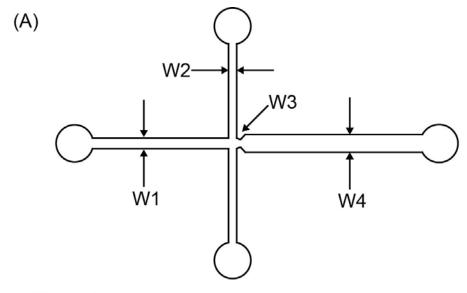
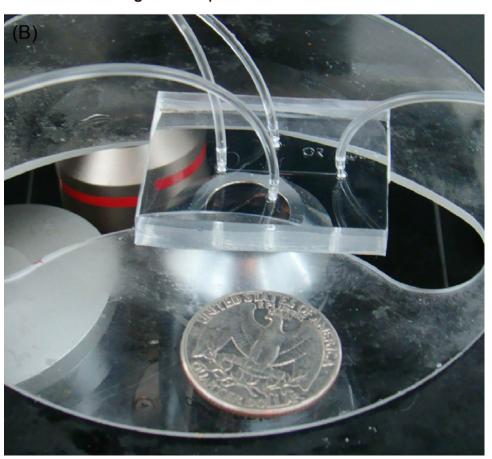


Supplementary Information

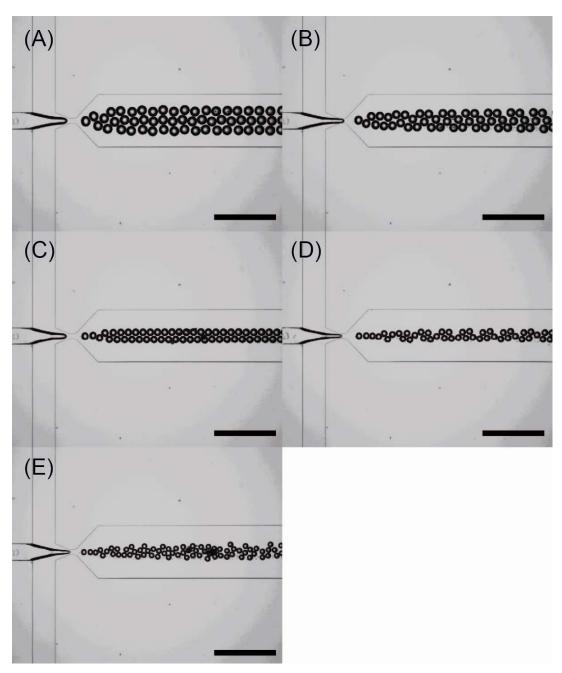
Synthesis of Bioactive Microcapsules Using a Microfluidic Device. *Sensors* 2012, *12*, 10136–10147

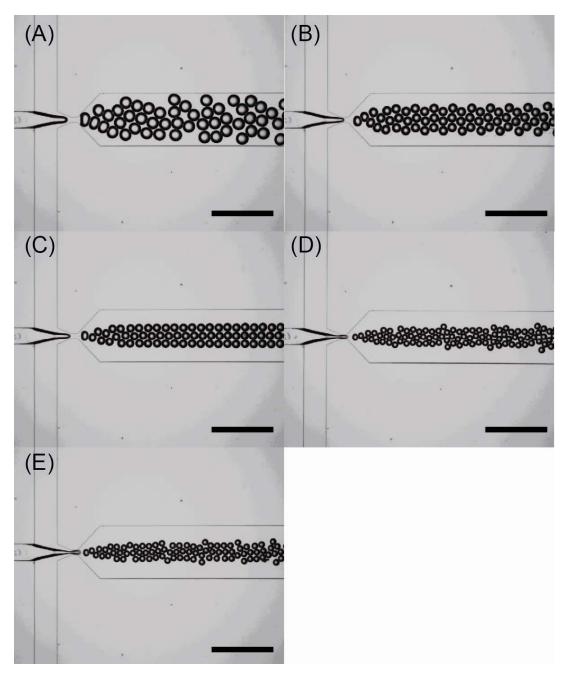

Byeong Il Kim ^{1,2,†}, Soon Woo Jeong ^{1,2,†}, Kyoung G. Lee ¹, Tae Jung Park ³, Jung Youn Park ⁴, Jae Jun Song ⁵, Seok Jae Lee ^{1,*} and Chang-Soo Lee ^{2,*}

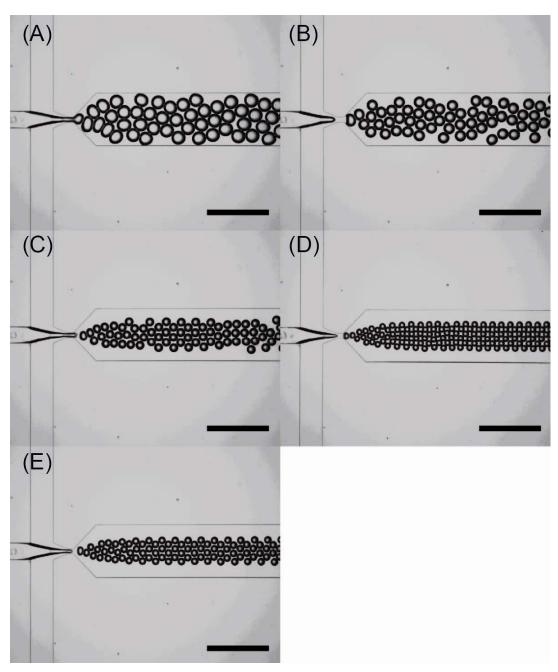
- Center for Nanobio Integration & Convergence Engineering (NICE), National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: kbiset@nnfc.re.kr (B.I.K.); swjeong@nnfc.re.kr (S.W.J.); kglee@nnfc.re.kr (K.G.L.)
- ² Department of Chemical Engineering, Chungnam National University, 220 Gung-Dong, Yuseong-gu, Daejeon 305-764, Korea
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea; E-Mail: tjpark@cau.ac.kr
- ⁴ Biotechnology Research Division, National Fisheries Research & Development Institute (NFRDI), 408-1 Sirang-ri, Gijang, Busan 619-705, Korea; E-Mail: jypark@nfrdi.go.kr
- Microbe-based Fusion Technology Research Center, KRIBB, 1404 Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea; E-Mail: jjsong@kribb.re.kr
- [†] These authors contributed equally to this work.
- * Authors to whom correspondence should be addressed; E-Mails: sjlee@nnfc.re.kr (S.J.L.); rhadum@cnu.ac.kr (C.-S.L.); Tel.: +82-42-879-9722 (S.J.L.); Fax: +82-42-879-9609 (S.J.L.); Tel.: +82-42-821-5896 (C.-S.L.); +82-42-822-8995 (C.-S.L.).


Received: 8 June 2012; in revised form: 4 July 2012 / Accepted: 18 July 2012 /

Published: 26 July 2012


Figure S1. (A) Schematic illustration of microfluidic device and its dimensions; (B) Photograph of microfluidic device.


Dimensions W1=180 $\mu m,$ W2=280 $\mu m,$ W3=50 $\mu m,$ W4=580 $\mu m,$ Channel Height=100 μm


Figure S2. Photomicrographs showing the droplets of different sizes at the fixed DP (1 μ L/min) with five different flow rates of CP. (**A**) $Q_{CP1} = 1 \mu$ L/min; (**B**) $Q_{CP2} = 2 \mu$ L/min; (**C**) $Q_{CP3} = 3 \mu$ L/min; (**D**) $Q_{CP4} = 4 \mu$ L/min; (E) $Q_{CP5} = 5 \mu$ L/min. All scale bars are 500 μ m.

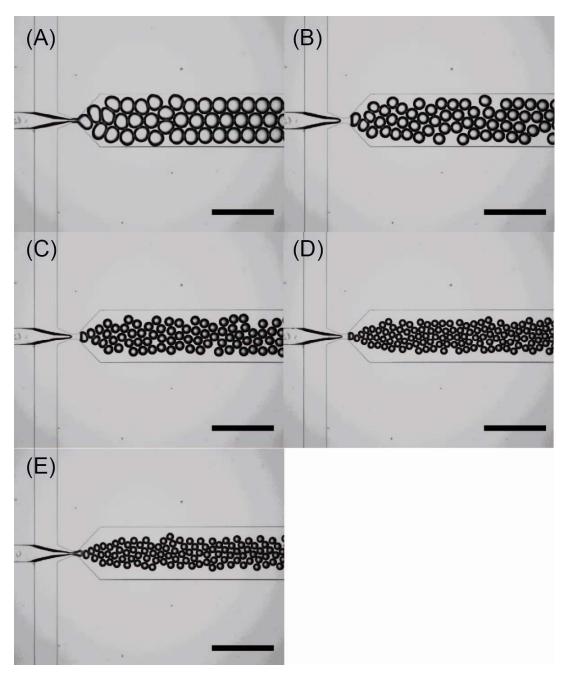

Figure S3. Photomicrographs showing the droplets of different sizes at the fixed DP (2 μ L/min) with five different flow rates of CP. (**A**) $Q_{CP1} = 1 \mu$ L/min; (**B**) $Q_{CP2} = 2 \mu$ L/min; (**C**) $Q_{CP3} = 3 \mu$ L/min; (**D**) $Q_{CP4} = 4 \mu$ L/min; (**E**) $Q_{CP5} = 5 \mu$ L/min. All scale bars are 500 μ m.

Figure S4. Photomicrographs showing the droplets of different sizes at the fixed DP (3 μ L/min) with five different flow rates of CP. (**A**) $Q_{CP1} = 1 \mu$ L/min; (**B**) $Q_{CP2} = 2 \mu$ L/min; (**C**) $Q_{CP3} = 3 \mu$ L/min; (**D**) $Q_{CP4} = 4 \mu$ L/min; (**E**) $Q_{CP5} = 5 \mu$ L/min. All scale bars are 500 μ m.

Figure S5. Photomicrographs showing the droplets of different sizes at the fixed DP (4 μ L/min) with five different flow rates of CP. (**A**) $Q_{\text{CP1}} = 1 \,\mu$ L/min; (**B**) $Q_{\text{CP2}} = 2 \,\mu$ L/min; (**C**) $Q_{\text{CP3}} = 3 \,\mu$ L/min; (**D**) $Q_{\text{CP4}} = 4 \,\mu$ L/min; (**E**) $Q_{\text{CP5}} = 5 \,\mu$ L/min. All scale bars are 500 μ m.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).