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Abstract: Sensitivity is a key factor in the performance of a sensor. To achieve maximum 

guided-mode resonant optical biosensor sensitivity, a comparison of biosensor sensitivity 

for Transverse Electric (TE) and Transverse Magnetic (TM) modes based on the 

distribution of electric fields is presented in this article. A label-free guided-mode resonant 

optical biosensor is designed using the quarter-wave anti-reflection method to reflect only a 

narrow band of wavelengths modulated by the adsorption of a biochemical material on the 

sensor surface at the reflected frequency. With the distribution of electric fields simulated 

according to the Rigorous Coupled Wave Analysis (RCWA) theory, it is found that the  

full width at half maximum of the TM mode is (~4 nm) narrower than that of the TE  

mode (~20 nm), and the surface sensitivity of the TE mode incident light is three times that 

of the TM mode. It is proposed in this article that the light mode plays an important role in 

the sensitivity of guided-mode resonant biosensors. 
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1. Introduction 

Research on label-free guided-mode resonant (GMR) optical biosensors has recently attracted  

great interest owing to applications for detecting a variety of bio-molecular complexes such as 

oligonucleotides, antibody-antigens, and enzyme-substrate interactions. A GMR optical biosensor 

comprised of a surface relief sub-wavelength grating is designed to reflect only a single wavelength 

while illuminated with white light [1]. Utilizing the GMR effect for sensor applications was first 

suggested by Magnusson and Wang in 1992 [2,3]. In comparison to classical input or output grating 

couplers, GMR optical biosensors differ distinctly from traditional sensors in their operational 

principle and functionality [4,5]. Wawro et al. presented a method using fiber optic sensor integrating 

dielectric diffraction gratings and thin films on optical fiber endfaces for biomedical sensing 

applications [6]. In2002, Cunningham et al. discussed the use of these resonant elements as biosensors, 

capable of resolving changes of 0.1 nm in a sample. They also make it possible to quickly measure a 

large number of molecular interactions taking place simultaneously upon a grating surface. Moreover, 

they can monitor reactions in real time [7–10]. Furthermore, Cunningham et al. improved the 

sensitivity by changing the GMR structure [8]. The polarization of the incident light is a key factor in 

the sensitivity of this kind of optical biosensor. Magnusson et al. emphasized polarization-based 

parametric discrimination and presented that resonant sensors can be designed to support two or more 

leaky modes in the spectral band of interest [11]. Electric field distribution analysis (EFDA) can reveal 

the difference the Transverse Electric (TE) and Transverse Magnetic (TM) modes have on sensitivity. 

This article presents a comparison of sensitivity in the TE and TM modes using EFDA. It is found that 

sensitivity in the TM mode is three times that achieved in the TE mode. 

Magnusson and Lee introduced a phase modulation method [12,13], which is more complex than 

the amplitude modulation method, so the amplitude method is used in this article. When molecules are 

attached to the surface, the reflected wavelength (color) is shifted due to a change in the optical path of 

light that is coupled into the grating. In this article, the appropriate parameters of a GMR biosensor 

structure are determined and the sensitivity of the different modes of incident light is shown. Then the 

sensitivity of the TE and TM modes of incident light is compared by the EFDA. 

2. Model 

The structure of the GMR optical biosensor is shown in Figure 1. From top to bottom, the GMR 

optical biosensor includes a cover layer (air), a sample layer (biological samples, such as protein 

molecules), a grating layer, a waveguide layer, and a substrate layer (quartz glass). Based on the theory 

of the optical waveguide, the effective index of the i-th order diffracted wave should be in the range 

followed with Equation (1) in [14]: 

                                                   (1) 

Here, nc and ns are the refractive index of the sample layer and the substrate, β is the propagation 

constant, k0 is the wave number, θ is the incident angle, λ is the resonant wavelength, and Λ is the 

period of the grating layer. Only to abide by Equation (1), the phenomenon of guided mode resonance 

effect could be observed. Meanwhile, the position of the resonant wavelength can be obtained. 
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Figure 1. Structure of the GMRF The parameters are nh = nw = 1.98 (HfO2), nl = nc = 1.0 

(air), ns = 1.52 (quartz glass), Λ = 500 nm, dw = 101 nm, dg = 120 nm. 

 

In our experiment, the structure parameters are as follows: the refraction index of the grating layer 

is nh = 1.98 (HfO2); nl = nc = 1.0 (air); the grating period Λ is 500 nm; the substrate refraction index ns 

is 1.52 (quartz glass); the refraction index of the waveguide layer is nw = 1.98 (HfO2). According to 

these parameters, the range of the resonant wavelength we got to be 760 < λ < 990. Here, we  

choose λ = 800 nm. The anti-reflective conditions require the thicknesses of the waveguide layer and 

the grating layer to be one quarter-wavelength to optimize the structure. The thickness of the 

waveguide layer dw is 101 nm and the grating layer dg is 120 nm. At this point, all the structure 

parameters of the GMRF biosensor have been determined and are summarized in Table 1. 

Table 1. Parameters of the GMR biosensor. 

nc ns nH nL nw dg dw f λ θ Λ 

1.0 1.52 1.98 1.0 1.98 120 nm 101 nm 0.5 800 nm 0o 500 nm 

3. Results and Discussion 

Based on the GMR structure we designed in the previous section, the electric field distribution can 

be obtained using the RCWA method. Here, a comparison of biosensor sensitivity for the TE and TM 

modes based on the distribution of electric fields is presented. According to the RCWA method, the 

resonant wavelength of incident light in the TE mode is 798 nm without a biological sample attached 

on the surface, while the resonant wavelength of the TM mode is 766 nm. Because the sensitivity of 

this biosensor is related to the full width at half maximum (FWHM), FWHM should be discussed. The 

FWHM can be observed via the electric field distribution. Figure 2(a) presents the electric field 

distribution of the TE mode for the resonant wavelength of 798 nm. We can see that the strongest 

electric field excited in the waveguide layer is 5times greater than that in the weakest part of the field. 

When the resonant wavelength shifts 10 nm, which is from 798 nm to 788 nm or 808 nm, the electric 

field distributions are shown in Figure 2(b,c), respectively, which still show a strong guided-mode 

resonance effect where the strongest part is 4 to 3.5 times greater than the weakest part of the field. 

With the wavelength changed by 20 nm to 778 nm and 818 nm, the electric field distributions are 

shown in Figure 2(d,e), respectively. However, the GMR effect is very weak. In particular, at the 

wavelength of 818 nm in Figure 2(e), it is difficult to discern any guided-mode resonance effect.  
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Figure 2. Electric field distribution of TE mode at different wavelengths. (a) Electric field 

distribution at the wavelength of 798 nm with TE mode incident into the GMRF.  

(b) Wavelength at 788 nm. (c) Wavelength at 808 nm. (d) Wavelength at 778 nm.  

(e) Wavelength at 818 nm. 

 

(a) 

 

  

(b) (c) 

 

  

(d) (e) 

In contrast, when illuminated with incident light in the TM mode, the electric field distribution 

calculated by the RCWA method is shown in Figure 3.  
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Figure 3. Electric field distribution of TM mode at different wavelengths. (a) Electric field 

distribution at the wavelength of 766 nm with TM mode incident into the GMRF.  

(b) Wavelength at 763 nm. (c) Wavelength at 769 nm. (d) Wavelength at 760 nm.  

(e) Wavelength at 772 nm. 

 

(a) 

 

  

(b) (c) 

 

  

(d) (e) 

The resonant wavelength for the TM mode is 766 nm. Similarly, incident light is only changed  

3 nm, to 763 nm and 769 nm, and the corresponding electric field distributions, shown in Figure 3(b,c), 

respectively, change slowly. Figure 3(d,e) shows the electric field distribution at 760 nm and 772 nm, 



Sensors 2012, 12 9796 

 

 

respectively, which have sharp electric field distribution changes, but exhibit lower intensity. Using the 

RCWA method, the FWHM for the TE mode is ~20 nm while the TM mode’s FWHM is ~4 nm. Due 

to this contrast, the conclusion is that the energy distribution of the TM mode is more concentrated 

than the TE mode, so the TM mode is more sensitive than the TE mode. 

The different electric field distribution for TE and TM mode is due to the different waveguide 

eigenvalue equations for different polarization cases. If the effective mode propagation constant of the  

i-th order evanescent diffracted wave in the waveguide grating is given by: 

 , 0 sini v ck n i      (2) 

The mode propagation constant can be obtained by solving the classical eigenvalue equation for the 

homogeneous slab waveguide given by [15]: 
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(3) 

where the Z-components of the wave number in the cover, grating, and substrate regions are  

described by: 
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respectively. A similar argument applies for the TM polarization case, and thus the waveguide 

eigenvalue equation for the TM polarization case is given by: 
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where the according refractive index of cover layer, substrate layer and grating layer are denoted as nc, 

ns,
2 2

(1 )
av H L

n fn f n    for TE polarization, while            
     

       for TM 

polarization. 

Using water (n = 1.333), isopropanol (n = 1.377), and methylsulfoxide (n = 1.479) as the biological 

samples, which are coated on the surface of the GMR biosensor, the resonant wavelengths of the TE 

mode obtained by the RCWA method are 807 nm, 811 nm, and 818 nm, respectively, and the TM 

mode resonant wavelengths are 796 nm, 813 nm, and 826 nm, respectively. Tables 2 and 3 show the 

resonant wavelength and the resonant wavelength shifts with different samples. 

Table 2. Resonant wavelength of different samples with TE mode. 

Refractive index 1.0 (air) 1.333 (water) 1.377 (isopropanol) 1.479 (methylsulfoxide) 

Resonant wavelength (nm) 798 807 811 818 

Resonant wavelength shift (nm)  9 13 20 

Table 3. Resonant wavelength of different samples with TM mode. 

Refractive index 1.0 (air) 1.333 (water) 1.377 (isopropanol) 1.479 (methylsulfoxide) 

Resonant wavelength (nm) 766 796 813 826 

Resonant wavelength shift (nm)  30 47 60 
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Sensitivity of the biosensor can be obtained from Equation (6) in [16]: 

nnS     (6) 

According to Equation (6), the sensitivity of the TM mode is 113 nm/RIU, which is more sensitive 

than the TE mode (34 nm/RIU). Figure 4 shows that the sensitivity of the TM mode changes more 

quickly with refractive index than the TE mode, which indicates that the TM mode is more sensitive 

than the TE mode. Comparing Figure 1(a) and Figure 2(a), we find that with the TM mode electric 

field excited in the grating structure has less intensity than that of the TE mode, but has more 

sensitivity. When the resonant wavelength is incident into the grating, almost all of the energy is 

coupled into the waveguide layer [17,18]. The strongest part is 5 times stronger than the weakest part 

for the TE mode as shown in Figure 2(a), while for TM case is only 2.2. The structure designed in this 

article is to match the resonant wavelength. When the matching wavelength is incident into the gating, 

the energy will redistribute such that almost all the energy is coupled into the waveguide layer. 

Figure 4. Sensitivity of the TE mode and TM mode. 

 

4. Conclusions 

The sensitivity of a GMR biosensor was theoretically analyzed by the electric field distribution. 

Using the method of quarter wave-length anti-reflection, a GMR biosensor structure was designed in 

this article. Then the incident light in the TE and TM modes was analyzed by the RCWA method. 

Through the electric field distribution, it is found that FWHM of the TM mode is narrower than that of 

the TE mode. In the waveguide layer, the electric field amplitude for TM mode at the resonant 

wavelength is less intense than that of TE mode. The energy distribution of TM mode is much more 

concentrated than the TE mode, which means that the TM mode is more sensitive than the TE mode. It 

can be concluded that the light modes play the important role on the sensitivity of guided-mode 

resonant biosensors. For the same structure GMR biosensor, using the TM mode will enhance the 

sensitivity of this optical biosensor. To improve the accuracy of the GMR biosensor, using the TM 

mode is the best choice. 
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