–51.

21. Morais, Y.; Elias, G. Integrating Communication Paradigms in a Mobile Middleware Product

Line. In Proceedings of the 9th International Conference on Networks, Menuires, France, 11–16

April 2010; pp. 255–261.

22. Roman, M.; Kon, F.; Campbell, R.H. Reflective middleware: From your desk to your hand.

IEEE Distrib. Syst. Online 2001, 2, doi:10.1109/MDSO.2001.5.

23. Kon, F.; Román, M.; Liu, P.; Mao, J.; Yamane, T.; Magalha, C.; Campbell, R.H. Monitoring,

Security, and Dynamic Configuration with the dynamicTAO Reflective ORB. In Proceedings of

the IFIP/ACM International Conference on Distributed Systems Platforms, New York, NY, USA,

3–7 April 2000; pp. 121–143.

24. Lan, L.; Huang, G.; Wang, W.; Mei, H. A Middleware-Based Approach to Model Refactoring at

Runtime. In Proceedings of the 14th Asia-Pacific Conference on Software Engineering, Nagoya,

Japan, 5–7 December 2007; pp. 246–253.

25. Binkley, D.; Ceccato, M.; Harman, M.; Ricca, F.; Tonella, T. Tool-supported refactoring of

existing object-oriented code into aspects. IEEE Trans. Softw. Eng. 2006, 32, 698–717.

26. Lung, C.; Rajeswaran, P.; Sivadas, S.; Sivabalasingam, T. Experience of building an

architecture-based generator using GenVoca for distributed systems. Sci. Comput. Program. 2010,

75, 672–688.

27. Ali, N.; Babar, M.A. Modeling Service Oriented Architectures of Mobile Applications by

Extending SoaML with Ambients. In Proceedings of the 35th Euromicro Conference on Software

Engineering and Advanced Applications, Patras, Greece, 27–29 August 2009; pp. 442–449.

28. Ali, N.; Ramos, I.; Solís, C. Ambient-PRISMA: Ambients in mobile aspect-oriented software

architecture. J. Syst. Softw. 2010, 83, 937–958.

29. Apel, S.; Böhm, K. Towards the Development of Ubiquitous Middleware Product Lines. In

Lecture Notes in Computer Science 3437; Springer: Berlin, Germany, 2005; pp. 137–153.

30. Smaragdakis, Y.; Batory, D. Mixin layers: An object-oriented implementation technique for

refinements and collabroation-based designs. ACM Trans. Softw. Eng. Methodol. 2002, 11,

doi:10.1145/505145.505148.

31. Rouvoy, R.; Barone, P.; Ding, Y.; Eliassen, F.; Hallsteinsen, S.; Lorenzo, J.; Mamelli, A.;

Scholz, U. MUSIC: Middleware support for self-adaptation in ubiquitous and service-oriented

environments. Softw. Eng. Self Adapt. Syst. 2009, 5525, 164–182.

32. Sivaharan, T.; Blair, G.; Coulson, G. GREEN: A Configurable and Re-Configurable

Publish-Subscribe Middleware for Pervasive Computing. In Lecture Notes in Computer Science

3760; Springer: Berlin, Germany, 2005; pp. 732–749.

33. Chakraborty, D.; Joshi, A.; Finin, T.; Yesha, Y. Service composition for mobile environment.

Mob. Netw. Appl. 2005, 4, 435–451.

34. Ji, Z.; Ganchev, I.; O’Droma, M. An iWBC consumer application for “always best connected and

best served”: Design and implementation. IEEE Trans. Consumer Electron. 2011, 57, 462–470.

Sensors 2012, 12 8954

35. Erradi, A.; Maheshwari, P. wsBus: QoS-Aware Middleware for Reliable Web Services

Interactions. In Proceedings of the IEEE International Conference on e-Technology, e-Commerce

and e-Service, Hong Kong, China, 29 March–1 April 2005; pp. 634–639.

36. Bellavista, P.; Corradi, A.; Foschini, L. MUM: A Middleware for the Provisioning of Continuous

Services to Mobile Users. In Proceedings of the 9th International Symposium on Computers and

Communications, Alexandria, Egypt, 28 June–1 July 2004; Volume 1, pp. 498–505.

37. Alcarria, R.; Robles, T.; Morales, A.; Gonzalez-Miranda, S. Flexible service composition based

on bundle communication in OSGi. KSII Trans. Internet Inf. Syst. 2012, 6, 116–130.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

