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Abstract: Based on the magnetic resonance coupling principle, in this paper a wireless 
energy transfer system is designed and implemented for the power supply of  
micro-implantable medical sensors. The entire system is composed of the in vitro part, 
including the energy transmitting circuit and resonant transmitter coils, and in vivo part, 
including the micro resonant receiver coils and signal shaping chip which includes the 
rectifier module and LDO voltage regulator module. Transmitter and receiver coils are 
wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy 
transfer efficiency of the four-coil system is greatly improved compared to the 
conventional two-coil system. When the distance between the transmitter coils and the 
receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The 
power transfer efficiency can be optimized by adding magnetic enhanced resonators. The 
receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of  
10 mA at the distance of 2 cm. In addition, the output current varies with changes in the 
distance. The whole implanted part is packaged with PDMS of excellent biocompatibility 
and the volume of it is about 1 cm3. 

Keywords: wireless energy transfer system; transfer efficiency; Class-E amplifier; CMOS 
rectifier; LDO; micro-implantable medical sensors 
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1. Introduction 

Micro-implantable medical devices (IMDs) are becoming more and more popular in health and 
medical applications due to the ability to locally stimulate internal organs and communicate the 
internal vital signs to the outer world. The internal battery is not an ideal candidate for the power 
supply due to its limited life time, large volume, and possibility of leakage [1]. Energy harvesters [2] 
which can capture mechanical, thermal, chemical, gravitational or electromagnetic energy had at one 
time been considered as a suitable power supply method for IMDs, but they can’t work well without a 
proper environmental energy source [3].  

Recently, wireless power transfer schemes have often used in IMDs to not only to avoid 
transcutaneous wiring, but also to either recharge or replace the device battery. Wireless energy 
transfer can be divided into the near field and the far field transmission. The far field radiative transfer 
by microwaves or laser is limited by absorption and scattering in the atmosphere and requires a direct 
line of sight between the source and the device(s) [4]. At high intensities, it also presents a challenging 
electromagnetic interference problem. The near-field transmission includes inductive coupling and 
magnetic resonance coupling. Inductive coupling energy transfer through the mutual inductance 
between two coils was first used to power IMDs [5]. In these systems, the efficiency is affected by 
many factors such as the size, structure physical spacing, relative location, and the properties of the 
environment surrounding the coils. The coupling between the two coils decreases sharply as the 
distance (d) between the coils increases and causes the overall power transfer efficiency to decrease 
monotonically [6]. The geometric mean rm (rm = √r1 × r2) of the transmitter and receiver coil radii  
(r1, r2) is commonly used as the performance metric for comparing different designs. The inductive 
coupling efficiency is lower than 40% and decreased with 1/d3 when d > rm [7].  

In 2007, Kurs reported [8] a new wireless power transfer system based on strongly magnetic 
resonant coupling between four coils according to coupled mode theory (CMT) [9], and a transmission 
efficiency of 40%~50% was obtained in the middle range of 2.74 m (a few times of the coil size). 
Distinct from the inductive coupling, an intuitive but powerful concept is employed. For instance,  
two objects with the same intrinsic resonant frequency exchange energy more efficiently than two  
non-resonant objects. Another attractive feature is that magnetic fields interact with living organisms 
weakly, making it a relatively safer method for energy transfer than the RF methods which involve 
interactions of both electric and magnetic fields with biological tissues. Although The MIT system has 
obvious advantages in the transmission efficiency and distance, the coil size (for 60 cm in diameter) is 
not suitable for IMDs. Magnetic resonance coupling with centimeter-scale size of coils has been designed 
in order to promote the application of magnetic resonance energy coupling in IMDs. Sun et al. [10,11] 
designed a wireless energy transfer system with transmitter coils (165 mm in diameter) and receiver 
coils (41 mm in diameter) based on CMT. The efficiency is 4.67% at the distance of 70 cm and 26.8% 
at the distance of 33 cm. Since CMT is founded on the magnetic resonant coupling between two ideal 
models with an identical and big size, it is not suitable for coupling coils with great size disparity. 
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Chiao [12] uses resonant circuit theory to analyze the magnetic resonating system. The coupling coils 
are wounded by Litz wire, the diameters of transmitter coils and receiver coils are 64 mm and 22 mm, 
respectively. The energy transfer efficiency of 82% is achieved at the distance of 20 mm (rm/d = 1.07). 
It is proved that the efficiency of resonant coupling is much higher than that of inductive coupling. 

Based on the four-coil resonant circuit theory, a wireless energy transfer system (Figure 1(a)) is 
designed and implemented in this paper. The entire system is composed of the in vitro part, including 
the energy transmitting circuit (Class-E amplifier) and resonant transmitter coils, which consist of 
drive coil (coil1) and primary coil (coil2), and the in vivo part including the micro resonant receiver 
coils which consist of the secondary coil (coil3) and load coil (coil4) and signal shaping chip which 
includes the rectifier module and LDO voltage regulator module. First the electrical and geometric 
parameters of the coils are theoretically optimized. Then the energy transfer efficiency is modeled and 
optimized. The peripheral circuit is composed of Class-E amplifier, low power CMOS rectifier circuit, 
and capacitor-less low dropout linear voltage regulator (LDO). Finally, an experimental setup is 
designed to characterize the energy transfer efficiency. Experimental results show that the energy 
transfer efficiency of resonant four coils is much higher than that of two coils. When the distance 
between the transmitter coils and the receiver coils is 1.5 cm and the carrier frequency is 742 kHz,  
the transfer efficiency is 85%. What’s more, the power transfer efficiency can be optimized by  
adding magnetic enhanced resonators. The whole implanted micro system is packaged with 
polydimethylsiloxane (PDMS) after depositing a layer of Parylene to obtain better seal and 
biocompatibility as shown in Figure 1(b). The measurement results show that the receiving voltage 
signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. 
A power of more than 100 mW can be achieved when the distance is decreased, which can meet the 
power consumption requirements of most reported biomedical systems such as artificial retinas (power 
consumption of 42 mW) [13], intraocular pressure sensors (power consumption of µWs or mWs) [14], 
neural recording systems (power consumption of 5.3 mW) [15], and human body sensor networks [16].  

Figure 1. (a) Schematic of the wireless resonant energy transfer system; (b) Packaged 
implanted receiver coils and IC chip by PDMS. 
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This paper is organized as follows: the models of resonant coils and energy transfer efficiency are 
calculated and optimized in Section 2. Section 3 describes the design of peripheral circuit including the 
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transmitter module and receiver module of the wireless power transfer system. The experimental setup 
and measurement results about the energy transfer efficiency and the whole system are presented and 
discussed in Section 4. 

2. Transcutaneous Magnetic Resonance Power Link Design 

Energy transfer efficiency is the key issue for the four-coil resonant power link. It depends on the 
self-inductance, quality factor (Q factor) and the carrier frequency. The coils are wound with Litz wire 
in order to reduce the ac resistance and improve the Q factor. First, a theoretical model for designing 
transmitter and receiver coils based on multistrand Litz wire is applied.  

2.1. Optimization of Q Factor for the Resonant Coils 

In order to reduce and utilize the volume effectively, a multilayer solenoidal coil model is chosen. 
In addition, transmitter coils are composed of coil2 wrapped over coil1, and receiver coils are 
composed of coil3 wrapped over coil4. The inductance is derived by the summation of each turns’ 
inductance and the mutual inductance between each turn. 

For a solenoidal coil with Na layers, Nt turns per layer and different radii ai (i = 1, 2, …, Na), wire 
radius R, the total self-inductance can be modeled as [6]: 
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where δij (or δkl) = 1 for i = j (or k = l) and δij (or δkl) = 0 otherwise. dl is the minimum distance between 
two consecutive turns, µ0 is the permeability of vacuum. The first half of Equation (1) represents the 
summation of each turns’ inductance, and the second half of Equation (1) represents the summation of 
mutual inductance between each turn, which can be calculated as [17,18]: 
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind, a and b are the radii 
of two single-turn coils.  

To achieve a high Q factor, consideration of different parameters such as the self-inductance of coil 
and operating frequency (f) is required. Q factor can be captured as [6]: 
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The self-resonance frequency fself can be derived by the self-inductance (La) and parasitic 
capacitance (Cself) of the coil: 
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For a multilayer solenoidal coil with Na layers and Nt turns per layer, parasitic capacitance (Cself) 
can be calculated as [19]: 

⎥
⎦

⎤
⎢
⎣

⎡
−−+−= ∑

=

tN

i
amatbself NiCNNC

N
C

1

2
2 )1()12()1(1  (6) 

where N is the total turns, Cb is the parasitic capacitance between two nearby turns in the same layer, 
and Cm is the parasitic capacitance between different layers.  

The ac resistance of coils made up of multistrand Litz wires, including skin and proximity effect, 
can be approximated as [20]: 

)1( 2

2

h
dcac f

fRR +=  (7) 

where fh is the frequency at which power dissipation is twice the dc power dissipation and Rdc is the dc 
resistance of the coil, which are given as Equation (8) [20] and Equation (9) [12]: 
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where rs, Ns, β are the radius of each single strand, number of strands per bunch, and the area 
efficiency of the bunch, respectively. ηa is the area efficiency of coil with width b and thickness t. A, RS, 
NB, NC, and NS are the cross-section area, maximum dc resistance of each individual strand, number of 
bunching operations, number of cabling operations, and number of individual strands, respectively. 

At high frequency, skin and proximity effect increase the ac resistance. Since multistrand Litz wire 
can reduce the ac resistance, it is chosen to design the resonant coils. Litz wire (AWG44) with a 
number of 60 strands is used in transmitter coils, and with a number of seven strands it is used in 
receiver coils because of the size limit of the receiver coils. In the operating frequency (350 kHz~850 kHz) 
of AWG44, the ac resistance is relatively low and a high Q factor can be achieved.  

Substituting Equations (1–3,5–7) into Equation (4), Matlab is used to calculate the tendency of Q 
versus Na and Nt, as shown in Figure 2. The resonant frequency of the four coils is set at 650 kHz 
according to the operating frequency of AWG44 Litz wire, and the load resistance (Rload = 50 Ω) for 
coil1 and coil4. According to the optimized Q and Equation (1), the self-inductance La and a group of 
optimized geometry parameters are given in Table 1. The optimized inner diameters are set as coil1 of 
34 mm, coil2 of 36 mm, coil3 of 14 mm, and coil4 of 16.5 mm.  
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Figure 2. Optimized Q factor versus Na and Nt for every coil (a) Q1 versus Na, Nt for coil1; 
(b) Q2 versus Na, Nt for coil2; (c) Q3 versus Na, Nt for coil3; (d) Q4 versus Na, Nt for coil4. 

(a) 
 

(b) 
 

(c) (d) 

Table 1. Optimized coil geometry parameters by theory model. 

Type 
Coil  

Number 
Outer Dia. 

(mm) 
Inner Dia. 

(mm) 
Turn/layers 

Nt 
Layers  

Na

L  
(μH) 

Q (loaded) 
(650 kHz) 

Driver Coil 1 36 34 10 2 25 1.8 
Primary Coil 2 38 36 10 2 26.5 75 

Secondary Coil 3 16.5 14 6 5 26.4 29 
Load Coil 4 19 16.5 6 5 24.8 2 

2.2. Energy Transfer Efficiency Model 

The CMT [8] and circuit theory [6] are commonly applied to analyze wireless power transfer 
systems. The CMT can be used to analyze the distribution of electromagnetic field properly at the far 
or middle range in the same resonator size and material, while it is not suitable for analysis of the  
four-coil system. Hence the resonant coupling model is built based on the resonant circuit theory. The 
equivalent circuit of power transfer system is proposed [6] and shown in Figure 3.  
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Figure 3. The equivalent circuit of power transfer system. 
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where, Zmn, Mmn, and kmn are the circuit equivalent impedance, mutual inductance, and coupling factor 
between coilm and coiln. Rn, Ln, and Cn are the equivalent resistance, inductance and capacitance of 
the nth resonance circuit. 

The four coils are set to be resonant at the same frequency, ω = 1/√LnCn, n ∈{1,2,3,4} and Zmn = Rn. 
For small driver and load coil inductance and relatively large distance between coil1 and coil4, coil1 
and coil3, and coil2 and coil4, the cross coupling factor k13, k14, k24 can be neglected. The current in 
coil1 (i1) and coil4 (i4) can be calculated from Equation (10) and Qn (Qn = ωLn/Rn). Therefore, the 
power transfer efficiency can be obtained as [6]: 
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from Equation (12), the coupling factor is the primary factor to improve power transfer efficiency. 
Based on equivalent circuit model, coupling factor between coil2 and coil3 can be calculated as: 

k23 = M23/√L2L3 (13) 

23 2 3 2 3( , , )M N N M a a d=  (14) 

where N2 and N3 are the turns of coil2 and coil3. M(a2,a3,d) is the mutual inductance between two 
single coils (with radius of a2 and a3, distance d) according to Equation (2). According to the optimized 
coil geometry parameters according to the theoretical model in Table 1, the model of k23 can be 
calculated from Equations (13,14) and it is a function of distance. In additon k12, k34 can aslo be 
derived as 0.5 from Equations (13,14) under certain distance. Figure 4(a) plots the coupling factor k23 
as a function of distance (d) between transmitter coils and receiver coils, and Figure 4(b) plots the 
power efficiency as a function of operating frequency (f) and distance (d) between transmitter coils and 
receiver coils. It is indicated that the maximum power transfer efficiency is achieved at 650 kHz. 
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Therefore, based on the above optimization and analysis results, the best energy transfer efficiency is 
obtained at the working frequency of 650 kHz for this four-coil resonant power transfer system. 

Figure 4. (a) Coupling factor k23 versus distance (k12 = k34 = 0.5, L2 = 25 µH, L3 = 28 µH); 
(b) Power efficiency versus distance and frequency. 

 
(a) (b) 

3. Peripheral Circuit Implementation 

The peripheral circuit mainly includes the transmitter module and receiver module of the wireless 
power transfer system. The transmitter module is used to generate a power signal with a Class-E 
amplifier and the receiver module is used to process the receiver signal with a rectifier and voltage 
regulator circuit. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a 
current of 10 mA at the distance of 2 cm. 

3.1. Design of Class-E Power Amplifier 

The Class-E power amplifier, known as the highest efficiency power amplifier, is used to reduce the 
power dissipation. In order to improve the efficiency of Class-E power amplifiers, three rules need to 
be considered when designing the Class-E: (1) Minimize the voltage across the device as the  
current flows through it; (2) Minimize the current flowing through the device when voltage exists;  
(3) Minimize the duration of any unavoidable condition in which appreciable current and voltage exist 
simultaneously [21].  

The schematic of Class-E power amplifier introduced in this paper is shown in Figure 5. The basic 
Class-E power amplifier circuit is composed of MOS switch, RF choke, a parallel capacitor (Cp), load 
network (LC) and load (RL) [22]. Parasitic capacitance of MOS drain increases Cp [23]. When 
analyzing the Class-E amplifier working principle, it is assumed that the on-resistance of MOS 
transistor is zero and the off-resistance of MOS transistor is infinite. Square wave is applied to the gate 
of MOSFET to control the MOS switch. When a high voltage is applied, the MOS switch is on and 
current flows through the MOSFET. The drain-to-source voltage is approximate zero. When a low 
voltage is applied, the MOS switch is off and the drain-to-source voltage equals to the voltage across 
Cp. Because the magnetic resonant coupling between the transmitter coils and receiver coils will 
reduce the resonant frequency of the system, a tuning capacitance (Cx) in series with LC is added to 
adjust the resonant frequency point of the transmitting circuit. 
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Figure 5. Schematic of the Class-E power amplifier and driving circuit. 

 

At the resonant working state, the voltage across Cp may reach 40 V. Because the maximum  
drain-to-source voltage and the current of power MOSFET (IRF530) are 100 V and 17 A, the on-resistance 
of which is less than 110 mΩ, it is chosen as the MOS switch. Due to the large gate capacitance, a 
driver circuit is needed in front of the Class-E power amplifier. As driving stage, the inverter has the 
advantages of low cost and simple circuit structure. The power MOSFET can be driven effectively by 
twelve CMOS inverters (74HC04) [24]. The experimental result shows that the input signal of Class-E 
power amplifier is obviously improved and the rising time is 18 ns, so it can provide more power 
output to the wireless energy transfer system. 

3.2. Design of Receiver Module  

The receiver circuit module shapes the signal received from the receiver coils with the rectifier and 
voltage regulator circuit. It is used to provide a stable voltage source. This receiver circuit module is 
designed based on the CSMC 0.5 µm standard CMOS process with the Cadence simulation platform. 
It is composed of CMOS rectifier circuit and capacitor-less low dropout linear voltage regulator 
(LDO). In order to meet the demands of the area and power dissipation of the implantable chip, the 
rectifier chosen in this paper is compatible with the standard CMOS process and the LDO linear 
regulator has no off-chip capacitor. With the input power voltage changing from 3.5 V to 4.5 V, the 
LDO linear regulator can produce a stable 3.3 V power supply. When the output current of the LDO is 
40 mA, it also has good stability and transient response. 

The structure of the rectifier [25] used in this paper is depicted in Figure 6. This rectifier does not 
dissipate too much power through substrate leakage current and rectifier dropout voltage, and does not 
increase the risk of latch-up. It is important to protect the circuit against latch-up and substrate leakage, 
because the source nodes of the rectifying pMOS transistors in Figure 6 are connected to the coil 
terminals, which have large voltage variations at high frequency. The separated N-wells are the nodes 
that increase the risk of substrate leakage current. In order to control each separated N-well voltage, the 
transistors MP3-MP6 are added to MP1 and MP2 to connect the N-well to Vout, coil1, or coil2 whichever is at 
a higher potential. Besides, the higher substrate potential reduces the threshold voltage of MP1 and MP2. 
With the reduction of the threshold voltage, the power dissipation in the rectifier block decreases and 
the average rectified dc voltage available at the regulator input increases. Reducing the rectifier 
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dropout voltage lowers the minimum receiver coil voltage, which in turn saves the required transmitted 
power or increases the maximum permissible coupling distance between the transmitter and receiver 
coils. The instantaneous voltage drop on the transistors of MP1 and MP2 can be found from: 

)L
W(μC

2IVVV
ox

D
THDSGS +==  (15) 

where ID is the drain current, μCox is the intrinsic transconductance, VTH is the transistor threshold 
voltage, and W and L are the transistor width and length. From Equation (15), the W/L value should be 
increased as much as the rectifier area consumption and its parasitic capacitance will permit us to 
lower the dropout voltage. 

Figure 6. The diagram of the standard CMOS rectifier. 

 

A capacitor-less LDO architecture [26] is presented in this section as depicted in Figure 7. It is 
composed of bandgap voltage reference, error amplifier, pass transistor, feedback network and a 
compensation circuit. 

Figure 7. The structure of the capacitor-less LDO. 

 

Since the capacitor-less LDO does not have the off-chip capacitor, a sound compensation scheme 
for both the transient response and alternating current stability is proposed. It is crucial to regulate the 
compensation scheme shown as the differentiator circuit in Figure 7. The relatively small on-chip 
output capacitor implemented by the MOS capacitance is about 100 pF. The output voltage of LDO 
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voltage regulator is decided by the band-gap voltage reference and the feedback network. It can be 
found from: 
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where Rf1 and Rf2 are the resistors shown in Figure 7 and Vref is the bandgap reference voltage. 
Bandgap voltage reference circuit uses the negative temperature coefficient of emitter-base voltage 

in conjunction with the positive temperature coefficient of emitter-base voltage differential of two 
transistors operating at different current densities to make a zero temperature coefficient reference. The 
structure [27] presented in this paper is depicted in Figure 8. The drain current of M1 and M2 is: 

1 2 1 1

1 3 1 3

ln( )=−= + +EB EB EB T EBV V V V n VI
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 (17) 

where VT is the thermal voltage, n is the area ratio of Q2 and Q1, R1 and R3 are the resistors shown in 
Figure 8, and VEB1 and VEB2 are the emitter-base voltage of the transistor Q1 and Q2, respectively. If 
the size of M3 is equal to the size of M2 and the effect of channel-length modulation is neglected, we 
can obtain the output voltage of the bandgap reference: 

31 4
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where the temperature coefficient of VEB1 is negative and the temperature coefficient of VT is positive. 
The compensation of the temperature coefficientsVEB1 and VT is ensured by choosing values of n and 
of the R3/R1 ratio and the value of the output voltage is ensured by the R4/R3 ratio. 

Figure 8. The schematic diagram of the bandgap voltage reference. 

 

Since this circuit has a dead (zero current) operating point, a startup circuit shown in Figure 8 is 
necessary to bring out the reference circuit from the dead operating point to its normal operating point. 
A self-bias amplifier is adopted in this circuit to reduce the circuit complexity and power consumption. 
This bandgap voltage reference provides a stable output voltage.  

The receiver circuit module rectifies the alternating signal from the receiver coils. It is convenient to 
integrate the receiver circuit module by using the CMOS rectifier circuit and capacitor-less LDO 
voltage regulator. Besides, because of the integration of the receiver circuit module, the volume of the 
receiver circuit is reduced and the stability of the system is increased.  
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4. Measurement Results and Discussions 

A detachable stent with variable dimensions was designed to accommodate different sizes of the 
coils, which can be removed to further reduce the volume of the coil. The structure of the coils  
is described in Figure 9(a), where coil2 is wrapped over coil1 and coil3 is wrapped over coil4.  
Sixty-strand and seven-strand Litz wire of AWG 44 are used to implement the transmitter coils (coil1, 
coil2) and receiver coils (coil3, coil4), respectively. Figure 9(b) shows the transmitter and receiver 
coils compared with a Chinese coin (diameter = 25 mm). Table 2 gives the geometric specifications 
and measured L and Q of the four coils according to the theoretically optimized results as shown in 
Table 1. The measured L and Q at the frequency of 742 kHz are also given in Table 2. 

Figure 9. Description of the coils: (a) Description of the structure of the coils; (b) The size 
of the transmitter and receiver coils compared with a coin. 

 
(a) (b) 

Table 2. Specification of the four coils (Measured).  

Coil 
Number 

Strand 
Dia. 

Layers 
(Na) 

Turns 
(Nt) 

Inner Dia. 
(mm) 

Outer Dia. 
(mm) 

H  
(mm) 

L  
(µH) 

Q  
(at 742 kHz) 

1 0.05 mm 2 10 34 36 7 22 2 
2 0.05 mm 2 10 36 38 7 24 173 
3 0.05 mm 5 6 16 18 2 26 42 
4 0.05 mm 5 6 14 16 2 25 2.17 

The implanted coils and the IC chip are integrated on a PCB board as the in vivo part and packaged 
as shown in Figure 1(b). Since Si3N4 is a good sealing material, a layer of 5000 Å Si3N4 is firstly 
deposited on the surface of the coils and PCB board by Plasma Enhanced Chemical Vapor Deposition 
(PECVD). Then the whole in vivo part is completely coated with approximate 15 um Parylene C. In 
order to improve the biological compatibility, PDMS is used for further and stronger packaging. The 
whole volume of the packaged system is 1 cm3. After packaging, the whole in vivo part is soaked in 
saline, and the sample is examined daily under a microscope. The soak lasted up for more than three 
months and the device was not eroded.  

As shown in Figure 10, a network analyzer (Agilent 8714ET) is used to measure the electrical 
specifications of the coils and the transfer efficiency of the wireless power transfer system. The coils’ 
electrical specifications i.e., L, Q, dc resistance, and ac resistance can be measured through the Smith 
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Chart with the frequency sweeping from 300 kHz to 10 MHz. The power transfer efficiency can be 
obtained from the S-parameter: 

2 2
21 11( ) 10 /(1-S )f dB Lg S⎡ ⎤= × ⎣ ⎦  (19) 

Figure 10. The experimental setup for the four-coil power transfer system. 

 

Figure 11(a) is the measurement results of the power transfer efficiency (η) versus different distance 
for two- and four-coil system. η of four-coil system is much higher than that of two-coil system in the 
measurement range (1 cm~7 cm). It indicates that the four-coil power transfer system can meet 
different kinds of sensors’ power demands. The power of 33 mW can be delivered at the distance of  
2 cm. η of the four-coil system is 85% at the distance of 1.5 cm (rm/d = 0.9), which is much higher than 
43% of the two-coil system. The highest η is 86% at the distance of 1 cm. What’s more, η is little 
affected by the distance when the distance is less than 2 cm. Even if the distance is 3 cm, the efficiency 
is as high as 24%.  

Figure 11. (a) η of two- and four-coil systems versus distance. (b) η of four-coil system 
with magnetic enhanced resonators under different gaps at the distance of 5 cm. 

(a) (b) 

In order to improve the energy transfer efficiency at the same distance, two magnetic enhanced 
resonators (5th and 6th) are added as shown in Figure 12. The efficiency is improved with the 
increased number of enhanced resonators. Since the magnetic field of each coil is coupled in  
near-field, that is, the magnetic field is the fading field, the coupling strength becomes weaker as the 
transmission distance increases and the attenuation magnitude of the magnetic field is reduced by 



Sensors 2012, 12 10305 
 
adding enhanced resonators. In addition, the coupling scope of the magnetic field is limited and when 
there are no extra enhanced resonators (5th and 6th), the coupling efficiency decreases with the 
increasing transmission distance. The coupling strength at the same distance is strengthened through 
adding enhanced resonators (5th and 6th) and the energy transfer efficiency (η) is improved. Figure 11(b) 
gives the experiment results of η for the system with and without the enhanced resonators at the same 
distance of 5 cm. Also, the position of the resonators has much influence on the efficiency. η versus 
the gap between enhanced resonators and receiver coils is measured. η of the four-coil system is below 
2%, while it can be greatly improved by adding enhanced resonators. η of 43% can be obtained at the 
gap of 1 cm and it is increased by more than 20 times. The experiment results prove that the magnetic 
enhanced resonators can effectively improve the energy transfer efficiency.  

Figure 12. The diagram of adding magnetic enhanced resonators.  

 

In order to characterize the relationship between energy transfer efficiency and location parameters, 
η versus angle misalignment and lateral shift at the distance of 1.5 cm are measured and showed in  
Figure 13(a,b), respectively. The energy transfer efficiency of the two- and four-coil systems is both 
affected by location parameters obviously and it decreases with the angle misalignments and lateral 
shifts. Because of magnetic resonant coupling, η of four-coil system is higher than that of two-coil 
system in the whole range. Our experimental results also reveal that magnetic enhanced resonators can 
eliminate a part of influence brought by the location misalignment.  

Figure 13. (a) η of two- and four-coil systems versus angle misalignments at d = 1.5 cm; 
(b) η of two- and four-coil systems under different lateral shifts at d = 1.5 cm. 

(a) (b) 
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The performance of the whole system is measured on the experimental platform as depicted in 
Figure 14(a). On the transmitter side, the Class-E amplifier is implemented based on Figure 5 and the 
input control signal is generated by an Agilent 33120A function generator. The resonant frequency of 
the Class-E amplifier is adjusted to 750 KHz, equal to the highest η frequency point of the four-coil 
power transfer system. On the receiver side, the chip, including the rectifier and LDO voltage 
regulator, follows the receiver coils. The output of the chip is loaded by a resistor of 330 Ω. When the 
distance between transmitter coils and receiver coils is 2 cm, a 3.28 V of output voltage is obtained. It 
is equivalent that a power of 33 mW is received. The wave of the chip input voltage and the chip 
output voltage is depicted as Figure 14(b). In addition, a power of more than 100 mW can be achieved 
when the distance is decreased, which can meet the power requirements of most reported biomedical 
implants consume such as artificial retina, intraocular pressure, and neural recording system.  

Figure 14. (a) The measurement platform of the whole system; (b) The measurement 
results of the chip input voltage and the chip output voltage. 

(a) (b) 

5. Conclusions 

A wireless energy transfer system with resonant four coils is presented in this paper. The whole 
system is composed of a Class-E amplifier, transmitter coils, receiver coils, and signal shaping chip 
which includes the rectifier module and LDO voltage regulator module. The electrical and geometrical 
parameters of the coils are theoretically optimized. The energy transfer efficiency is modeled and 
optimized based on the resonant circuit theory and it is measured based on the designed experimental 
setup. Experimental results show that the energy transfer efficiency of the resonant four coils is much 
higher than that of two coils. At the carrier frequency of 742 kHz, the measured coupling efficiency is 
85% at the distance of 1.5 cm. The highest efficiency of 86% is obtained at the distance of 1 cm. Even 
if at the distance of 3 cm, the efficiency is as high as 24%. In addition, the power transfer efficiency 
can be improved by adding magnetic enhanced resonators. The system measurement results show that 
the receiving voltage signal is converted to stable output voltage of 3.3 V and a current of 10 mA at the 
distance of 2 cm. In addition, the output current is changed with the distance. 
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