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Abstract: Logging harvesters represent a set of high-performance modern forestry 
machinery, which can finish a series of continuous operations such as felling, delimbing, 
peeling, bucking and so forth with human intervention. It is found by experiment that 
during the process of the alignment of the harvesting head to capture the trunk, the operator 
needs a lot of observation, judgment and repeated operations, which lead to the time and 
fuel losses. In order to improve the operation efficiency and reduce the operating costs, the 
point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster 
extracting algorithm and filtering algorithm are used to classify each trunk from the point 
cloud. On the assumption that every cross section of the target trunk is approximate a 
standard circle and combining the information of an Attitude and Heading Reference 
System, the radii and center locations of the trunks in the scanning range are calculated  
by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through 
experiments in an aspen forest, and the optimized calculation time consumption is 
compared with the previous work of other researchers. Moreover, the implementation of 
the calculation result for automotive capturing trunks by the harvesting head during the 
logging operation is discussed in particular. 

Keywords: laser measurement; logging harvester; Fletcher-Reeves conjugate gradient; 
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1. Introduction 

Because the circumstances of forest areas are very complex and hazardous, it is very dangerous and 
laborious to harvest standing trees by hand-operated machines and tools. In the last decade, with the 
development of the hydraulic controls and sensor techniques, more and more logging harvesters are  
being used in forestry [1–3]. The logging harvester can complete successive tasks of felling, 
delimbing, measuring and bucking, and is very suitable for large scale clear cutting operations in fast 
growing plantations, as well as on hillsides. A comfortable work environment, easy maintenance, 
efficiency, less manpower, and many productive days of work can be expected when using the logging 
harvesters. This leads to lower costs and better price performance ratio of the logging operations. 

The Forest and Environment Equipment Research Institute of Beijing Forestry University has been 
dedicated to the research on logging harvesters for years [4,5]. It was found by experiments on logging 
harvester prototypes that the processes of delimbing, peeling, and bucking can be completed fast, but 
for the process of the alignment of harvesting head to capture the trunk, dues to the blind areas of  
the operator and vibration of the cane and vehicles chassis, the operator has to perform repeated 
observations, judgments and operations, which lead to the time and fuel losses. It is therefore of 
significance to find an efficient method to measure the location of surrounding trees for the harvesting 
head to achieve automatic capture. 

Laser scanner is a non-contact measurement system that can scan surroundings two or three 
dimensionally with a radial field of vision using infra-red laser beams. The distance between the laser 
scanner and the object is determined by the time of flight of laser light pulses: a pulsed laser beam is 
emitted and reflected if it meets an object. From those distance data, a point cloud is created describing 
the shapes of the objects surrounding the scanner. Laser scanning offers new possibilities in tree 
measurement applications in forestry.  

Jutila, Kannas et al. [6] discuss a method for diameter and location measurement of tree parameters 
using a 2D laser scanner mounted on a mobile ATV platform. The error of the tree diameter 
calculations is 4%. Thies, Pfeifer et al. [7] used a 3D terrestrial laser scanner to capture the geometric 
aspects of a tree: the radius, length and diameter of the trunk and individual branches. Liang,  
Litkey et al. [8] presented a fully automatic stem-mapping algorithm using 3D single-scan terrestrial 
laser scanning data for collecting individual tree information from forest plots. Öhman,  
Miettinen et al. [9,10] used 2D scanning laser range finders, machine vision systems and GPS to get 
information about the surrounding forest, such as tree diameters, positions and stem density. This 
information can be used on-line for the simultaneous localization and mapping for the forest harvesters 
or off-line in a forest asset management system. Rossmann et al. [11] mounted two laser scanners on 
the right and left side of the logging harvester cabin, generating a local tree map from the point cloud 
data of the mounted laser scanners, and using a particle filtering matching algorithm to form the global 
tree map for wood harvesting.  

In this paper, a low-cost 2D laser scanner and an inertial measurement system are mounted on the 
outer boom of the crane, and are used to obtain the point cloud of the surrounding trees. In Section 2, 
the whole laser measurement equipment is described, and a laser scanning experiment is carried out in 
an aspen forest; In Section 3, the hierarchical cluster algorithm and filtering algorithm are used to 
extract each trunk from the point cloud. The trunk radii and location of the trunks are calculated by the 
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Fletcher-Reeves conjugate gradient algorithm; In Section 4, the measurement results are given and 
compared with previous work of other researchers; In Section 5, the implementation of the result for 
automated trunk capture is discussed. Our conclusions are presented in Section 6. 

2. The Description of the Equipment  

2.1. The Equipment Hardware  

3D laser scanners are expensive and unsuitable for continuous measurements [6]. Accordingly,  
a LMS291 2D laser scanner from SICK Inc. is used as the primary sensor. The measurement data 
corresponding to the surrounding contour is scanned by the LMS291, and is output in binary format 
via the RS485 data interface at the rate of 10 Hz to form the raw point cloud. As a result of the beam 
geometry, the maximum space between two laser beams is related to the scanning angular resolution 
and maximum scanning range. To get a local tree map of adequate resolution for logging harvesting, 
the scanning angular resolution of the LMS2291 is set to 0.25°, the maximum scanning angle is 100°, 
and maximum scanning distance is 8 m.  

The 2D laser scanner can be installed on the outer boom of the crane, but the tilt and orientation 
angle of the scanner plane should be known. A MTi Attitude and Heading Reference System (AHRS) 
of Xsens Inc. is used. AHRS is a miniature inertial measurement unit with integrated 3D 
magnetometers, and is fixed on the top of LMS291 as shown in Figure 1. AHRS is capable of 
outputting roll α, pitch β and yaw γ of the scanner plane in real time via the RS232 data interface. The 
electronics of LMS291 and AHRS are powered directly from a 24 V lead-acid battery. The data analysis 
software is implemented on the computer. The whole measurement equipment is shown in Figure 1.  

Figure 1. The whole hardware of measurement equipment. 

 

2.2. The Data Analysis Flow of the Equipment  

The overall data analysis flow of the equipment for the measurement and calculation of the tree 
parameters is shown in Figure 2, and is mainly divided into four consecutive phases. The first phase is 
projecting the raw point cloud onto a horizontal plane according to the tilt angle α and β of the 
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scanning plane. The second phase is filtering the invalid scanning data against some criteria, and 
extracting each trunk from the calibrated point cloud. The third phrase is determining the trunk radii 
and location of the trunks for the harvesting head. The fourth phrase is storing the results and 
displaying the useful information on the human-computer interface.  

Figure 2. The data analysis flow.  

 

3. Extracting Trunks Feature for Logging Harvesting 

3.1. Projecting the Raw Scanning Data 

In our experiments, the laser scanner was fixed on a tripod with telescopic legs as seen in Figure 3. 
Laser beams reflect if they meet the trunk or other object, and a fan-shaped scan is made of the 
surrounding area. Depending on the angular resolution of the LMS291, the distance value is provided 
every 0.25° from 40° to 140°, and the number of distance values is 401. As the individual distance 
values are given out in sequence via the RS485 data interface particular, the angular position of every 
individual distance value can be allocated on the basis of the values’ position in the data string. 

Figure 3. The experiment in the aspen forest. 

 

In the experiment, the height of the scanning plane is equal to about 1.3 meters from the ground, 
this leads to better results because the understory and other uninteresting objects below the scanning 
plane and the variation in the height of the scanning plane is assumed to be negligible in our 
experiment. The measurement range is limited to 8 m, which is not beyond the reachable workspace of 
the crane of the logging harvester and can echo sufficient laser echo data from a single trunk.  
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In polar form, supposing vector Di = [li, θi], where i = 1 to 401; θi is the angular positions; li is the 
horizontal distance value between the laser reflecting point and the measuring base point, then, li can 
be calculated as following Equation (1): 

 (1) 

where lraw 
i  is the raw distance value of every scanning angular in polar form acquired directly from the 

laser scanner; α and β are the roll and pitch angle acquired by the AHRS. After one scan in the aspen 
forest, the laser scanning measurement data forms a point cloud in polar form as shown in Figure 4.  

Figure 4. The scanning and clustering result of the experiment. 

 

In Figure 4, the blue point is the measuring base point and the red dashed line is the maximum 
range (8 m) of the laser scanning plane. Some of the cloud points are clustered as shown in Figure 4, 
and each set of points inside a circle represents one cluster. In the scanning plane, the areas behind the 
nearest trunk are blind. During the logging operation, the harvester commonly works on the nearest 
trunk firstly, so the scanning blind areas can be neglected. A clustering and filtering algorithm can be 
used to filter out any uninteresting objects or incorrect data and extract the trunks from the point cloud. 

3.2. Clustering, Filtering and Extracting the Trunk  

The measurement data is processed in increasing order of the bearing angle from 40° to 140°. The 
cluster can be defined by two edge points, which are the measurement points that satisfy [6]: 

 (2) 

where li is the distance value of the ith measurement; Δlmax is the threshold for the allowed distance in 
distance inside a cluster. If the distance Δl between two adjacent points is larger than Δlmax, one of 
points ith and I − 1th belongs to the cluster and the other one belongs to the background or other cluster. 
In our experiment, the distance between two trunks is large, so we choose Δlmax = 0.2 m, then, eight 
clusters can be extracted from the point cloud in Figure 3.  
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Using Equation (2) for extracting trunks from the point cloud is certainly effective and sufficient in 
a forest with just a few bare tree trunks, but in a more complex environment, the laser beam may hit 
uninteresting things, branches or the ground, and because of divergence of the laser, incorrect 
measurement data may exist in the point cloud, therefore, filtering algorithms should be used to filter 
out the incorrect points or clusters from the point cloud, and accept only the trunk clusters. The 
filtering is performed for each cluster by testing it against following four criteria [6]: 

(1) The minimum and maximum curvatures of the whole cluster. 
(2) The minimum value for the curvature of a single point curi. 
(3) The greatest acceptable width of the cluster. 
(4) The smallest acceptable depth of the cluster. 

A point or cluster should be rejected if it fails any of the above tests. The minimum and maximum 
curvatures of the whole cluster in (1) prescribe the acceptable value of the trunk radius. The curvature 
of a single point curi in (2) can be calculated as Equation (3) [12]: 

 (3) 

The greatest acceptable width and the smallest acceptable depth of the cluster in (3) and (4) can 
filter out the ground or other uninteresting things. The vector Di = [li, θi] of the validated points can be 
transform to the vector Pi = [px 

i , py 
i ] defined in rectangular form. Figure 5 gives point cloud of every 

cluster defined in rectangular form after filtering.  

Figure 5. The point cloud in clusters after filtering. 

 

3.3. Calculating the Parameters of the Trunk  

After filtering and extracting the trunk clusters from the point cloud, the trunk clusters offer a 
variety of features that can be used for the logging operation such as radius, center location and 
distances between adjacent trunks.  
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Supposing that the matrix the P = [P1, P2,…,Pm] represents the position of every point in the truck 
cluster in rectangular form, m is the number of points in one cluster. On the assumption that all cross 
sections of the standing trees are approximately standard circles, there exist a number of different 
methods to fit a circle from the vector Pi in a trunk cluster and to estimate the parameters of every 
trunk. In this paper, the effective conjugate gradient method is used. 

Supposing the center location of the trunk is O = (Ox, Oy) and the radius of the trunk is R, then, the 
vector Pi = [px 

I , py 
i ] satisfies:  

 

(4) 

Supposing the unknown vector x = [x1, x2, x3]T = [Ox, Oy, R2 – (Ox)2 – (Oy)2]T, the coefficients 
vector αi = [αi1, αi2, αi3]T = [2px 

i , 2py 
i , 1]T, and bi = (px 

i )2 + (py 
i )2, then, the Equation (4) can be 

transformed as follows: 

 (5) 

Then the scanning points in one cluster form a set of linear algebraic equations with constant 
coefficients as in the following Equation (6):  

 

(6) 

In order to get the parameters of the trunk, it is desired to solve for the unknown quantities  
x = [x1, x2, x3]T, given the coefficients αij for i = 1,2,…m, j = 1,2,3 and bi for i = 1,2,…,m. After solving 
the unknown quantities x, the center location of the trunk O = (Ox,Oy) and the radius of the trunk R can 
be calculated as shown in Equation (7):  

2 2
1 2 1 2 3; ;x yO x O x R x x x= = = + +  (7) 

Equation (6) can be written in a vector-matrix form as Equation (8): 

Ax = b (8) 
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(9) 

For m > 3, Equation (8) is referred to as being over-determined (more equations than unknowns).  
In order to get parameters of the trunk for quick harvesting operations, the time constraints and 
accuracy for solving Equation (8) are important, so the Fletcher-Reeves conjugate gradient algorithm 
(F-R algorithm) is used to solve it. The F-R algorithm is a real time and online neuro-computing 
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approach for solving system of linear algebraic equations and can achieve fast speed of convergence in 
neuro-computing. The F-R algorithm is given as follows [13,14]: 

Supposing xk is the discrete-time iterative solution of Equation (8) using the F-R algorithm, k is the 
discrete-time index, then, the solution error for solving Ax = b is given by: 

= −e Ax b  (10) 

The F-R algorithm can be incorporated into the discrete-time learning rule to derive an update 
expression for the iterate xk, the update of the solution is given by: 

1k k k kα+ = +x x d   

where 
T

T T
k k

k
k k

α −= g d
d A Ad

  

The vector dk is the current direction vector, and ε(·) is the object function to be determined, and is 
given by: 

2 T
2

1 1( ) || ||
2 2

ε = =x e e e   

Therefore, the Fletcher-Reeves conjugate gradient algorithm (with restart) for solving Ax = b is 
summarized in the following steps [14]: 

 Step 1: Set initial condition x0. 
 Step 2: Compute gk|k=0 = g0 = ATAx0 – ATb. 
 Step 3: Set d0 = −g0. 
 Step 4: Compute xk+1 = xk + αkdk, where αk = −gT 

k dk/(dT 
k ATAdk) 

 Step 5: Compute gk+1 = ATAxk+1 – ATb. 
 Step 6: Compute dk+1 = −gk+1 + βkdk, where βk = gT 

k+1gk+1/(gT 
k gk) 

 Step 7: If k < kmax go to step 4.  
 Step 8: Continue until convergence is achieved; termination criterion could be ||dk|| < ε (where ε 

is an appropriate predetermined small number) and k > kmax. 

where kmax is the maximum number of iterations. In our experiment, kmax is set to 1,000 and the initial 
condition x = [0,0,0]T, consequently, faster convergence can be expected. The distance between two 
trunks in the horizontal plane can be calculated via the center locations of two trunks.  

4. Results and Discussion 

The trunk feature extracting process presented in the previous section is programmed with the 
Visual C++ 6.0 introduced by Microsoft and Matcom 4.5 introduced by MathWorks as MATLAB to a 
C++ compiler. All of the calculation results such as radii, location of the trunks and distances between 
adjacent trunks can be displayed on a human-computer interface for the operator. 

The result of the calculations on the trunk parameter is given in Figure 6. There are eight blue 
circles which are the fitting results of the trunk point cloud, and the centre of the trunks are marked by 
the triangle. Supposing the measurement base point is the origin of the rectangular form, then the 2nd 
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and 5th column of Table 1 give the manual measurement values of the central location and radius of 
the trunk, which are acquired manually by the range finder and vernier, respectively. 

Figure 6. The calculation results. 

 

Table 1. The parameters of the trunks acquired by different methods. 

No. Center location (Ox,Oy) (cm) Radius (cm) 
 Manual  LSF algorithm F-R algorithm Manual LSF algorithm F-R algorithm 

1 (247.0, 248.0) (251.4, 252.1) (251.4, 252.1) 8.6 9.9 9.9 
2 (397.9, 455.7) (405.9, 465.8) (405.9, 465.8) 13.5 14.7 14.7 
3 (149.1, 520.0) (152.6, 529.0) (152.6, 529.0) 13.6 15.2 15.2 
4 (−15.2, 782.9) (−14.7, 785.9) (−14.7, 785.8) 13.3 15.6 15.5 
5 (−32.8, 272.0) (−33.0, 276.0) (−33.0, 276.0) 9.0 9.3 9.3 
6 (−237.0, 597.7) (−241.3, 608.5) (−241.2, 608.2) 14.6 17.3 17.0 
7 (−305.4, 346.7) (−309.3, 349.6) (−309.3, 349.6) 10.3 10.4 10.4 
8 (−532.5, 471.1) (−536.5, 476.3) (−536.5, 476.3) 13.9 15.2 15.2 

Extracting the parameters of the trunk from the point cloud also can be achieved by the Least Square 
Fitting algorithm (LSF algorithm) [15]. The 3rd and 6th column of Table 1 give the calculation results 
via the LSF algorithm. The 4th and 7th column of Table 1 give the calculation results via the F-R 
algorithm used in this paper.  

Table 2 gives the maximum error and time consumption on the calculation by LSF and F-R 
algorithm respectively.  

Table 2. The performance comparison of LSF algorithm and F-R algorithm. 

Characteristic LSF algorithm F-R algorithm 
Max error on the center location (cm) (8.0, 10.8) (8.0, 10.5) 
Max error on the radius (cm) 2.7 2.4 
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As shown in Table 2, the maximum error for the center location and radius are nearly the same by 
the LSF and F-R algorithm, but time consumption is reduced by the F-R algorithm. The errors are 
mainly caused by the resolution and systematic errors of the laser device and the approximation error 
of the F-R algorithm. The error increases as the distance between the base point of the laser scanner 
and the trunk increases. The max error and time consumption of the calculation meet the requirements 
for the accuracy (<15 cm) and real time (<10 ms) for logging harvesting operations. 

5. Implementation 

It is found by the experiments that the process of delimbing, peeling, and bucking can be completed 
fast by the logging harvester, but for the process of the alignment of the harvesting head to capture the 
trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to time 
and fuel losses. In order to improve the operation efficiency and reduce the operating costs during the 
logging harvesting operations, the laser scanner and inertial measurement system presented in this 
paper can be mounted on the outer boom of the crane to determine the location of the trunk near the 
harvesting head as seen in Figure 7. 

Figure 7. Implement on the logging harvester.  

 

In Figure 7, the frames {S}, {H} and {T} are located at the base point of the laser scanner, the 
harvesting head, and the target trunk, respectively. The point cloud is collected for the surrounding 
trees and using the trunk feature extracting approach presented in Section 3, the pose and position 
matrix ST  of the truck respective to the laser scanner base point can be obtained in every control period 
and transferred to the on-board computer system of the logging harvester.  

Using the D-H parameters of the manipulator and combining the information of the harvesting head 
angle encoders, the pose and position matrix HS  relating the harvesting head frame to the laser scanner 
base point can be determined [16].  

Then, the pose and position matrix HT  for the trunk relative to the harvesting head can be expressed 
in the multiplication product of successive 4 × 4 homogeneous matrices as given by Equation (11): 

T T S
H S HT T T=  (11) 
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The trajectory of the crane for trunk capture is planned in Cartesian space. The harvesting head 
moves smoothly one step in every control period until reaching the target. The motion planning and 
control flow for trunk capturing process can be summarized by the following steps: 

 Step 1: The laser scanner makes a fan-shaped scan of the surrounding area, and gets the location 
of every trunk in the scanning range. 

 Step 2: The pose and position matrix ST  of the truck respective to the measurement base point is 
formed. Every current joint angle θ of the crane and harvesting head is received from the  
angle encoder.  

 Step 3: Using the Equation (11), the matrix HT  for the target trunk relative to the harvesting head 
is formed.  

 Step 4: Considering the constraints of joint velocity and acceleration, the central controller of the 
logging harvester plans the desired set points Δpk of the Cartesian-coordinate trajectory for the 
harvesting head to catch the target trunk, and the number of the points k (10 < k < 100) is 
decided by the distance between the harvesting head and the target. 

 Step5: Using the inverse kinematics solution, the angle increments Δθ of every joint are acquired 
from the first planned set point Δp1. 

 Step 6: The angle increments Δθ are sent to the hydraulic controllers respectively, and the 
hydraulic controllers guide the motion of every hydraulic cylinder. 

 Step 7: In the next ten control periods, the angle increments are acquired from the planned set 
points similarly, and hydraulic cylinders move according to the angle increments. 

 Step 8: if the capture range of the target trunk is reached, the gripper is closed, and finishes the 
mission, otherwise, it returns to step 1. 

Because of the vibration of crane and control errors, only the first ten planned set points can be used 
for the task from step 4 to step 7, the rest of the planned set points should be discarded, and a new path 
planning calculation should be made in the next control period. 

6. Conclusions and Outlook 

In this paper, in order to realize semi-automated logging harvesting, the point cloud for standing 
trees is collected with a 2D laser scanner. A cluster extracting algorithm and filtering algorithm is used 
to classify each trunk from the point cloud. The radii and positions of the trees are calculated by the 
Fletcher-Reeves conjugate gradient algorithm. Compared with previous work by other researchers, the 
calculation time consumption is reduced. The implementation of the calculation result on a logging 
harvester is discussed in particular. 

The aim of this research relates to the human aspect of logging harvester operations. Logging 
harvesters are difficult to control and operator training is time consuming and expensive. If the 
location of every trunk relative to the harvesting head is known by the laser scanner, the operator could 
just indicate which tree to cut and the crane would automatically grasp it. The burden of the operator 
could be lightened by increasing the automation level of the logging harvester in the future.  
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