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Abstract: In this paper we present a comparison between six novel approaches to the
fundamental problem of cyclic instability in Ambient Intelligence. These approaches are
based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm
Optimization (BSO), micro Particle Swarm Optimization (µ-PSO), Artificial Immune
System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input
Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of
Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of
the system. This approach has the advantage that it does not need to analyze the topological
properties of the system, in particular the loops, which can be computationally expensive.
In order to test these algorithms we used the well-known discrete system called the Game
of Life for 9, 25, 49 and 289 agents. It was found that PSO and µ-PSO have the best
performance in terms of the number of agents locked. These results were confirmed using
the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and
can be used to remove instabilities in real scenarios with a large number of agents (including
nomadic agents) and complex interactions and dependencies among them.
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1. Introduction

Any computer system can have errors and Ambient Intelligence is not exempt from them. Cyclical
instability is a fundamental problem characterized by the presence of unexpected oscillations caused by
the interaction of the rules governing the agents involved [1–4].

The problem of cyclical instability in Ambient Intelligence is a problem that has received little
attention by the designers of intelligent environments [2,5]. However in order to achieve the vision
of AmI this problem must be solved.

In the literature there are several strategies reported based on analyzing the connectivity among the
agents due to their rules. The first one the Instability Prevention System INPRES is based on analyzing
the topological properties of the Interaction Network. The Interaction Network is the digraph associated
to the system and captures the dependencies of the rules between agents. INPRES finds the loops and
locks a subset of agents on a loop, preventing them to change their state [1–4]. INPRES has been tested
successfully in system with low density of interconnections and static rules (nomadic devices and time
variant rules are not allowed). However when the number of agents involved in the system increases (with
high dependencies among them) or when the agents are nomadic, the approach suggested by INPRES is
not practical, due to the computational cost.

Additionally Action Selection Algorithms map the relationship between agents, rules and selection
algorithms, into a simple linear system [6]. However this approach has not been tested in real or
simulated scenarios nor nomadic agents.

The approach presented in this paper translates the problem of cyclic instability into a problem of
intelligent optimization, moving from exhaustive search techniques to metaheuristics searching.

In this paper we compare the results of Particle Swarm Optimization (PSO), Bee Swarm Optimization
(BSO), micro Particle Swarm Optimization (µ-PSO), Artificial Immune System (AIS), Genetic Algorithm
(GA) and Mutual Information Maximization for Input Clustering (MIMIC) when applied to the problem
of cyclic instability. These algorithms find a good set of agents to be locked, in order to minimize the
oscillatory behavior of the system. This approach has the advantage that there is no need to analyze the
dependencies of the rules of the agents (as in the case of INPRES). We used the game of life [7] to test
this approach, where each cell represents an agent of the system.

2. Cyclic Instability in Intelligent Environments

The scenarios of intelligent environments are governed by a set of rules, which are directly involved in
the unstable behavior, and can lead the system to multiple changes over a period of time. These changes
can cause interference with other devices, or unwanted behavior [1–4].

The state of a system s(t) is defined as the logarithm base 10 of the binary vectors of the agents.
A turned-on agent was represented with 1 while a shut-down agent will be represented with 0. The
representation of the state of the system is shown in Equation (1):
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s(t) = log(s) (1)

where s(t) is the state of the system at time t, and s is base-10 representation of the binary number of
the state of the system.

3. Optimization Algorithms

3.1. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was proposed by Kennedy and Everhart [8,9]. It is
based on the choreography of a flock of birds [8–13], wing a social metaphor [14] where each individual
brings their knowledge to get a better solution. There are three factors that influence the change of the
particle state or behavior:

• Knowledge of the environment or adaptation is the importance given to past experiences.
• Experience or local memory is the local importance given to best result found.
• The experience of its neighbors or neighborhood memory is the importance given to the best result

achieved by their neighbors.

The basic PSO algorithm [9] uses two equations. Equation (2), which is used to find the velocity,
describes the size and direction of the step that will be taken by the particles and is based on the
knowledge achieved until that moment.

vi = wvi + c1r1 (lBesti − xi) + c2r2 (gBest− xi) (2)

where:
vi is the velocity of the i-th particle, i = 1, 2 . . . , N ,
N is the number of the population,
w is the environment adjustment factor ,
c1 is the memory factor of neighborhood ,
c2 is memory factor ,
r1 and r2 are random numbers in range [0, 1] ,
lBest is the best local particle founded for the i-th particle ,
gBest is the best general particle founded until that moment for all particles.

Equation (3) updates the current position of the particle to the new position using the result of the
velocity equation.

xi = xi + vi (3)

where xi is the position of the i-th particle.
The PSO algorithm [9] is shown in the Algorithm 1:
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Algorithm 1 PSO Algorithm.
Data: P ∈ [3, 6] (number of particles), c1 ∈ R, c2 ∈ R, w ∈ [0, 1] , G (maximum allowed function
evaluations).
Result: GBest (best solution found)

1. Initialize particles ’ position and velocity randomly;
2. For g = 1 to G do

(a) Recalculate best particles position gBest
(b) Select the local best position lBest
(c) For each Xig, i = 1, . . . , P do

i. Recalculate particle speed
ii. Recalculate particle position

3.2. Binary PSO

Binary PSO [13,14] was designed to work in binary spaces. Binary PSO select the lBest and gBest
particles in the same way as PSO. The main difference between binary PSO and normal PSO are the
equations that are used to update the particle velocity and position. The equation for updating the
velocity is based on probabilities but these probabilities must be in the range [0, 1]. A mapping is
established for all real values of velocity to the range [0, 1]. The normalization Equation (4) used here is
a sigmoid function.

vij (t) = sigmoid (vij (t)) =
1

1 + e−vij(t)
(4)

and Equation (5) is used to update the new particle position.

xij (t+ 1) =

{
1 if rij < sigmoid (vij (t+ 1))

0 in other case
(5)

where rij is a random vector with uniform values in the range [0, 1].

3.3. Micro PSO

µ-PSO algorithm [15,16] is a modification made to the original PSO algorithm in order to work with
small populations (See Algorithm 2). This algorithm use replacement and mutation to be included in the
original PSO algorithm, and allow to the algorithm avoid local optima.

3.4. Bee Swarm Optimization

BSO algorithm [14] is based on PSO and Bee algorithm (See Algorithm 3). It uses a local search
algorithm to intensify the search. This algorithm was proposed by Sotelo [14], where the changes made
to PSO allowed finding a new best Global in the current population.
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Algorithm 2 µ-PSO Algorithm.
Data: P ∈ [3, 6] (population size). R > 0 (Replacement generation), N > 0 (Number of restart
particles), M ∈ [0, 1] (Mutation Rate), c1 ∈ R, c2 ∈ R, w ∈ [0, 1], Neighborhoods > 0, MaxFes
(maximum allowed function evaluations).
Result: GBest (best solution found)

1. Initialize particles’ position, velocity and neighborhood randomly;
2. Set cont = 1 and G =MaxFes/P

3. For g = 1 to G do

(a) If (cont == R)

i. Reinitialization ofN worst particles
ii. Set cont = 1

4. Recalculate best particles position gBest
5. Select the local best position in the neighborhood lBest
6. For each Xig, i = 1, . . . , P do

(a) Recalculate particle speed
(b) Recalculate particle position

7. Perform mutation to each particle with a probability of P (M);
8. Set cont = cont+ 1

Algorithm 3 BSO Intensifier.
1. Generate two new bees looking around to gBest.
2. Evaluate the fitness for generated bees in the D variables.
3. Select the generated bee with best fitness.

(a) If the fitness of selected bee is better than gBest

i. Set the value and position of gBest as the bee.

(b) Otherwise increases gBest age.

Another variant of this algorithm consists in applying the steps in each comparison of a bee with the
local best.

In the future we will refer to BSO algorithm with the global best enhancer as BSO1, while BSO
algorithm with local the best enhancer will be known as BSO2.

3.5. Artificial Immune System

The Artificial Immune System (AIS) [17] is a metaheuristic based on the Immune System behavior
of living things [14], particularly of mammals [17].

One of the main functions of the immune system is to keep the body healthy. A variety of harmful
microorganisms (called pathogens) can invade the body. Antigens are molecules that are expressed on
the surface of pathogens that can be recognized by the immune system and are also able to initiate the
immune response to eliminate the pathogen cells [17].
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Artificial immune systems have various types of model (See Algorithm 4). In our case we use the one
that implements the clonal selection algorithm, which emulates the process by which the immune system,
in the presence of a specific antigen, stimulates only those lymphocytes that are more similar [17].

The steps of the algorithm are described below:

Algorithm 4 Artificial Immune System Algorithm.
Data: tam number of antibodies, n antibodies to select, d number of new antibodies, B multiplication
factor Beta, Iterations number of executions of the metaheuristic.
Result: sol antibodies

1. sol ← Generate(tam) {Initiates the population according to the initial population selected and
gains the fitness of each of their antibodies}

2. Sort(sol) {Sort antibodies based in fitness}
3. For i = 1 to Iterations do

(a) sol-best← Select(sol,n) {Select the n best antibodies}
(b) sol-copied← Copy(sol-best,B) {Copy B times the best antibodies}
(c) sol-hyper← Hypermutability(sol-copied) {Hypermutability the copied antibodies}
(d) sol-best← Select(sol-hyper, n) {Select the n best antibodies obtained by hypermutability}
(e) sol← sol+sol-best {Add the best antibodies obtained to antibodies}
(f) sol-new ← Generate(d) {d new antibodies are generated according to the initial

population selected}
(g) sol ← Replace(Sol, sol-new) {Replace d worst antibodies of population with the newest

generated antibodies}
(h) Sort (sol) {Sort antibodies based on fitness}
(i) Resize(sol, tam) {Resize the number of antibodies that have the same number when the

metaheuristic begin}

3.6. Genetic Algorithm

The genetic algorithm (GA) [18] is a search technique proposed by John Holland based on the theory
of evolution by Darwin [18–20]. This technique is based on the selection mechanisms that nature uses,
according to which the fittest individuals in a population are those who survive, to adapt more easily to
changes in their environment.

A fairly comprehensive definition of a genetic algorithm is proposed by John Koza [21]:
“It is a highly parallel mathematical algorithm that transforms a set of individual mathematical objects

with respect to time using operations patterned according to the Darwinian principle of reproduction and
survival of the fittest and after naturally have arisen from a series of genetic operations from which
highlights the sexual recombination. Each of these mathematical objects is usually a string of characters
(letters or numbers) of fixed length that fits the model of chains of chromosomes and is associated with
a certain mathematical function that reflects their ability”.

The GA seeks solutions in the space of a function through simple evolution. In general, the individual
fitness of a population tends to reproduce and survive to the next generation, thus improving the next
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generation. Either way, inferior individuals can, with a certain probability, survive and reproduce. In
Algorithm 5, a genetic algorithm is presented in a summary form [19].

Algorithm 5 Genetic Algorithm.
Data: t (population size) , G (maximum allowed function evaluations).
Result: Best Individual (Best Individual of last population).

1. P← Initialize-population(t) {Generate (randomly) an initial population }
2. Evaluate(P) {Calculate the fitness of each individual}
3. For g = 1 to G do

(a) P ’ ← Select(P) {Choose the best individuals in the population and pass them to the next
generation}

(b) P ’← Cross(P) {Cross population to generate the rest of next population}
(c) P ’← Mutation(P") {Mutate one individual of population randomly chosen}
(d) Evaluate(P ’) {Calculate the fitness of each individual of new population}
(e) P← P ’) {Replace the old population with new population}

3.6.1. Clones and Scouts

In order to increase performance of the GA the concept of clones and explorers is taken [22]. A clone
is one individual whose fitness is equal to the best individual fitness. When it reaches a certain percentage
of clones a percentage of the worst individuals in the population is then mutated. Mutated individuals
are named scouts. The application of clones and explorers is in addition to the mutation carried by the
GA generation.

The algorithm to implement and explorers clones is shown in the Algorithm 6 [22].

Algorithm 6 Clones and Scouts Algorithm.
1. Define PC (Clones percentage)
2. Count the number of individuals who have the same fitness value than the best individual of current

population and calculatePAC (Accumulative Percentage of Clones)
3. Define PE (Scouts percentage)
4. If PAC ≥ PC

(a) Select the worstN (PE) individuals of the current population, where N is the size of the
population of individuals

(b) Mutate selected individuals

4. Mutual Information Maximization for Input Clustering

The Mutual Information Maximization for Input Clustering (MIMIC) [14,23–25] is part of the
algorithms known as EDAs (Estimation of Distribution Algorithms). These algorithms aim to get
the probabilistic distribution of a population based on a set of samples, searching for the permutation
associated to the lowest value of the Kullback–Leibler divergence (see Equation (6)). This value is used
to calculate the similarity between two different sets of samples:
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Hπ
l = hl (Xin) +

n−1∑
j=1

hl (xij|xij+1) (6)

where:
h (X) = −

∑
x p (X = x) log p (X = x) is Shannon’s entropy of X variable

h (X|Y ) = −
∑

x p (X|Y ) log p (Y = y), where
h (X|Y = y) = −

∑
X p (X = x|Y = y) log (X = x|Y = y), is the X entropy given Y .

This algorithm suppose that the different variables have a bivariate dependency described by
Equation (7).

pπl (x) = pl (xi1|xi2) � pl (xi2|xi3) · . . . pl (xin−1|xin) pl (xin) (7)

where π = (i1, i2, . . . , in)is an index permutation.
The algorithm can be seen in Algorithm 7:

Algorithm 7 MIMIC Algorithm.
1. Initialize a population (array) of individuals with random values on d dimensions in the problem

space
2. Select a subpopulation through a selection method
3. Calculate Shannon’s entropy for each variable.
4. Generate a permutation pπl (x).

(a) Choose variable with lowest entropy.
(b) For the next variables choose ik = argminjhl (Xj|Xik+1)

Where j 6= ik+i, . . . , in

5. Sample the new population using the generated permutation pπl (x).
6. Loop until a criterion is met.

5. Test Instances

The Game of Life [7] was used as test instance for the problem of cyclical instability affecting
intelligent environments. This is because it has been shown in many cases that the Game of Life
system exhibits oscillatory behavior in spite of the few rules used for this. In addition the environment
is extremely simple and may take from a few to a large number of agents acting within the system .

The game of life is a cellular automata created by John Conway [7]. This is a set of cells which, based
on a set of simple rules, can live, die or multiply. Depending on the initial conditions, the cells form
different patterns during the course of the game. The rules of the game are as follows [7] :

1. Survival: if a cell is in state 1 and has 2 or 3 neighbors in state 1, then the cell remains in state 1
2. Birth: if a cell is in state 0 and has exactly 3 neighbors in state 1, the next time step the cell goes

to state 1.
3. Deaths: a cell in state 1 goes to state 0 if it has 0 or 1 neighbors, or if it has 4 or more neighbors.
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From the game of life, we have examples of oscillating behavior. From these we take the follow
configurations as benchmark.

Figure 1 presents the simplest known oscillator in the Game of Life called Blinker. This oscillator
with 3 alive cells fits neatly into a 3× 3 grid with 9 potential agents in this scenario.

Figure 1. Blinker.

The settings in Figure 2 was determined randomly and was found to be a stable scenario. This
configuration changes during the early stages but later reaches a stable state. The number of cells or
agents in this configuration is 49 since the grid used is 7× 7.

Figure 2. Non-oscillating.

The configuration presented in Figure 3 is known as Toad. This oscillator is a bit more complex than
the Blinker in terms of the number of agents involved or affected by the oscillation. However it has also
a period of 2 like Blinker. This oscillator fits into a grid of 4 × 4, thereby containing 16 agents within
the system.
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Figure 3. Toad.

The previous scenarios can be considered as simple configurations, as intelligent environments can
contain a larger number of devices or agents involved, and the evaluation of the system is crucial to
determine whether the proposed solution can work with more complex scenarios. In the following
examples we will introduce complex configurations called Pulsar and 10 Cell Row shown in Figures 4
and 5. In these configurations there are 289 cells or agents on a 17× 17 grid, allowing complex behavior
and potential oscillations on them.

Figure 4. Pulsar.
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Figure 5. 10 cell row.

6. Using Optimization Algorithms to Solve the Problem of Cyclic Instability

In order to solve the problem of cyclic instability using different optimization algorithms we need
to minimize the amplitude of the oscillations. In the ideal case this would result in a stable system.
Additionally we are interested on affecting the fewest number of agents (agents locked).

In order to test these approaches we used the Game of Life because it is a well know system that
possesses proven oscillatory behavior in very simple environment with simple agents and few rules. For
the test we consider a Game of Life with open boundary conditions. The open boundary condition in our
case is considered cold (in terms of the heat entropy) and all cells outside the grid are considered dead.
We enriched the game of life with additional conditions: a list of agents that are allowed to be locked.
All techniques can lock them according to their results. This is because priority agents (such as alarms,
security systems, etc.) should not be disabled.

Each solution vector represents the list of blocked agents where the aim is to minimize the Average
Cumulative Oscillation (ACO) of the system in a given period of time. The ACO is calculated using the
following Equation (8) [26].

o =

∑n−1
i=1 |Si − Si+1|

n− 1
(8)

where o is the Average Cumulative Oscillation, n is the game of life generations, Si is the state of the
system at the time i, Si+1 is the state of the system at the time i+ 1.

The best solution should not only minimize the amplitude of oscillation but also the number of agents
locked. In these experiments the percentage of agents that can be locked is included as a parameter. This
is important because as this percentage grows the systems becomes more disabled.

In these experiments we consider systems whose adjacency matrix are of 3 × 3, 4 × 4,7 × 7, and
17× 17. In all the cases the maximum percentage of locked agents set to 20%.

If an algorithm can not find a better solution in terms of the amplitude of the oscillations, no agents
will be locked. If a solution is good in terms of the amplitude of the oscillation but the percentage of
locked agents is bigger than the maximum permitted, the solution will be penalized by adding a constant
value (in our case the value is 10) to the value of the Average Cumulative Oscillation (ACO).
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In our experiments we set a parameter of 3,000 functions calls as the measure of success of the
algorithms, i.e., the system has 3,000 opportunities to find a better solution. If after 3,000 functions calls
a better solution is not found, the system is deemed to have failed.

7. Experimental Results

For the test performed with PSO and BSO for all test instances we used the parameters shown in
Table 1.

Table 1. Parameters used in PSO and BSO.

Parameter Value

Particles 45
w 1
c1 0.3
c2 0.7

The parameters used for the µPSO are shown in Table 2.

Table 2. Parameters of µ-PSO.

Parameter Value

Particles 6
w 1
c1 0.3
c2 0.7
Replacement generation 100
Number of restart particles 2
Mutation Rate 0.1

The parameters used for AIS are shown in Table 3.

Table 3. Parameters of AIS.

Parameter Value

Antibodies 45
Antibodies to select 20
New Antibodies 20
Factor Beta 2
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The parameters used for GA are shown in Table 4.

Table 4. Parameters of GA.

Parameter Value

Chromosomes 45
Mutation percentage 0.15
Elitism 0.2
Clones percentage 0.3
Scouts percentage 0.8

For the test performed with MIMIC for all test instances we used the parameters shown in Table 5.

Table 5. Parameters used in MIMIC.

Parameter Value

Individuals 100
Elitism 0.5

Table 6 shows the level of oscillation obtained for each of the instances taken from the Game of
Life. The value obtained assumed that the system remain unchanged during its evolution, i.e., from the
initial conditions, the system is allowed to evolve according to the rules of the scenario itself without
interference for the entire time of evaluation.

Table 6. Instance.

Instance Matrix # of Agents S0 Sf ACO

1 (Blinker) 3× 3 9 1.748188027 1.7481880270062005 0.416164
2 (Non-oscillating) 7× 7 49 12.284241189 0.0 0.196199
3 (Toad) 4× 4 16 3.6261349786353887 3.6261349786353887 0.974857
4 (Pulsar) 17× 17 289 54.30350121388617 75.43697161100698 2.916489
5 (10 cell row) 17× 17 289 44.85304503100554 50.04149156221928 2.23957

With the parameters described before, we obtain the results shown in Tables 7 and 8. The best result
obtained with 100 executions for each test instance is shown.

Table 9 shows the numbers of agents blocked, which correspond to the results obtained with the OAP
shown in Tables 7 and 8.

In order to see the cyclic instability and how it is removed, for each test instance we show the evolution
of the system before and after locking. In Figure 6 the oscillatory behavior of instance 1 (Blinker)
is shown and in Figure 7 the instabilities are successfully removed from the instance 1 (Blinker). In
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Figure 7 different evolutions can be seen, because for this scenario different sets of locked agents can
achieve system stability.

Table 7. ACO Results (A).

Instance Average Cumulative Oscillation

PSO MIMIC BSO1 BSO2
1 (Blinker) 0.0173 0.4161648288 0.0173 0.0173
2 (Non-oscillating) 0.0036684768 10.0040328723 0.0013180907 6.96E–4
3 (Toad) 0.0027436818 10.0005786421 0.0031827703 0.0027436818
4 (Pulsar) 0.0039470374 10.000434825 0 0
5 (10 cell row) 0.0461757189 10.040107898 1.58E–7 0

Table 8. ACO Results (B).

Instance Average Cumulative Oscillation

AIS GA µPSO
1 (Blinker) 0.0173 0.0173 0.0173
2 (Non-oscillating) 0.00239 4.77E–6 4.77E–6
3 (Toad) 0.00253 0.00253 0.0025307973
4 (Pulsar) 6.12E–4 5.24E–13 4.3E–4
5 (10 cell row) 0.0472 1.60E–10 0.0256051082

Table 9. Locked Agents.

Instance # of Locked Agents

Allow PSO BSO1 BSO2 AIS GA µ-PSO MIMIC
1 (Blinker) 1 1 1 1 1 1 1 0
2 (Non-oscillating) 9 1 9 8 4 12 8 19
3 (Toad) 5 3 3 3 3 3 3 9
4 (Pulsar) 57 26 43 56 31 53 28 141
5 (10 cell row) 57 31 38 44 33 57 18 139
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Figure 6. Oscillatory behavior of the instance 1 (Blinker).

Figure 7. Instabilities are successfully removed for instance 1 (Blinker) using all algorithms.

In the case of instance 2 (Non-oscillating) shown in Figure 8 although the system does not oscillate the
techniques were able to find different configurations for this scenario that remain stable while decrease
the value of the Average Cumulative Oscillation. The behavior of instance 2 (non-oscillating) after
locking is shown in Figure 9.
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Figure 8. Behavior of the instance 2 (Non-oscillating).

Figure 9. Behavior of the instance 2 (Non-oscillating) after locking with all algorithms.

As for instance 3 (Toad), the oscillatory behavior shown in Figure 10 looks very similar to instance
1 (Blinker).



Sensors 2012, 12 11006

Figure 10. Oscillatory behavior of the instance 3 (Toad).

In the same way as in instance 1(Blinker), instability was eliminated successfully for instance 3 (Toad)
as shown in Figure 10. As shown in Tables 7 and 8, different values of the ACO were obtained for this
scenario because there are different vectors of locked agents that allow to stabilize the system. This
explains why different system evolution is shown in Figure 11 after applying the locking.

Figure 11. Instabilities are successfully removed for the instance 3 (Toad) using
all algorithms.
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In Figure 12 the oscillatory behavior of instance 4 (Pulsar) is shown, which is a more complex
behavior in relation to those shown above.

Figure 12. Oscillatory behavior of the instance 4 (Pulsar).

While in the above instances the best values obtained by the techniques are very similar, this trend
is no longer maintained for the instance 5 (Pulsar). The is because the size of the instance considerably
increases the number of possible combinations.

Figure 13. Instabilities are successfully removed for the instance 4 (Pulsar) using
all algorithms.
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Most importantly, despite the difference in the results between the various techniques, it was possible
to stabilize the system with different combinations of locked agents, showing that depending on the
scenario there may be more than one set of locked agents with which the system can become stable. This
is showcased by the different results obtained for the instance 4 (Pulsar) in the level of instability (refer
to Figure 13), where we can see how quickly the system stabilizes in each of the different configurations
achieved by the optimization techniques.

The oscillatory behavior of the instance 5 (10 cell row) is shown in Figure 14. It is seen that the
oscillation began quickly in contrast to the Instance 4 (Pulsar), whose oscillation is seen until after a
certain period of time.

Figure 14. Oscillatory behavior of the instance 5 (10 cell row).

Figure 15. Instabilities are successfully removed for the instance 5 (10 cell row) using
all algorithms.
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For the instance 5 (10 cell row), again the number of agents represented is therefore significant. The
performance results are similar to those described for instance 4 (Toad) and the best results obtained by
the techniques vary with respect to each other. The behavior without oscillation is shown in Figure 15.
The difference between the behavior of each algorithm responds to the different sets of locked agents by
each of the techniques.

Table 10 shows the comparison among the results obtained by different algorithms. To determine
whether an algorithm outperforms another, the Wilcoxon signed rank test was performed. The best
performing algorithms are those that exceed a greater number of algorithms in the results obtained for
the ACO and the number of locked agents.

Table 10. Comparison among algorithms based on Wilcoxon test.

Algorithm Number of Algorithms
by ACO Value by # of locked Agents

Overcome Not Overcome Overcome Not Overcome
PSO 1 5 5 1

BSO1 2 4 3 3
BSO2 3 3 3 3
µPSO 5 1 6 0
AIS 4 2 4 2
GA 6 0 1 5

MIMIC 0 6 0 6

Despite the similarity of results of some algorithms based on Table 10, it can be said that the GA was
able to obtain smaller values relative to the values of the ACO. But if we take into account the number of
locked agents, the algorithms PSO and µ-PSO are those who achieved best results. This becomes more
important because the algorithms PSO and µ-PSO achieve system stability, which makes them better by
allowing most of the devices continue to work normally.

8. Conclusions and Future Work

From our experiments we found that all the algorithms were able to find a vector of locked agents
that prevent the system from oscillating. Additionally, Wilcoxon test showed that GA gave better results
but not in terms of time and number of agents locked—rather, PSO and µ-PSO gave the better results
in that sense. MIMIC consistently violated the restriction of maximum permitted percentage of agents
locked. MIMIC is based on estimating the distribution of data and for that reason needs a larger number
of data (in our case the amount of list of agents locked), and that is the main reason the time spent for
the algorithm to find a solution increased significantly.

An important advantage of this proposal compared to others found in the literature is the way by
which the system is evaluated, since it only sees the general state of the environment regardless of its
topology. Because of this, the evaluation time of the scenarios can be significantly reduced regardless of
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the number of agents that form part of the system. Additionally, the possibility of a proposal able to work
with any scenario can be more clearly distinguished in real time, which helps to improve their operation.

This approach based on the concept of Average Cumulative Oscillation opens the possibility for
other algorithms to be applied to the problem of cyclic instability, in general algorithms for discrete
optimization. In particular we are interested in testing this approach for the case of nomadic and weighted
agents and with different percentage of locked agents. Also it is possible to improve the estimation of the
oscillation in order to discriminate between stable systems with abrupt changes and systems with small
oscillations, because in some cases it is possible to get small values of Average Cumulative Oscillation
in oscillating systems. We hope to report these results in future.
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