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Abstract: Effects of the moisture content (MC) of tea on diffuse reflectance spectroscopy 
were investigated by integrated wavelet transform and multivariate analysis. A total of  
738 representative samples, including fresh tea leaves, manufactured tea and partially 
processed tea were collected for spectral measurement in the 325–1,075 nm range with a 
field portable spectroradiometer. Then wavelet transform (WT) and multivariate analysis 
were adopted for quantitative determination of the relationship between MC and spectral 
data. Three feature extraction methods including WT, principal component analysis (PCA) 
and kernel principal component analysis (KPCA) were used to explore the internal 
structure of spectral data. Comparison of those three methods indicated that the variables 
generated by WT could efficiently discover structural information of spectral data. 
Calibration involving seeking the relationship between MC and spectral data was executed 
by using regression analysis, including partial least squares regression, multiple linear 
regression and least square support vector machine. Results showed that there was a 
significant correlation between MC and spectral data (r = 0.991, RMSEP = 0.034). 
Moreover, the effective wavelengths for MC measurement were detected at range of  
888–1,007 nm by wavelet transform. The results indicated that the diffuse reflectance 
spectroscopy of tea is highly correlated with MC. 

OPEN ACCESS



Sensors 2012, 12 9848 
 

 

Keywords: diffuse reflectance spectroscopy; moisture content; tea; wavelet transform; 
wavelength selection 

 

1. Introduction 

Tea is produced from fresh burgeon of tea plant after a series of physical and chemical reactions in  
the various tea processing procedures. Generally speaking, the tea processing procedures are always 
accompanied with great variations of moisture content (MC). There are three main processing 
procedures including fixation, rolling and drying for green tea. The fixation procedure is implemented by 
high temperature processing to reduce the activity of enzymes, to eliminate herbaceous odor 
components, and to evaporate some water. Especially, the drying procedure dehydrates tea to reduce MC 
and to improve tea’s smell and taste after thermochemical reactions under high temperature. Therefore, 
the MC of tea not only determines the shelf life of tea, but also affects the physical and chemical 
reactions in tea processing, so measurement of MC is an important task for producing high-quality  
tea [1]. 

The traditional way of accurately measuring MC is the gravimetric method, which takes several 
hours and cannot meet the requirements of real-time, on-line detection of MC in tea processing. 
Moreover, the gravimetric method reduces the quality of tea, so tea measured by this method usually 
has to be discarded. 

Diffuse reflectance spectroscopy (DRS) measures the reflectance from the surface of study objects, 
but DRS does not involve exactly the surface, as most of the light is contributed by scattering centers 
beneath the surface. The reflectance attribute and its derivatives have been proven to be highly 
correlated with a number of physicochemical properties [2]. Recent improvement in visible/near 
infrared (Vis/NIR) spectroscopy have made DRS a convenient, simple, reliable and fast tool in quality 
evaluation and measurement of agricultural products and food. Vis/NIR can reflect the absorption 
characteristic of the main chemical bonds of C–H, N–H, O–H, so it has been widely used for 
quantitative analysis of compositions of organic substances [3]. Especially, the absorptivity of water 
(as O–H stretch) is relatively high compared with that of most other substances in Vis/NIR 
spectroscopy [4], so Vis/NIR diffuse reflectance spectroscopy may be a potential way for measurement 
of MC. Researchers have used the NIR technique to determinate MC of semolina pasta [5], foliage [6–8], 
black tea [9], green tea [10], soil [2], tuna fish [11] and crop [12], etc., but the current research on tea only 
focuses on fresh leaves of tea plants or processed tea. Tea is produced from leaves through a set of 
physical and chemical reactions, which result in huge variations of MC, external morphology and 
internal composition of leaf, and these variations occur throughout the manufacturing process. 
Furthermore, the external and internal attributes of partially processed tea under heating and drying are 
greatly different from those of foliage under natural water stress, which may result in different spectral 
responses, so analysis of the relationship between MC and Vis/NIR diffuse reflectance spectroscopy of 
tea based only on fresh tea leaves or processed tea is not sufficient. In the research of black tea 
conducted by Hall et al. the MC of samples was limited in the range from 8.9% to 17.3% [9], and 
Sinija and Mishra detected the relationship between Fourier-Transform NIR spectroscopy and MC of 
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green tea in the range of 3%–45% with 30 samples [10]. As the previous literatures only studied tea 
samples in a limited range of MC values, the relationship between MC of tea and spectral data should 
be more carefully studied. This research was conducted with fresh tea leaves, partially processed tea 
and manufactured tea with MC values in the range of 3.15%–71.40%. 

Spectra from modern high throughput spectrometers often contain hundreds or thousands of spectral 
data points, and Vis/NIR spectra are characterized by generally overlapping vibrations of overtones 
and combination bands, in consequence these bands may appear to be non-specific and poorly 
resolved. So multivariate analysis plays a very important role in analysis of spectral data, such as 
principal component analysis (PCA), multiple linear regression (MLR), partial least squares regression 
(PLSR) and principal component regression (PCR). Especially, PCA, PLSR and PCR are all based on 
orthogonal transformation techniques, so these algorithms not only can greatly reduce the complexity 
of modeling, but also can eliminate the adverse effects caused by multicollinearity among spectral 
variables. However, PCA, PLSR, PCR and MLR can only deal with the linear relationship between 
spectral data and composition concentration, and the nonlinear information can hardly be calibrated by 
these linear models [13], when in fact, the absorbance often varies nonlinearly with concentration in 
multicomponent systems.  

Nowadays, nonlinear algorithms including kernel principal component analysis (KPCA), artificial 
neural network (ANN) and least squares support vector machine (LSSVM) are frequently used for 
description of nonlinear phenomena [13–15]. Besides, wavelet transform (WT) shows great potential in the 
study of biological systems due to its merits in both space and frequency localization [16], exemplified in 
applications such as wind fields estimation [17], multi-spectral imaging classification [18], and soil 
spectral analysis [19,20]. Through decomposition of data in different scales and frequencies, the 
inherent structure and characteristic information may be discovered in wavelet decomposition 
coefficients [21,22]. Furthermore, it is easy to obtain the relationship between wavelet decomposition 
coefficients and original spectral data based on the clear decomposition structure of WT, which can be 
used to detect effective wavelengths for the composition, but few reports can be found in literature in 
relation to how to detect the effective wavelength for WT analysis. 

The objectives of this study were: (1) to investigate the response of Vis/NIR diffuse reflectance 
spectroscopy toward MC of fresh tea leaves, manufactured green tea and partially processed green tea; 
(2) to perform and compare linear and nonlinear feature extraction algorithms for discovering the 
latent structure of spectral data, which included PCA, KPCA and WT; (3) to acquire characteristic 
wavelengths for determination of MC of tea based on WT. 

2. Experimental Section  

2.1. Materials 

For sample diversity, three types of samples were collected, which included fresh tea leaves, 
manufactured green tea and partially processed green tea. The total number of samples was 738. The 
general information of samples was summarized in Table 1. Hereinto, the fresh leaves of type I were 
picked from five varieties of tea plants, and these samples were comprised of different tenderness 
leaves including young shoot, mature leaves and senescent leaves. The detailed information of samples 
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in type I is shown in Table 2. Type II contained Xi-hu-long-jing tea of seven grades, and their detailed 
description is given in Table 3. Type III included eight kinds of partially processed green tea from 
eight processing procedures, as shown in Table 4. 

Table 1. General information of the three types of samples. 

Types Date Number of Samples Description 
I 2006.12.04 100 Fresh tea leaves 
II 2007.09.12 70 Manufactured green tea 
III 2008.10.12 568 Partially processed green tea 

Table 2. Statistical information of moisture content (w.b., %) of samples in type I. 

Varieties Range (%) Mean (%) SD a Number 
Longjing changye 54.662–68.421 62.906 0.038 20 

Guangdong shuixian 66.029–69.792 67.715 0.011 20 
Zisun cha 54.397–67.841 63.843 0.031 20 
Maoxie 51.773–71.388 62.930 0.037 20 

Longjing 43 56.410–68.889 63.958 0.040 20 
a SD: standard deviation. 

Table 3. Statistical information of moisture content (w.b., %) of samples in type II. 

Grades Range (%) Mean (%) SD a Number 
Excellent grade 4.237–6.901 6.138 0.008 10 

1 grade 5.075–6.644 5.558 0.005 10 
2 grade 5.014–5.991 5.455 0.003 10 
3 grade 5.312–6.050 5.737 0.002 10 
4 grade 5.277–6.429 6.003 0.003 10 
5 grade 5.521–6.286 5.896 0.003 10 
6 grade 4.237–6.901 6.138 0.008 10 

a SD: standard deviation. 

Table 4. Statistical information of moisture content (w.b., %) of samples in type III. 

Procedure Range (%) Mean (%) SD a Number 
Fresh leaves 61.347–71.723 67.021 0.023 74 

Fixation 53.412–61.854 58.723 0.009 74 
Rolling and cutting 39.567–60.506 51.327 0.049 72 

Drying 1 33.780–44.404 38.766 0.018 74 
Drying 2 12.082–16.838 14.191 0.008 70 
Drying 3 9.459–11.556 10.916 0.005 76 

Manufactured tea 3.148–4.638 3.728 0.002 58 
Tea dust 4.171–5.214 4.613 0.002 70 

a SD: standard deviation. 

In modeling, all 738 samples were divided into the calibration set and the prediction set with a ratio 
of 2:1. To avoid bias in subset partition, all samples were first arranged in an ascending order 
according to their respective MC values, then one sample was picked out from every three samples 
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consecutively, resulting in 246 samples of prediction set, and the remaining 492 samples formed 
calibration set. The statistical information of Y-value of each set was shown in Table 5. 

Table 5. Statistical information of moisture content (w.b., %) of samples in three data sets. 

Data sets Range (%) Mean (%) SD a Number 
Calibration set 3.148–71.388 33.768 0.255 492 
Prediction set 3.485–71.722 34.182 0.257 246 

Total 3.148–71.388 33.906 0.256 738 
a SD: standard deviation. 

2.2. Spectra Acquisition and Reference Method for MC 

In this study, a Vis/NIR spectroradiometer (FieldSpec®3, Analytical Spectral Devices, Inc., 
Boulder, CO, USA) was adopted for Vis/NIR spectroscopy acquisition. This spectroradiometer has high 
sensitivity in the range of 325–1,075 nm with a 512 photodiode array detector, while the field-of-view is 
10°, the spectral resolution is 3.5 nm, and the interval of sampling is 1.5 nm. A 150 watt halogen lamp 
was used to provide uniform light in the visible and short-wave near infrared range. When scanning 
spectrum, the spectroradiometer was fixed on a tripod with 45° between the spectroradiometer axis and 
horizontal line, and fixed at approximately 100 mm above samples. After each sample was scanned, it 
was taken away to empty the position for the next sample, this movement might lead to a change in the 
measurement system. In order to reduce this influence, the spectroradiometer was calibrated every half 
hour by a 100-mm2 white standard panel with approximately 100% reflectance across the entire 
spectrum. So, relative reflectance was calculated with measurements from both the samples and the 
standard panel as shown in Figure 1. With respect to each sample, a mean spectrum was averaged by  
30 scans. Besides, there were obvious noises at the beginning and the end of the spectrum, so only 
spectral bands of 400–1,050 nm were taken for further analysis. 

Figure 1. Vis/NIR diffuse reflectance spectroscopy of the samples. 

 
(a) (b) (c) 

The reference MC was measured by the gravimetric method according to the Chinese National 
Standard GB8304-87. In detail, every sample was heated in a constant temperature oven at 103 °C for 
4 h, and weighed before and after the heating by an electronic balance with an accuracy of 0.0001 g. 
All the measurements were carried out in a room at approximate constant temperature of 25 °C and 
relative humidity of 40–55%. 
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2.3. Data Analysis 

2.3.1. Wavelet Transform 

WT enables the signal (spectrum) to be analyzed as a sum of functions (wavelets) with different 
spatial and frequency properties. The discrete WT (DWT) has the most popular application. The 
generated waveforms are analyzed with wavelet multi-resolution analysis to extract sub-band 
information from the non-stationary signals. The signal can be constructed accurately with the wavelet 
analysis using relatively small numbers of components [23,24]. The discrete WT decomposition 
structure was shown in Figure 2. 

Figure 2. Structure of discrete wavelet decomposition at level 3. 

 

2.3.2. Kernel Principal Component Analysis 

KPCA is an extension of linear PCA using the kernel method technique, as shown by  
Schölkopf et al. [25]. Using a kernel, the originally linear operations of PCA are done in a reproducing 
kernel Hilbert space with a non-linear mapping. The idea of KPCA is to firstly map the original data  
X = [x1,…,xn], n = 1,…,N, into a high-dimensional feature space F using a nonlinear mapping φ: RP→F, 
and then the linear PCA is executed in F based on the mapped data φ(xn). In this study, the powerful kernel 
function of gaussian radial basis (RBF) is adopted for KPCA [25]. 

2.3.3. Least Squares Support Vector Machine 

Least squares support vector machine (LSSVM) is a least squares version of support vector machine 
(SVM) proposed by Suykens and Vandewalle [26]. In this version, the solution of a convex quadratic 
programming (QP) problem of the classical SVM is replaced with a set of linear equations of LSSVM, 
which greatly simplifies the computational complexity. LSSVM is a machine learning method based 
on statistical learning theory, which also possesses unique capability of SVM in solving problem with 
small observation, non-linear, and high-dimensional data. 

2.3.4. Implementation Steps 

Before calibration, spectral reflectance was transformed in absorbance [log(1/R)] to establish the 
linear correlation between spectral data and concentration of composition. Then, spectral data were 
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processed by three types of feature extraction algorithms including WT, PCA and KPCA, and then the 
synthetic variables from each algorithm were used as predictors. In this study, WT was implemented 
with wavelet function of Daubechies 5 (db5) at level 3. For KPCA, a RBF kernel was adopted for 
establishment of nonlinear mapping, the optimal sig2 (σ2) of 9,878 was obtained corresponding to the 
lowest mean squared error through a traversal optimization. Three regression models were respectively 
developed by PLSR, MLR and LSSVM. Hereinto, WT was implemented based on MATLAB 7.0 (The 
Math Works, Natick, MA, USA). KPCA and LSSVM were realized by MATLAB 7.0 coupled with the 
free LS-SVM v1.5 toolbox (Suykens, Leuven, Belgium). The Unscramble® 9.7 package (CAMO 
PROCESS, AS, Oslo, Norway) was adopted for realization of PCA, PLSR and MLR.  

2.4. Evaluation Index of Regression Model 

The quality of the regression model was quantified by root mean squared error of calibration 
(RMSEC), root mean squared error of prediction (RMSEP), and the correlation coefficient (r) between 
the predicted and measured parameters [27]. A good model should have a low RMSEC, a low RMSEP, 
a high r, and a small difference between RMSEC and RMSEP [14]. 

3. Results and Discussion 

3.1. Spectral Attributes of Tea Samples 

Vis/NIR diffuse reflectance spectra of the three types of samples are shown in Figure 1. Similar 
contours were seen for all three types of samples. An obvious absorption peak was detected at 680 nm 
which was caused by the intense absorptivity of chlorophyll in the red light range. After 680 nm, the 
absorbance sharply declined as the wavelength increased from 680 nm to 750 nm. Then the absorbance 
was flat and low throughout the whole near infrared region. It could be found that the tea samples 
mainly absorbed the visible light in the range of 400–680 nm, especially at 680 nm. This phenomenon 
may be caused by the strong absorption of pigments in tea samples, while the absorptions of near 
infrared light (750–1,050 nm) were relative lower.  

Except of the above similarities, many differences also existed in the spectra among the three types of 
samples. Comparing Figure 1(a) with Figure 1(b), there were many different absorptive responses within 
the range from 540 nm to 640 nm. In detail, two small absorption peaks were detected at 540 nm and 
610 nm in Figure 1(b), but these absorptive responses did not exist in Figure 1(a). This phenomenon 
might be caused by the color change along with the variation of MC between type I and type II. The 
MCs of samples in type I were all bigger than 50%, while those in type II didn’t exceed 7%, as shown 
in Tables 2 and 3. The big variation of MC caused by heating and drying led to huge concentration 
changes of chromogenic compositions in tea leaves. Former researchers have found that the 
chlorophyll a and chlorophyll b gradually degrade, and the contents of pheophytin a and pheophytin b 
increase in manufacturing process [28]. In type III, samples came from eight kinds of processing 
procedures, and the MCs were distributed in a broad range from 3.7% to 67% as shown in Table 4, so 
those curves were dispersing in Figure 1(c). 
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3.2. Extracting Characteristic of Spectral Data 

Multi-signal wavelet decomposition was realized to expose the internal structure of all the spectral 
data of the 738 samples. After WT, the spectrum of each sample was decomposed to four sets of 
wavelet coefficients, including approximation coefficients cA3 and detail coefficients cD1, cD2, cD3 as 
shown in Figure 3. It could be found that cA3 had the same trend with the original spectra, and it was 
very similar to the original spectra. While cD1, cD2, cD3 contained much high-frequency information, 
especially in the beginning. In order to evaluate the information contained in the four sets of wavelet 
coefficients in this decomposition, the percentages of energy of the four sets of wavelet coefficients 
were calculated. And the energy percentages of wavelet coefficients for all the 738 samples were 
plotted in Figure 4.  

Figure 3. Wavelet decomposition coefficients by db5 at level 3. 

 

Figure 4. Energy distribution of wavelet coefficients. 

(a) (b) 
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Figure 4 shows the energy distribution of the wavelet coefficients including cA3, cD1, cD2, and cD3, 
where it can be seen that the energy percentages of the cD1, cD2 and cD3 are very close to zero, while the 
wavelet coefficients of cA3 correspond to most of spectral energy. Furthermore, Figure 4(b) shows the 
energy distribution of cD1, cD2, and cD3 in detail. It can be seen that their percentages of energy are 
very small, and there are relatively high-energy coefficients at the beginning of the three sets of detail 
coefficients. In other words, at the beginning of these detail coefficients contain a wealth of  
high-frequency information, which indicates that there is some high-frequency information at the 
beginning of the spectra [29]. Actually, due to potential system imperfection and limitation of 
spectroradiometer measurement, the scattering ray usually results in noise and disturbance at the 
beginning and the end of the spectral data [14], so this information at the beginning of these detail 
coefficients is likely caused by imperfections of the system and the spectroradiometer used in this 
research, so only approximate coefficients cA3 are taken as characteristic features for further analysis. 

Through feature extraction, WT, PCA and KPCA produced 89-dimensional new synthetic variables 
from original 651-dimensional spectral data respectively. Thus, samples can be represented with these 
new variables. Figure 5 shows the descriptions of tea samples in these new synthetic variable spaces. It 
can be found that the samples are described in the similar way by PCA and KPCA. Obviously, there 
are sharp peaks and valleys at the beginning of these curves in Figure 5(A,B), and then the curves 
gradually tend to 0, it can be concluded that most of the variance is centralized in the first tens of PCs 
and KPCs respectively. While in Figure 5(C) the 89-wavelet coefficients description of samples is very 
similar to the original spectral, indicating that the WT effectively captures the trend and characteristic 
information of the original spectra in low dimension. 

Figure 5. Description of tea samples in these new synthetic variable spaces, (A) in PCs 
space, (B) in KPCs space, and (C) in wavelet approximation coefficients (cA3) space.  
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3.3. Comparison of the Three Feature Extraction Algorithms 

To evaluate the performances of WT, PCA and KPCA, three regression models (Models 1, 2 and 3) 
were respectively developed with the three sets of newly synthesized variables as predictors. 
Moreover, the original 651-dimensional spectra were also taken as predictor to develop regression 
model (Model 4). PLSR was adopted to establish regression models based on the full cross-validation 
method. The results of the above four models are shown in Table 6. 

Table 6. Results of four PLS models corresponding to PCA, KPCA, WT and original 
spectral data. 

SN a FEA b IV c LV d Stages Elements Cor. e RMSE f Bias 
Model 1 PCA 89 10 Calibration 492 0.972 0.060 −1.802e−09 

Validation 492 0.969 0.063 −8.050e−05 
Prediction 246 0.961 0.072 −1.14e−02 

Model 2 KPCA 89 11 Calibration 492 0.979 0.051 −4.649e−09 
Validation 492 0.976 0.046 −9.659e−05 
Prediction 246 0.966 0.060 −1.200e−02 

Model 3 WT 89 13 Calibration 492 0.988 0.040 −2.770e−07 
Validation 492 0.985 0.044 1.634e−05 
Prediction 246 0.986 0.044 −4.800e−03 

Model 4 non 651 13 Calibration 492 0.987 0.041 −1.637e−08 
Validation 492 0.985 0.044 −2.030e−07 
Prediction 246 0.980 0.052 −8.600e−03 

a SN: Sequence number. b FEA: Feature extraction algorithm. c IV: Number of input variables. d LV: Number 
of latent variables. e Cor.: Correlation. f RMSE: Root mean squared error. 

In Table 6, all four models afford excellent results. In detail, Model 4 outperforms Model 1 and 
Model 2 with much higher accuracy and smaller error. It can be concluded that there is much more 
useful information in the original spectral data than those in PCs and KPCs. In other words, PCA and 
KPCA result in loss of useful information through compressing the 651-dimensional spectral data into 
the 89-dimensional PCs and KPCs. Moreover, Model 2 is slightly better than model 1, which indicates 
that the nonlinear algorithm of KPCA catches more useful information than the linear algorithm of 
PCA. Model 3 based on the 89-dimensional cA3 obtains the optimal result in the four models, which 
suggests that WT algorithm is more superior than KPCA and PCA algorithms for extraction of useful 
information. Especially, Model 3 is much better than Model 4, which indicates that the approximate 
coefficients of cA3 not only cover the characteristic information of spectra, but also avoid the 
interference of noise in the spectra, and WT is a powerful tool for extraction of characteristic 
information from spectral data. 

3.4. Obtaining the Optimal Regression Model 

As shown above, the 89-dimensional coefficients cA3 were proved to be the optimal characteristics 
of spectroscopy, thus these coefficients were set as independent variables for further analysis. To 
obtain the optimal measurement, three regression algorithms including PLSR, MLR and LSSVM were 
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adopted to develop regression models. Furthermore, LSSVM model was also based on RBF kernel 
function, and the kernel parameters of gam (γ) and sig2 (σ2) were optimized as 111,570 and 972.655 by 
grid-search which was a two-dimensional optimization procedure based on exhaustive search in a 
limited range [30]. The determination results of these three models are listed in Table 7. In detail, the 
MLR model obtains outstanding result with high correlation (r), and low root mean squared error 
(RMSE). Moreover, LSSVM model acquires excellent results in calibration stage, but the prediction 
results of the LSSVM model is slightly worse than that of the MLR model. And the PLSR model 
performs relative worse in both calibration and prediction stages comparing to MLR and LSSVM 
models. It may be concluded that the MLR model is the most proper description for the relationship 
between spectroscopy and MC. The results of the MLR model are plotted in Figure 6. 

Table 7. Results of three models corresponding to the three types of regression algorithms 
based on the wavelet approximation coefficients as predictors. 

SN a Alg. b Input Stage Elements Cor. c RMSE d Bias 

Model 5 PLS 89 
Calibration 492 0.987 0.041 −1.637e−08 
Prediction 246 0.980 0.052 −8.600e−03 

Model 6 MLR 89 
Calibration 492 0.996 0.024 −1.462e−05 
Prediction 246 0.991 0.034 −6.800e−03 

Model 7 LSSVM 89 
Calibration 492 0.999 0.013 −4.514e−05 
Prediction 246 0.986 0.044 −6.730e−03 

a SN: sequence number. b Alg.: regression algorithm. c Cor.: correlation coefficient. d RMSE: root mean 
squared error. 

Figure 6. Scatter plot of reference vs. predicted of the optimal MLR Model 6 (a) calibration 
result and (b) prediction result. 

 
(a) (b) 

3.5. Detection of Fingerprint Wavelengths 

In the MLR model, the relationship between wavelet coefficients cA3 and response variable (MC) 
could be represented by a set of regression coefficients seen in Figure 7. It can be seen that the  
B-coefficients of many wavelet approximation coefficients are close to zero, and intense jagged peaks 
and valleys can be seen at the beginning and in the middle of the regression line. The B-coefficients 
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represent the independent contributions of each independent variable to the prediction of the dependent 
variable. However, the amplitude of B-coefficients is related to the amplitude of the corresponding 
independent variables. So it is improper to detect fingerprint wavelength solely based on  
B-coefficients. In this manuscript, characteristic wavelength is obtained through combination of  
B-coefficients and experience as well as repeated attempting. Afterwards six determination models 
were established based on six sets of independent variables respectively, and the results are listed in 
Table 8. 

Figure 7. B-coefficients of the optimal determination Model 6. 

 

Table 8. Results of MLR regression models with different sets of wavelet approximate 
coefficients as independent variables. 

SN a Input Stage Element Cor. b RMSE c Bias 

Model 8 
2-7,51-57,59-60, 

62-63,67,72 
Calibration 492 0.951 0.079 −2.326e−05 
Prediction 246 0.909 0.107 −7.500e−03 

Model 9 2-7,46-74 
Calibration 492 0.982 0.048 −7.546e−06 
Prediction 246 0.978 0.054 −2.73e−03 

Model 10 2-6,58-74 
Calibration 492 0.969 0.063 −2.160e−06 
Prediction 246 0.965 0.067 1.220e−04 

Model 11 58-74 
Calibration 492 0.966 0.065 3.633e−06 
Prediction 246 0.968 0.065 −8.680e−04 

Model 12 69-89 
Calibration 492 0.986 0.043 −8.997e−08 
Prediction 246 0.983 0.051 −1.290e−02 

Model 13 65-83 
Calibration 492 0.992 0.032 1.103e−06 
Prediction 246 0.991 0.034 6.282e−06 

a SN: Sequence number. b Cor.: Correlation coefficient. c RMSE: Root mean squared error. 

In Table 8, Model 13 based on the 65th–83th coefficients of cA3 obtains excellent determination results 
in both calibration and prediction stages, and the prediction accuracy (r = 0.991, RMSE = 0.034) is very 
close to that of Model 6 based on all the 89 coefficients of cA3. This phenomenon indicates that the cA3 
in the range of 65th–83th play an important role for determination of MC. What is the hidden meaning of 
this finding? As the wavelet approximation coefficients cA3 is dimensionless, which is mathematic 
derived from original spectral data. Even though there is a clear linear formula relationship between 
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wavelet coefficient and the MC of samples, the characteristic spectral absorbance of chemical bond O–H 
of water in the samples is obscure. However, there is a clear decomposition structure in WT, and WT has 
an outstanding reconstruction capability, so the relationship between spectral absorbance and MC might 
be detected by wavelet reconstruction. Figure 8 shows the reconstructed spectra, and the spectra in the 
range of 888–1,007 nm are generated from the cA3 of 65th–83th based on wavelet reconstruction, so 
the absorption spectra of 888–1,007 nm might be the fingerprint wavelengths for characterization of 
MC. To test this hypothesis, a determination model based on these wavelengths (888–1,007 nm) was 
developed, and the correlation coefficient (r), RMSE of prediction and bias were 0.986, 0.046 and  
−1.450e −02 respectively. This result indicates that the spectra in the range of 888–1,007 nm are 
significantly correlated to MC of tea. This finding is corresponding to the strong and characteristic 
second overtone absorption position of O–H (960 nm). 

Figure 8. Reconstruction of approximation at level 3 (A) Wavelet approximation 
coefficients at level 3 and (B) Reconstructed signals. 

4. Conclusions 

The total results indicate that Vis/NIR diffuse reflectance spectroscopy data is significantly 
correlated to MC of tea, especially the wavelengths of 888–1,007 nm can be taken as fingerprint 
indicators of tea MC. This measurement method not only has high accuracy, but also can be applicable 
to a variety of tea leaves with different tenderness. Moreover, this model is suitable for several types of 
samples, including fresh tea leaves, manufactured green tea, and partially processed green tea in 
processing, which covers the range of MC values from 3.15% to 71.40%.  

Linear transform algorithm and nonlinear transform algorithms (PCA, KPCA and WT) were all 
implemented to extract characteristic information from spectral data. Results indicated that the WT 
outperformed KPCA and PCA. It can be concluded that WT is a powerful tool for extraction of 
characteristic from spectral data. The capabilities of PLSR, MLR and LSSVM regression algorithms 
were investigated to establish determination models. The MLR regression model gave the optimal 
result. Moreover, the fingerprint wavelengths (888–1,007 nm) were detected by merged MLR with 
wavelet reconstruction. Overall results indicate that the Vis/NIR diffuse reflectance spectroscopy of tea 
is strongly affected by MC, it is feasible to measure MC of tea based on Vis/NIR diffuse reflectance 
spectroscopy with the conjunction of wavelet transform and multivariate analysis. 
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