
Sensors 2012, 12, 11661-11683; doi:10.3390/s120911661
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Efficient k-Winner-Take-All Competitive Learning Hardware
Architecture for On-Chip Learning
Chien-Min Ou 1, Hui-Ya Li 2 and Wen-Jyi Hwang 2,*

1 Department of Electronic Engineering, Ching Yun University, Jhongli 320, Taiwan
2 Department of Computer Science and Information Engineering, National Taiwan Normal University,

Taipei 116, Taiwan

* Author to whom correspondence should be addressed; E-Mail: whwang@csie.ntnu.edu.tw;
Tel.: +886-2-7734-6670; Fax: +886-2-2932-2378.

Received: 2 July 2012; in revised form: 14 August 2012 / Accepted: 15 August 2012 /
Published: 27 August 2012

Abstract: A novel k-winners-take-all (k-WTA) competitive learning (CL) hardware
architecture is presented for on-chip learning in this paper. The architecture is based
on an efficient pipeline allowing k-WTA competition processes associated with different
training vectors to be performed concurrently. The pipeline architecture employs a novel
codeword swapping scheme so that neurons failing the competition for a training vector
are immediately available for the competitions for the subsequent training vectors. The
architecture is implemented by the field programmable gate array (FPGA). It is used as
a hardware accelerator in a system on programmable chip (SOPC) for realtime on-chip
learning. Experimental results show that the SOPC has significantly lower training time
than that of other k-WTA CL counterparts operating with or without hardware support.

Keywords: reconfigurable computing; system on programmable chip; FPGA; competitive
learning; k-winners-take-all

1. Introduction

The k-winners-take-all (kWTA) operation is a generalization of the winner-take-all (WTA) operation.
The kWTA operation performs a selection of the k competitors whose activations are larger than the
remaining input signals. It has important applications in machine learning [1], neural networks [2],

Sensors 2012, 12 11662

image processing [3], mobile robot navigation [4] and others [5–8]. One drawback of k-WTA operations
is the high computational complexities when number of input signals is large. Therefore, for realtime
kWTA-based applications, hardware implementation of kWTA is usually desirable. There have been
many attempts to design hardware circuits for kWTA operations. Nevertheless, many architectures
are designed by analog circuits [2,9] with constraints on input signals. Because the input signals are
generally not known beforehand, the circuits may not produce correct results when the constraints are
not met. Although some circuits have lifted the constraints [10], overhead for the implementation of
analog/digital converter is still required when the circuits are used for digital applications. In addition,
some digital circuits [11–13] can only detect winners for one input set at a time. The throughput of
the circuits may be further enhanced by allowing different winner detection operations sharing the same
circuit at the same time.

Similar to the WTA/kWTA circuits, the winner detection is an important task in the winner-take-most
(WTM) and neural gas hardware architectures. However, some hardware architectures [14,15] for
WTM and neural gas networks are still based on analog circuits. Similar to the digital circuits [11–13]
for WTA, the digital architecture for WTM [16] performs winner detection only for one input set at
a time. The neural gas architecture [17] separates the winner detection operation into two phases:
the distance computation, and sorting. These two phases are performed in an overlapping fashion.
However, the sorting phase is implemented by software. Therefore, the architecture [17] may only attains
limited throughput.

This paper presents a novel kWTA hardware architecture performing the concurrent winner detection
operations over different input sets. The proposed architecture is suitable for digital implementation,
and imposes no constraints on the input signals. To demonstrate the effectiveness of the proposed
architecture, a novel kWTA-based competitive learning (CL) circuit using the proposed architecture
is built. The CL algorithm has been widely used as an effective clustering technique [18,19] for sensor
devices [20,21], wireless sensor networks [22,23], data approximation [24], data categorization [25] and
information extraction [26]. In a CL network, the neurons compete among themselves to be activated or
fired. The weight vector associated with each neuron corresponds to the center of its receptive field in
the input feature space.

The CL with kWTA activation can be separated into two processes: competition and updating. Given
an input training vector, the competition process finds the k best matching weight vectors to the input
vector. The updating process then updates the k winners. Although existing kWTA architectures can
be used for expediting the CL, these architectures only find the k winners for one input set at a time.
The set of distance associated with each weight vector is used as the input set for the kWTA circuits.
Different input training vectors result in different input sets. Consequently, the competition process can
only be performed for one input training vector at a time. These architectures may then provide only
moderate acceleration.

The proposed architecture accelerates the training process by performing the competitions associated
with different input training vectors in parallel. Different input sets share the same kWTA circuit by the
employment of pipeline with codeword swapping. In the proposed architecture, each training vector is
allowed to carry its current k best matching neurons as it traverses through the pipeline. By incorporating
the codeword swapping at each stage of the pipeline, neurons failing the competition for a training vector

Sensors 2012, 12 11663

are then immediately available for the competitions for the subsequent training vectors. When a training
vector reaches the final stage of the pipeline, a hardware-based neuron updating process is activated.
The process involves the computation of learning rate and new weight vector for the winning neuron.
To accelerate the process, a lookup table based circuit for finite precision division is utilized. It is able
to reduce the computational time and lower the area cost at the expense of slight degradation in training
process. The combination of codeword swapping scheme for neuron competition and lookup table based
divider for neuron updating effectively expedites the CL training process.

The proposed architecture has a number of advantages. The first advantage of the architecture is
the high throughput. Different training vectors are able to share the pipeline for the kWTA operations.
The number of training vectors sharing the pipeline increases with the number of neurons. Hence,
the throughput enhancement becomes very prominent as the number of neurons becomes large. An
additional advantage is the low area cost. Only the comparators and multiplexers are involved in the
kWTA operation. Although the tree architecture [27] is also beneficial for enhancing the throughput for
the winner detection, it may need extra hardware resources. This is because the circuit needs additional
intermediate nodes to build a search tree accelerating winner detection process. Each intermediate node
may contain a distance computation unit, resulting in large area costs for hardware implementations.

In addition to the high throughput and low area cost, the proposed architecture can move the best
k matching vectors to an input training vector to the final k stages of the pipeline, because of the
employment of the codeword swapping scheme. As the number of neurons become large, after the k

best matching neurons are identified, efficient retrieval of the these k winners may be complicated. By
moving the winners to the final stages of the pipeline, the post-kWTA operations such as the updating
process in the CL can operate directly on the final k stages of the pipeline.

To physically measure the performance, the proposed architecture has been implemented on field
programmable gate array (FPGA) devices [28,29] so that it can operate in conjunction with a softcore
CPU [30]. Using the reconfigurable hardware, we are then able to construct a system on programmable
chip (SOPC) system for the CL clustering. In this paper, comparisons with the existing software and
hardware implementations are made. Experimental results show that the proposed architecture attains
a high speedup over its software counterpart for the kWTA CL training. It also has a lower latency
over existing hardware architectures. Our design therefore is an effective alternative for the applications
where realtime kWTA operations and/or CL training are desired.

2. The Proposed Architecture

2.1. The CL Algorithm with k-WTA Activation

Consider a CL network with N neurons. Let yi, i = 1, .., N, be the weight vectors of the network.
In the CL algorithm with k-WTA activation, given a training vector x, the squared distance D(x,yi)

between x and yi is computed. The dimension of input vectors and weight vectors is 2n × 2n. Any
weight vector yi∗ belonging to C(x) will be updated, where C(x) is the set of the k best matching weight
vectors to x. The updated yi∗ is then given as:

yi∗ ← yi∗ + ηi∗(x− yi∗) (1)

Sensors 2012, 12 11664

where ηi∗ is the learning rate of the yi∗ . Discovering the vector C(x) requires an exhaustive search over
N vectors. When N and/or n is large, the computational complexity of CL algorithm is very high.

2.2. The Architecture Overview

The proposed architecture is a (N + 1)-stage pipeline for a CL network with N neurons, as shown in
Figure 1. The architecture can be divided into two units: winner selection unit and winner update unit.
The winner selection unit includes N stages, where each stage contains one neuron in the CL network.
The goal of winner selection unit is to find the set of k best matching vectors to x. The winner selection
unit is therefore a kWTA circuit.

Figure 1. The proposed CL architecture.

Stage 1 ... Stage NStage i

Winner

Update

Unit

Winner Selection Unit

Training

Data

.
.
.

N

N-(k-1)

i+1

i+k

i-k

i-1

.
.
.

.
.
.

i-1...i-k N-1...N-k

...

2

1+k

.
.
.

i+k...i+11+k...2

N-k

N-1

.
.
.

N

.
.
.

N-(k-1)

To allow multiple training vectors concurrently sharing the winner selection unit for the kWTA
operation, a codeword swapping operation is adopted by the pipeline. By the employment of the
codeword swapping circuit, the k best matching neurons can be traversed through the pipeline with the
training vector. Figure 2 shows an example of codeword swapping scheme. For the sake of simplicity,
there are only 4 neurons in the network (i.e., N = 4) with k = 1. Assume that the weight vector
associated with the first neuron is closest to the current training vector x (i.e., j∗ = 1). As shown in
Figure 2, when a training vector enters each stage, the codeword swapping circuit will be activated
for that stage so that the best matching neuron can also be traversed through the pipeline with the
training vector.

Without the codeword swapping scheme, the best matching neuron will always stay at the first stage,
as shown in Figure 3. The subsequent training vectors are not able to enter the pipeline until the best
matching neuron is updated in accordance with Equation (1). Note that the neuron updating process will
be activated only when the competition at the final stage of the pipeline for the current training vector
is completed. Therefore, in the case without the codeword swapping scheme, the pipeline may process
only one training vector at a time. On the contrary, when the codeword swapping is employed, the
neurons failing the competition will be moved forward. They will then be available for the competition
for the subsequent training vectors. The proposed pipeline therefore will process the kWTA for multiple
training vectors concurrently.

Sensors 2012, 12 11665

Figure 2. An example of codeword swapping scheme for N = 4 and k = 1.

Sensors 2012, 12 11666

Figure 3. An example of pipeline without codeword swapping scheme.

To implement the codeword swapping scheme, successive training vectors are k stages apart in the
pipeline. The first k stages before a training vector x in the pipeline store the current set of k winners
C(x) associated with that training vector. Figure 4 gives a snapshot of the proposed architecture for
k = 2. It can be observed from the figure that the pipeline allows up to ⌈(N +1)/(k+1)⌉ competitions.

The codeword swapping operations are further elaborated in Figure 5 for k = 2. Assume a training
vector x is at stage i. The current two winners associated with the x then reside at stages i − 2 and
i− 1, respectively. The three neurons at stages i− 2, i− 1 and i then compete for the x. The loser will
be swapped with the neuron at stage i − 2. After the swapping operations, the neuron at stage i − 2 is
available for the competition for the next input vector.

The swapping operations for any k > 0 when a training vector x is currently at stage i can be extended
easily. In this case, the current set of k winners C(x) are located from stage i − k to stage i. The k + 1

neurons (i.e., the neurons at stages i − k, ..., i) now competing for x. The worst matching neuron will
then be swapped with the neuron at stage i− k.

Sensors 2012, 12 11667

Figure 4. Snap shots of the proposed pipeline architecture with N = 12 and k = 2, where
shaded stages are the stages occupied by a training vector, and unshaded stages are the vacant
stages.

Stage

1

Stage

2

Winner

Update

Unit

Stage

4

Stage

3

Stage

5

Stage

6

Stage

7

Stage

8

xm xm-1 xm-2xm+1

Stage

9

Stage

10

Stage

12

Stage

11

Stage

1

Stage

2

Winner

Update

Unit

Stage

4

Stage

3

Stage

5

Stage

6

Stage

7

Stage

8

xm xm-1 xm-2xm+1

Stage

9

Stage

10

Stage

12

Stage

11

xm+2

Stage

1

Stage

2

Winner

Update

Unit

Stage

4

Stage

3

Stage

5

Stage

6

Stage

7

Stage

8

xm xm-1xm+1

Stage

9

Stage

10

Stage

12

Stage

11

xm+2

Figure 5. The codeword swapping operations for k = 2: (a) Loser is at stage i, (b) Loser is
at stage i− 1, (c) Loser is at stage i− 2.

Neuron

i-1

Neuron

i-2

Neuron

i

Stage

i-2

Stage

i-1

Stage

i

Neuron

i-1

Neuron

i

Neuron

i-2

Stage

i-2

Stage

i-1

Stage

i

(a)

Neuron

i-1

Neuron

i-2

Neuron

i

Stage

i-2

Stage

i-1

Stage

i

Neuron

i-2

Neuron

i-1

Neuron

i

Stage

i-2

Stage

i-1

Stage

i

(b)

Neuron

i-1

Neuron

i-2

Neuron

i

Stage

i-2

Stage

i-1

Stage

i

Neuron

i-1

Neuron

i-2

Neuron

i

Stage

i-2

Stage

i-1

Stage

i

(c)

To implement the swapping operation, each stage of the proposed pipeline architecture contains a
swap unit for the implementation of swapping operations. Figure 6 shows the architecture of the swap
unit at each stage i, which consists of a register and a multiplexer. The register contains yi, the current
weight vector associated with stage i. The multiplexer consists of 2k+1 inputs: yi−k, ...,yi+k. The k+1

control lines ci, ..., ci+k determine the output of the multiplexer. The ci indicates the competition results
at stage i. The ci takes the values in the set {0, 1, ..., k + 1} such that

ci =

{
0 Stage i is vacant without training vector,
j + 1 A training vector x is at stage i, and stage i− j loses competition

(2)

Sensors 2012, 12 11668

When x is at stage i, only stages i, i − 1, ..., i − k, are involved in the competition. Therefore,
0 ≤ j ≤ k. Based on ci defined in Equation (2), the operation of the multiplixer can be designed. Table
1 shows the truth table of the multiplixer for k = 2. The truth table for can be easily extended for any
k > 2.

Figure 6. The architecture of the swap unit.

Table 1. The truth table for the multiplexer in the swap unit at stage i for k = 2.

ci ci+1 ci+2 MUX out Comments

0 0 1 yi+2 x is at stage i+ 2. Stage i+ 2 loses competition.
0 0 2 yi+1 x is at stage i+ 2. Stage i+ 1 loses competition.
0 0 3 yi x is at stage i+ 2. Stage i loses competition.
0 1 0 yi x is at stage i+ 1. Stage i+ 1 loses competition.
0 2 0 yi−1 x is at stage i+ 1. Stage i loses competition.
0 3 0 yi x is at stage i+ 1. Stage i− 1 loses competition.
1 0 0 yi−2 x is at stage i. Stage i loses competition.
2 0 0 yi x is at stage i. Stage i− 1 loses competition.
3 0 0 yi x is at stage i. Stage i− 2 loses competition.
0 0 0 yi Pipeline is in the initial state
Others Error Other combinations are errors.

An example of the operations of swap unit is shown in Figure 7 for k = 2. In this example, assume a
training vector is at stage i. Because k = 2, only the swap units at stages i, i−1 and i−2 are considered.

Sensors 2012, 12 11669

Moreover, because x is at stage i, the stages i−2, i−1, i+1 and i+2 are vacant without training vector.
Based on Equation (2), ci−2 = ci−1 = ci+1 = ci+2 = 0. The value of ci will be 1, 2 or 3, dependent on
the location of the neuron failing the competition. Figure 7 shows the swapping operation for each value
of ci. It can be observed from Figure 7 that with simple multiplexers, the loser will always be moved
forward to stage i− 2, while the two winners are moved backward to stages i− 1 and i. In this way, the
loser is available to join the competition for subsequent training vectors.

Figure 7. An example of operations of swap unit at stages i, i − 1 and i − 2 for k = 2. (a)
Loser is at stage i, (b) Loser is at stage i− 1, (c) Loser is at stage i− 2.

MUX

Reg

Stage i-1

yi-1

yi-1

yi-3

yi-2

yi

yi+1

ci+1=0
ci =1

ci-1 =0

yi-1

MUX

Reg

Stage i-2

yi-2

yi-2

yi-4

yi-3

yi-1

yi

ci =1
ci-1 =0

ci-2 =0

yi

MUX

Reg

Stage i

yi

yi

yi-2

yi-1

yi+1

yi+2

ci+2=0
ci+1=0

ci =1
Di > Dmin1 > Dmin2

yi-2

xm

M
U

X

M
U

X

M
U

X

win fail

(a)(a)

Reg

Stage i-1

yi-1

yi-1

yi-3

yi-2

yi

yi+1

ci+1=0
ci =2

ci-1=0

yi-2

MUX

Reg

Stage i-2

yi-2

yi-2

ci =2
ci-1=0

ci-2=0

yi-1

MUX

Reg

Stage i

yi

yi

yi-2

yi-1

yi+1

yi+2

ci+2=0
ci+1=0

ci =2
Dmin1 > Di > Dmin2

yi

xm

M
U

X

M
U

X

M
U

X
yi-4

yi-3

yi-1

yi

win fail

(b)

MUX

Reg

Stage i-1

yi-1

yi-1

yi-3

yi-2

yi

yi+1

ci+1=0
ci =3

ci-1 =0

yi-1

MUX

Reg

Stage i-2

yi-2

yi-2

yi-4

yi-3

yi-1

yi

ci =3
ci-1=0

ci-2 =0

MUX

Reg

Stage i

yi

yi

yi-2

yi-1

yi+1

yi+2

ci+2=0
ci+1=0

ci =3 Dmin1>Dmin 2

yi

xm

M
U

X

M
U

X

yi-2

M
U

X

Di
>

win fail

(c)

Sensors 2012, 12 11670

2.3. The Architecture of the Winner Selection Unit

Figure 8 depicts the architecture of the stage i of the pipeline, k < i ≤ N − k, which consists of a
swap unit, a squared distance unit, a comparator, and a distribution unit. Although the swap unit is the
core part of the pipeline, other components are also necessary for determining the competition results ci.

Figure 8. The architecture of the stage i of the pipeline, k < i ≤ N − k.

Squared

Distance

Unit

Comparator

xin

yi-1

yi-2

yi+2

yi+1

ci+k

ci+k-1

ciDi

xout

ci

yi

ci

yi

xm

Reg

Reg

Reg

Reg

Reg

ci+2

ci+1

yi+k

yi+k-1

yi-(k-1)
yi-k

yi

Swap

Unit

NEW Dmin 1

NEW Dmin 2

NEW Dmin k

Dmin 1

Dmin 2

Dmin k

NEW Dmin k-1
Dmin k-1

Distribution

Unit

The goal of the squared distance unit is to compute D(x,yi), the distance between the training vector
x and the weight vector at stage i, where D(u,v) is the squared distance between u and v. For sake of
simplicity, we let

Di = D(x,yi) (3)

The comparator in the architecture is used for determining the competition result ci. As shown in
Figure 8, in addition to Di, Dminj

, the squared distance between x and yi−j , j = 1, ..., k, are the inputs
to the comparator, where

Dminj
= D(x,yi−j) (4)

Note that the current Dmin1 , ..., Dmink
are not necessarily in ascending or descending order. After ci

at each stage i is computed, the swap unit will be activated for the codeword swapping operation.
In addition, all the Dminj

, j = 1, ..., k, will be updated and stored in the distribution unit. The
updating process should be consistent with the swapping process so that as x proceeds to the next stage
(i.e., i ← i + 1), the new Dminj

actually represents the squared distance between x and new yi−j . The

Sensors 2012, 12 11671

architecture of the distribution unit is shown in Figure 9, which contains a (k + 1) × k switch unit and
registers. The switch unit has k+1 inputs: Di and old Dmin1 , ..., Dmink

. Based on the ci value, the switch
unit then remove one of the inputs, and re-shuffle the other k inputs to create the new Dmin1 , ..., Dmink

.
Table 2 shows the operations of switch unit for k = 2 at stage i. The operations for larger k values can
be easily extended by analogy.

Figure 9. The architecture of the distribution unit.

M
U

X Reg

Reg

Reg

ci

NEW Dmin 1

NEW Dmin 2

NEW Dmin k

Dmin 1

Dmin 2

Dmin k

Di

Table 2. The updating process of Dmin1 , ..., Dmink
of the distribution unit at stage i for

k = 2.

ci Neuron Failing Updating Operation Comments
the Competition

1 Stage i New Dmin1← old Dmin2 Swap between stages i and i− 2

New Dmin2← old Dmin1

2 Stage i− 1 New Dmin1← Di Swap between stages i− 1 and i− 2

New Dmin2← old Dmin2

3 Stage i− 2 New Dmin1← Di No Swapping is necessary
New Dmin2← old Dmin1

Figure 10 depicts the architecture of the stage i for 1 ≤ i ≤ k, which is the simplified version of
the architecture shown in Figure 8. At the first k stages of the pipeline, because not all the vectors
{yi−k, ...,yi−1} in C(x) are available as x enters these stages, no comparison to Dmin1 , ..., Dmink

is
necessary. The comparator and distribution unit are removed, and the ci is always 0 at these stages.

The architecture of stage i for N − k < i < N is depicted in Figure 11. All neurons at these stages
will be delivered to the winner update unit for weight vector updating as the training vector x enters the
winner update unit. In addition, updated neurons in C(x) do not stay at the winner update unit. They will
be sent back to stages where they come from. Therefore, as shown in Figure 11, an updated neuron from
stage N + 1 is also an input vector to the swap unit. The architecture of stage N is shown in Figure 12.
In the architecture, it is not necessary to update and store new Dmin1 , ..., Dmink

because the stage N

is the final stage of the winner selection unit. The neuron competition is no longer necessary for the
subsequent operations.

Sensors 2012, 12 11672

Figure 10. The architecture of stage i for 1 ≤ i ≤ k.

Squared

Distance

Unit

Swap

Unit

xin

Di

xout

yi

xm

Reg

ci

yi+1

yi+k

yi+(k-1)

Reg

Reg

Reg

NEW Dmin 1

NEW Dmin (i-1)

NEW Dmin i

Dmin 1

Dmin (i-1)

Figure 11. The architecture of stage i for N − k < i < N .

Squared

Distance

Unit

Comparator
Swap

Unit

xin

yi-1

yi-2

yN-1

yi+1

cN

Di

xout

ci

xm

Reg

Reg

Reg

yN

yi-k

yi

yi

yi

ci

ci+1

updated

NEW Dmin 1

NEW Dmin 2

NEW Dmin k

cN-1

Dmin 1

Dmin 2

Dmin k

Distribution

Unit

yi*

Sensors 2012, 12 11673

Figure 12. The architecture of stage N .

Squared

Distance

Unit

Comparator
Swap

Unit

xin

yN-1

yN-2

cN+1

cN
DN

xout

cN

xm

Dmin 1

Reg

yN-k

yN

yN

yN

updated

Dmin 2

Dmin k

yN*

2.4. The Architecture of the Winner Update Unit

Figure 13 shows the architecture of the winner update unit. As shown in the figure, there are k weight
vector update modules in the architecture. These modules are responsible for updating weight vectors
obtained from the final k stages of the winner selection unit, which are the actual k winners when the
training vector x enters the winner update unit.

Let yi∗ ∈ C(x) be a real winner at the final k stages of the winner selection unit. Each update module
computes the learning rate and updates new codeword for a yi∗ , as shown in Figure 14. In the proposed
architecture, the learning rate is given by

ηi∗ =
1

4× ri∗
(5)

where ri∗ denotes current number of times the weight vector yi∗ wins the competition. The counter in
the module is used for computing ri∗ .

To compute the learning rate, each codeword yi should be associated with its own ri. When yi−j and
yi are decided to be swapped, ri−j and ri will be swapped as well. For the sake of brevity, the circuit for
swapping ri−j and rj at each stage i is not shown in Figures 8, 10, 11 and 12.

After the actual winner has been identified at the final k stages, their ri∗ will be increased by 1 by the
counter. The computation of learning rate involves division. In our design, a lookup table based divider
is adopted for reducing the area complexity and accelerating the updating process.

Sensors 2012, 12 11674

Figure 13. The architecture of the winner update unit.

b

yN

Control

Unit

cn+1

bm

xin

rN

Update Unit N

yN-1

yN-(k-1)

rN-1

rN-(k-1)

Update Unit N-1

Update Unit N-(k-1)

updated yN-(k-1)*

updated yN-1*

updated yN*

new rN-(k-1)*

new rN-1*

new rN*

Figure 14. The architecture of the weight vector update module.

Lookup-table

Based Divider

Multiplier

yji

Sub
Adder

updated

yji*yji*

rji*

xk
(xk-yji*)

ji*

ji*(xk-yji*)

yji*+ ji*(xk-yji*)

yji*

xin

r

Counter
rji*

new rji*
new rji*

Sensors 2012, 12 11675

2.5. The Proposed Architecture for On-Chip Learning

The proposed architecture can be employed in conjunction with the softcore processor for on-chip
learning. As depicted in Figure 15, the proposed architecture is used as a custom user logic in a
system-on-programmable-chip (SOPC) consisting of softcore NIOS II processor, DMA controller and
SDRAM controller for controlling off-chip SDRAM memory. Figure 16 shows the operations of the
SOPC for on-chip learning. From the flowchart shown in Figure 16, we see that the NIOS II processor
is used only for the initialization of the proposed architecture and DMA controller, and the collection of
the final training results. It does not participate in the CL training and data delivery. In fact, only the
proposed architecture is responsible for CL training. The input vectors for the CL training are delivered
by the DMA controller. In the SOPC system, the training vectors are stored in the SDRAM. Therefore,
the DMA controller delivers training vectors from the SDRAM to the proposed architecture. After the
CL training is completed, the NIOS II processor then retrieves the resulting neurons from the proposed
architecture. All the operations are performed on a single FPGA chip. The on-chip learning is well-suited
for applications requiring both high portability and fast computation.

Figure 15. The SOPC architecture.

Sensors 2012, 12 11676

Figure 16. The flowchart of operations in the SOPC.

3. Experimental Results

This section presents some numerical results of the proposed CL architecture. The design platform for
the experiments is Altera Quartus II with SOPC Builder and NIOS II IDE. The target FPGA device for
the hardware design is Altera Cyclone III EP3C120 [31]. The vector dimension of neurons is w = 2×2.

Table 3 shows the area costs of the proposed architecture for different number of stages N with various
k. There are three different types of area cost considered in this experiment: number of logic elements
(LEs), number of embedded memory bits, and the number of embedded multipliers. For example, given
N = 128 and k = 4, the architecture consumes 12398 LEs, which is 87% of the LE capacity of the target
FPGA device. It can be observed from the figure that the area costs grow linearly with N . Therefore,
it can be effectively used for systems requiring large number of neurons N . The LE consumption also
increases linearly with k for a fixed N . This is because the number of LEs of the swap unit at each
stage grows with k. However, since the number of squared distance calculations is independent of k, the
embedded multiplier consumption remains the same.

Performance analyses for different architectures are presented in Table 4. The area complexity of
an architecture is the number of comparators and/or processing elements in the circuit. The latency
represents the time taken by the architecture to finish one competition. The throughput means the

Sensors 2012, 12 11677

number of competitions completed per unit of time. It can be deduced from the table that the proposed
architecture achieves a balance between speed and space. The proposed architecture also can apply to
applications which perform specific operations on k targets found within the input set. As compared
to architectures in [12,32] and [33] for the kNN application, the proposed architecture takes advantage
of the pipeline fashion to have higher throughput even though these architectures have same latency of
picking out k winners.

Table 3. The area costs of the proposed architecture for different number of stages N with
various k.

N k LEs Memory Bits Embedded Multipliers

1 5320/119088 (4 %) 0/3981312 (0 %) 72/576 (13 %)
16 2 10353/119088 (9 %) 0/3981312 (0 %) 136/576 (24 %)

3 20512/119088 (17 %) 0/3981312 (0 %) 264/576 (46 %)
4 40449/119088 (34 %) 0/3981312 (0 %) 520/576 (90 %)
1 8244/119088 (7 %) 0/3981312 (0 %) 80/576 (14 %)

32 2 15892/119088 (13 %) 0/3981312 (0 %) 144/576 (25 %)
3 31236/119088 (26 %) 0/3981312 (0 %) 272/576 (47 %)
4 62096/119088 (52 %) 0/3981312 (0 %) 528/576 (92 %)
1 10754/119088 (9 %) 0/3981312 (0 %) 88/576 (15 %)

64 2 21297/119088 (18 %) 0/3981312 (0 %) 152/576 (26 %)
3 42974/119088 (36 %) 0/3981312 (0 %) 280/576 (49 %)
4 40449/119088 (72 %) 0/3981312 (0 %) 536/576 (93 %)
1 12398/119088 (10 %) 0/3981312 (0 %) 96/576 (17 %)

128 2 25784/119088 (22 %) 0/3981312 (0 %) 160/576 (28 %)
3 51729/119088 (43 %) 0/3981312 (0 %) 288/576 (50 %)
4 104121/119088(87 %) 0/3981312 (0 %) 544/576 (94 %)

Table 4. Performance analyses for different architectures.

Architecture [11] [12] [13] [32] [33] Proposed

Area complexity O(N3) O(N) O(N) O(N) O(N) O(N)

Latency O(1) O(N) O(Nk) O(N) O(N) O(N)

Throughput O(1) O(1
N
) O(1

Nk
) O(1

N
) O(m

N
) O(1

k+1
)

Pipeline No No No No No Yes
Comment WTA only m: # of modules

The proposed architecture is adopted as a hardware accelerator of a NIOS II softcore processor.
Tables 5 and 6 shows the CPU time of the proposed hardware architecture, its software counterpart and

Sensors 2012, 12 11678

the hardware architecture proposed in [12] for various k and N values. The CPU time is the execution
time of the processor for the CL over the entire training set. The software implementation is executed on
the 2.8-GHz Pentium IV CPU with 1.5-Gbyte DDRII SDRAM. The architecture presented in [12] is also
adopted as an accelerator for NIOS II softcore processor running on 50 MHz. The corresponding SOPC
system is implemented in the same FPGA device Altera Cyclone III EP3C120. All implementations
share the same set of training vectors with 65536 training vectors obtained from the 512 × 512 training
image “Lena”.

Table 5. The CPU time of the proposed hardware architecture and the hardware architecture
proposed in [12] for different k and N values (in ms).

k

1 2 3 4

Proposed Arch. Proposed Arch. Proposed Arch. Proposed Arch.
N Arch. in [12] Arch. in [12] Arch. in [12] Arch. in [12]
16 7.52619 77.3898 7.5292 81.6892 7.52917 85.9886 7.52921 90.2881
32 7.52651 140.3564 7.53012 144.4846 7.52942 148.6127 7.52947 152.7408
64 7.52715 266.2679 7.90321 270.3023 7.90315 274.3367 7.5292 278.371
128 7.52843 518.1164 7.90309 522.1019 7.529 526.0874 7.90332 530.0729

Table 6. The CPU time of the proposed hardware architecture and its software counterpart
for different k and N values. (in ms)

k

1 2 3 4

Proposed Software Proposed Software Proposed Software Proposed Software
N Arch. Arch. Arch. Arch.
16 7.52619 300.75 7.5292 325.70 7.52917 353.439 7.52921 377.1
32 7.52651 585.03 7.53012 614.37 7.52942 651.777 7.52947 686.23
64 7.52715 1176.22 7.90321 1190.58 7.90315 1249.32 7.5292 1308.22
128 7.52843 2340.11 7.90309 2333.72 7.529 2427.26 7.90332 2511.97

We can see from Table 5 that the CPU time of the proposed architecture is lower than the other
implementations. In fact, because of the pipeline implementation, the CPU time of the proposed
architecture is almost independent of N . However, for the other implementations, the CPU time may
grow linearly with N . Therefore, as N becomes large, the proposed architecture will have significantly
higher speed for the CL training.

Sensors 2012, 12 11679

It can be noted from Table 6 that the CPU time increases with k. This is because the throughput
of the proposed architecture decreases when k increases. Nevertheless, the speedup over its software
counterpart is still high even for large k values.

To further illustrate the effectiveness of the proposed architecture, speedups of the proposed
architecture over the software implementation and over the architecture presented in [12] are revealed in
Table 7. It is not surprising to see that the speedup increases with N . In particular, when N = 128 and
k = 4, the speedup over the software implementation attains 318.

Table 7. Speedups of the proposed architecture over its software counterpart and the
architecture in [12] for different number of neurons N with various k.

k

1 2 3 4

Arch. Software Arch. Software Arch. Software Arch. Software
N in [12] in [12] in [12] in [12]
16 10.2827 39.9605 10.8496 43.2582 11.4268 46.9426 11.9917 50.0849
32 18.6483 77.7293 19.1876 81.5766 19.7276 86.5640 20.2857 91.1392
64 35.3741 150.2637 34.2016 150.6451 34.7123 158.0787 36.9722 173.7529
128 68.8213 310.8364 66.0630 295.2921 69.8748 322.3881 67.0696 317.8373

In Table 8, we compare the proposed architecture with the architectures presented in [34,35] for
clustering operations. The architectures in [34,35] are pipelined circuits for c-means and fuzzy c means
algorithms, respectively. All the architectures have the same dimension w = 2 × 2. They all are
used as hardware accelerators of the NIOS CPU for the computation time measurement. The area
costs, computation time, and estimated power dissipation are considered in the comparisons. The
power estimation is based on the PowerPlay Power Analyzer Tool provided by Altera. Note that direct
comparisons of these architectures may be difficult because they are based on different algorithms. In
addition, they are implemented on different FPGA devices. However, it can still be observed from the
table that the proposed architecture has lower area costs as compared with the architectures in [34,35]. In
addition, with larger training set and number of clusters, the architecture is able to perform the clustering
with less computational time as compared with the architecture in [35]. The proposed architecture
also has significantly lower power dissipation as compared with the architecture in [34]. The proposed
architecture therefore has the advantages of low area costs, fast computation and low power consumption.

Table 9 reveals the dependence of the power consumption of the proposed architecture on the k and
N . It can be observed from the table that the power dissipation of the proposed architecture only slightly
grows as k and/or N increase. In particular, when k = 4, eight-fold increase in N (i.e., from N = 16

to 128) leads to only 49.46% increase (i.e., from 134.49 mW to 201.01 mW) in power consumption.
Alternatively, when N = 128, four-fold increase in k (i.e., from k = 1 to k = 4) results in only 14.47%
increase (i.e., from 175.59 mW to 201.01 mW) in power dissipation. Therefore, the proposed circuit is
able to maintain lower power dissipation even for large k and N values.

Sensors 2012, 12 11680

Table 8. Comparisons of various architectures in for clustering applications for dimension
w = 2× 2.

Proposed Architecture Architecture
Architecture in [34] in [35]
(k = 2,N = 64) (N = 64) (N = 16)

FPGA Altera Altera Altera
Devices Size of Cyclone III EP3C120 Stratix II EP2S60 Cyclone III EP3C120
Training Set LEs/ Adaptive 65,536 64,000 60,000
Logic Modules 21,297 13,225 51,832
(ALMs) Embedded LEs ALMs LEs
Multipliers/ 152 288 288
DSP Blocks Embedded Multipliers DSP Blocks Multipliers
Memory Bits Computation 0 8192 312,320
Time Estimated 7.90 ms 7.04 ms 22.86 ms
Power Consumption 155.50 mW 860.08 mW 137.45 mW

Table 9. Power consumption estimation of the proposed architecture (mW) for various k and
N values.

k

N 1 2 3 4

16 131.07 131.77 132.81 134.49
32 137.86 138.96 141.32 145.45
64 149.84 155.50 161.84 168.87
128 175.59 185.05 193.54 201.01

An application for clustering operations is the image coding. The neurons obtained after CL training
can be used as the codewords of a vector quantizer (VQ). Because there are N neurons in a CL network,
the CL-based VQ contains N codewords. An image coding technique using VQ involves the mapping
of each input image block x into a codeword. For a full-search VQ, the selected codeword is the closest
codeword to x. Therefore, the average mean squared error (MSE)of the VQ is defined as

MSE =
1

wt

t∑
j=1

D(xj,yα(xj)) (6)

where w is the vector dimension, t is the number of training vectors, and α() is the mapping given by

α(x) = arg min
1≤i≤N

D(x,yi) (7)

In addition to MSE, another commonly used performance measure is the peak SNR (PSNR), which is
defined as

PSNR = 10 log
2552

MSE
(8)

Sensors 2012, 12 11681

Table 10 shows the performance of the proposed architecture for VQ with N = 64 and w = 2× 2 for
the two 512× 512 test images “Houes” and “Lena.” The data set for CL training contains two 512× 512

images “Baboo” and “Bridge.” The performance of software CL training is also included in the table for
comparison purpose. It can be observed from table that only a small degradation in PSNR is observed for
hardware implementation. The degradation mainly arises from the finite precision (i.e., 8-bit) fixed-point
number representations and the lookup table based division adopted by the hardware. Nevertheless,
the degradation is small as observed in the table. All these facts demonstrate the effectiveness of the
proposed architecture.

Table 10. Performance of the proposed architecture for image compression for N = 64 and
dimensions w = 2× 2.

Images House Lena

Software MSE 150.0826 242.5662
PSNR 26.3675 (dB) 24.2825 (dB)

Proposed MSE 150.1482 242.6272
Arch. PSNR 26.3656 (dB) 24.2814 (dB)

4. Concluding Remarks

A high-speed and area-efficient pipelined architecture for kWTA operations has been proposed. With
the aid of codeword swapping scheme, the system throughput soared due to the ability to perform
competitions associated with different training vectors in parallel. The CPU time of the architecture
is almost independent of the number of neurons N , and the architecture is able to attain high speedup
over other hardware or software implementations for large N . The hardware resources are effectively
saved by only involving comparators and multiplexers in the kWTA operation. The utilization of lookup
table based circuit for finite precision division further reduces the computational time and lowers the
area cost in learning process. The proposed architecture has no extra cost on retrieving winners after
identifying the targets, which is beneficial for those applications that operations only perform on small
number of targets selected from a large input set. Our numerical results demonstrate these virtues of the
proposed architecture.

References

1. Marinov, C.A.; Hopfield, J.J. Stable computational dynamics for a class of circuits with O(N)

interconnections capable of KWTA and rank extractions. IEEE Trans. Circuit. Syst. 2005, 52,
949–959.

2. Liu, Q.; Wang, J. Two k-winners-take-all networks with discontinuous activation functions. Neural
Netw. 2008, 21, 406–413.

Sensors 2012, 12 11682

3. Fish, A.; Akselrod, D.; Yadid-Pecht, O. High precision image centroid computation via an adaptive
k-winner-take-all circuit in conjunction with a dynamic element matching algorithm for star
tracking applications. Analog Integ. Circuit. Signal Process. 2004, 39, 251–266.

4. De Souza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern
Anal. Mach. Intel. 2002, 24, 237–267.

5. Iskandarani, M.Z.; Shilbayeh, N.F. Software controlled k-winner-take-all circuit for water supply
management. Asia J. Inform. Technol. 2004, 3, 347–351.

6. Liu, S.; Wang, J. A simplified dual neural network for quadratic programming with its KWT
Aapplication. IEEE Trans. Neural Netw. 2006, 17, 1500–1510.

7. Wolfe, W. J.; Mathis, D.; Anderson, C.; Rothman, J.; Gottler, M.; Brady, G.; Walker, R.; Duane, G.
k-Winner networks. IEEE Trans. Neural Netw. 1991, 2, 310–315.

8. Badel, S.; Schmid, A.; Leblebici, Y.A. VLSI Hamming Artificial Neural Network with k-Winner-
Take-All and k-Loser-Take-All Capability. In Proceedings of the nternational Joint Conference on
Neural Networks IJCNN, Portland, OR, USA, July 2003; pp. 977–982.

9. Hu, X.; Wang, J. An improved dual neural network for solving a class of quadratic programming
problems and its k winners-take-all application. IEEE Trans. Neural Netw. 2008, 19, 2022–2031.

10. Liu, Q.; Dang, C.; Cao, J. A novel recurrent neural network with one neuron and finite-time
convergence for k-winners-take-all operation. IEEE Trans. Neural Netw. 2010, 21, 1140–1148.

11. Hsu, T.C.; Wang, S.D, k-Winners-take-all neural net with Θ(1) time complexity. IEEE Trans.
Neural Netw. 1997, 8, 1557–1561.

12. Li, H.Y.; Hwang, W.J.; Yang, C.T. High speed k-Winner-take-all competitive learning in
reconfigurable hardware; Lect. Note. Comput. Sci. 2009, 5579, 594–603,

13. Lin, C.S.; Ou, P.; Liu, B.D. Design of k-WTA/Sorting Network Using Maskable WTA/MAX
Circuit. In Proceedings of the VLSI Symposium on Technology, Systems and Applications, Kyoto,
Japan, 12–16 June 2001; pp. 69–72.

14. Wojtyna, R. Analog Low-Voltage Low-Power CMOS Circuit for Learning Kohonen Networks on
Silicon. In Proceedings of the International Conference Mixed Design of Integrated Circuits and
Systems, Wroclaw, Poland, 24–26 June 2010; pp. 209–214.

15. Srovetta, S.; Zunino, R. Efficient training of neural gas vector quantizers with analog circuit
implementation. IEEE Trans. Circuit. Syst. Anal. Digit. Signal Process. 1999, 46, 688–698.

16. Dlugosz, R.; Kolasa, M.; Szulc, M. An FPGA Implementation of the Asynchronous Programmable
Neighborhood Mechanism for WTM Self-Organizing Map. In Proceedings of the International
Conference Mixed Design of Integrated Circuits and Systems, Gliwice, Poland, 16–18 June 2011;
pp. 258–263,

17. Ancona, F.; Rovetta, S.; Zunino, R. Hardware Implementation of the Neural Gas. In Proceedings
of the International Conference on Neural Networks, Houston, TX, USA, 9–12 June 1997;
pp. 991–994,

18. Haykin, S. Neural Networks and Learning Machine; 3rd ed.; Pearson Education: McMaster, ON,
Canada, 2009.

19. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31,
264–323.

Sensors 2012, 12 11683

20. Men, H.; Liu, H.; Pan, Y.; Wang, L.; Zhang, H. Electronic nose based on an optimized competition
neural network. Sensors 2011, 11, 5005–5019.

21. Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Saad, F.S.A.; Adom, A.H.; Ahmad, M.N.;
Jaafar, M.N.; Abdullah, A.H.; Kamarudin, L.M. Improved maturity and ripeness classifications of
magnifera indica cv. harumanis mangoes through sensor fusion of an electronic nose and acoustic
sensor. Sensors 2012, 12, 6023–6048.

22. Bokareva, T.; Bulusu, N.; Jha, S. Learning Sensor Data Characteristics in Unknown Environments.
In Proceedings of the Annual International Conference on Mobile and Ubiquitous Systems:
Networking & Services, San Jose, CA, USA, 17–21 July 2006.

23. Hortos, W.S. Unsupervised Learning in Persistent Sensing for Target Recognition by Wireless Ad
Hoc Networks of Ground-Based sensors. In Proceedings of the SPIE 2008, Marseille, France,
23–28 June 2008; pp. 696105.

24. Hofmann, T.; Buhmann, J.M. Competitive learning algorithm for robust vector quantization. IEEE
Trans. Signal Process. 1998, 46, 1665–1675.

25. Hwang, W.J.; Ye, B.Y.; Lin, C.T. A novel competitive learning algorithm for the parametric
classification with Gaussian distributions. Pattern Recognit. Lett. 2000, 21, 375–380.

26. Acciani, G.; Chiarantoni, E.; Fornarelli, G.; Vergura, S. A feature extraction unsupervised neural
network for an environmental data set. Neural Netw. 2003, 16, 427–436.

27. Bracco, M.; Ridella, S.; Zunino, R. Digital implementation of hierarchical vector quantization.
IEEE Trans. Neural Netw. 2003, 14, 1072–1084.

28. Bondalapati, K.; Prasanna, V.K. Reconfigurable computing systems. IEEE Trans. Comput. 2002,
90, 1201–1217.

29. Hauck, S.; Dehon, A. Reconfigurable Computing; Morgan Kaufmann: San Francisco, CA, USA,
2008.

30. NIOS II Processor Reference Handbook; Altera Corporation: San Jose, CA, USA, 2011. Availaible
online: http://www.altera.com/literature/lit-nio2.jsp (accessed on 26 August 2012).

31. Cyclone III Device Handbook; Altera Corporation: San Jose, CA, USA, 2012. Availaible online:
http://www.altera.com/literature/lit-cyc3.jsp (accessed on 26 August, 2012).

32. Aksin, D.Y. A high-precision high-resolution WTA-MAX circuit of O(N) complexity. IEEE Trans.
Circuit. Sys. 2002, 49, 48–53.

33. Li, H.Y.; Yeh, Y.J.; Hwang, W.J. Using wavelet transform and partial distance search to implement
kNN classifier on FPGA with multiple modules. Lect. Note Computer Sci. 2007, 4633, 1105–1116.

34. Hwang, W.J.; Hsu, C.C.; Li, H.Y.; Weng, S.K.; Yu, T.Y. High speed c-means clustering in
reconfigurable hardware. Microprocess. Microsyst. 2010, 34, 237–246.

35. Li, H.Y.; Yang, C.T.; Hwang, W.J. Efficient VLSI Architecture for Fuzzy C-Means Clustering in
Reconfigurable Hardware. In Proceedings of the IEEE International Conference on Frontier of
Computer Science and Technology, Shanghai, China, 17–19 December 2009; pp. 168–174.

c⃝ 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

