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Abstract: Maintaining inter-actor connectivity is extremely crucial in mission-critical 

applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly 

plan optimal coordinated responses to detected events. Failure of a critical actor partitions 

the inter-actor network into disjoint segments besides leaving a coverage hole, and thus 

hinders the network operation. This paper presents a Partitioning detection and Connectivity 

Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure 

planning, PCR determines critical/non-critical actors based on localized information and 

designates each critical node with an appropriate backup (preferably non-critical). The  

pre-designated backup detects the failure of its primary actor and initiates a post-failure 

recovery process that may involve coordinated multi-actor relocation. To prove the 

correctness, we construct a formal specification of PCR using Z notation. We model 

WSAN topology as a dynamic graph and transform PCR to corresponding formal 

specification using Z notation. Formal specification is analyzed and validated using the Z 

Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency 

of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it 

outperforms contemporary schemes found in the literature.  
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1. Introduction 

Wireless sensor and actor networks (WSANs) are envisaged to be a promising technology for 

mission-critical applications that require autonomous and intelligent interaction with the environment. 

Examples of such applications include fire detection and containment, disaster management, urban 

search and rescue (USAR), homeland security, battlefield surveillance, space exploration and nuclear, 

biological and chemical attack detection and prevention. These applications are also regarded as 

safety-critical applications because an inappropriate action may have catastrophic consequences such 

as loss of human life, severe injuries, large-scale environmental damage and considerable economical 

penalties. In these critical applications, WSANs employ a number of sensor nodes that report events of 

interest to one or multiple actors [1]. The concerned actors receive event notifications, process them 

and share with peer actors to effectively respond to events such as fires, earthquakes and disasters. 

Figure 1 illustrates an example of an autonomous WSAN environment. 

Figure 1. An example of autonomous wireless sensor and actor network setup. 

 

The inherent characteristics of a WSAN require actors to collaborate and coordinate with each other 

in planning an optimal response and synchronize their operations. For example, in USAR, sensors and 

actors are deployed in an area damaged by an event such as a fire, earthquake or other disaster. The 

sensors detect the presence of survivors in the vicinity and report it to the actors. The actors equipped 

with necessary life support equipment receive the sensors data, process it and share it with peer actors 

to identify the most appropriate set of actors. These actors are responsible for rescuing survivors 

immediately or provide them with life saving necessities such as water, oxygen or even some sort of 

medicine for a short period until the rescue team arrives. The role of actors is extremely crucial for a 

timely response to this type of events in order to prevent serious consequences. This requires actors to 
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interact with each other and determine the most appropriate set of actors that will participate in the 

operation. To enable such interaction, actors must establish and maintain the inter-actor topology that 

serves as a backbone of the network. 

The requirement for a fully autonomous WSAN has been realized due to several incidents that cost 

unbearable lost of lives in situations too difficult or dangerous for humans to operate. For example, 

during the 9/11 rescue operations, four hundred and seventy-nine rescue workers lost their lives in 

making the evacuation a success. Similarly, actors operating in hazardous and inhospitable 

environments are subject to failures. Failure of a critical actor partitions the inter-actor network into 

disjoint segments besides leaving uncovered regions. This may stop inter-actor interactions altogether 

and the network becomes incapable of delivering a timely response to serious events. The autonomous, 

unattended and resource restricted nature of WSAN necessitates self-healing and agile recovery 

processes that involve reconfiguring the inter-actor topology with minimal overhead. Moreover, 

criticality of the applications, distributed, dynamic and complex operation of the network demand for 

rigorous and reliable validation of recovery schemes. 

Most of the published connectivity restoration schemes are purely reactive [2–5], triggering the 

recovery process once the failure of a node is detected. Reactive schemes may not be suitable for 

mission-critical time-sensitive applications due to procrastination. Moreover, existing recovery 

schemes lack rigorous validation and entirely rely on non-formal validation i.e., simulation. 

Simulation-based results are useful only for statistical performance analysis and do not guarantee the 

correctness of the approach that is crucial in safety-critical applications. Therefore, we advocate the 

use of complementary validation techniques for connectivity restoration algorithms, especially in 

safety-critical applications. 

Formal methods are advanced mathematics-based techniques, having computer tool support, used 

for modeling and formal specification of complex and critical systems. Z notation [6] is a  

model-centered approach based on sets, sequences, bags, relations, functions and predicate logic which 

is used at an abstract level of specification of systems. Z can be used for specifying behavior of 

distributed as well as sequential programs because of its accommodation of abstract data types.  

This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm that 

proactively identifies critical/non-critical nodes and rapidly repairs the topology in case of critical node 

failure. Each actor determines whether it is critical or not based on localized information and 

designates a suitable neighbor as a backup that continuously monitors and triggers a recovery in case 

of primary failure. The algorithm is recursively executed until all actors become connected. We use 

formal and non-formal techniques for correctness and performance validation. We model a WSAN network 

as a dynamic graph and transform PCR into a corresponding formal specification using Z notation. This 

formal specification is analyzed and validated using the Z Eves tool [7]. Moreover, the performance of 

PCR is validated through extensive simulations. The simulation results confirm the effectiveness of 

PCR and the results are shown to outperform contemporary schemes found in the literature. 

It is worth noting that our algorithm does not require additional actors, despite providing adequate 

redundancy. To the best of our knowledge, this is the first effort that employs formal (formal 

specification) and non-formal (simulation) techniques for rigorous validation of recovery schemes. It is 

worth mentioning that our algorithm is equally applicable for mobile sensor networks and mobile  

robot networks.  
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This paper is organized as follows: Section 2 discusses the system model and problem statement. 

The related work is discussed in Section 3. The proposed PCR algorithm is detailed in Section 4. 

Section 5 presents the formal specification and analysis of PCR. The performance evaluation of PCR is 

presented in Section 6. Section 7 concludes the paper.  

2. System Model and Problem Statement 

Our algorithm is applicable to WSANs that involve sensors and actors. Sensors are inexpensive and 

have scarce resources, whereas actors are more powerful nodes in terms of energy, communication and 

computation power (processing and memory). The communication range of an actor refers to the 

maximum Euclidean distance that its radio can reach and is assumed to be larger than that of sensors. 

Both sensors and actors are deployed randomly in an area of interest. After deployment, actors are 

assumed to discover each other and form a connected inter-actor network. An actor is assumed to be 

able to move on demand and is aware of the positions of its 1-hop neighbors.  

The impact of an actor‟s failure depends on the position of that actor in the network topology. For 

example, losing a leaf/non-critical node, such as K or D in Figure 2, does not affect inter-actor 

connectivity. Meanwhile, the failure of a critical node such as F partitions the network into disjoint 

segments. In order to tolerate critical node failure, three approaches are identified: (i) proactive;  

(ii) reactive and (iii) hybrid. Proactive approaches establish and maintain bi-connected topology in 

order to provide fault tolerance. This necessitates a large actor count that leads to higher cost and 

becomes impractical. On the other hand, in reactive approaches the network responds only when a 

failure occurs. Therefore, reactive approaches might not be suitable for mission-critical time-sensitive 

applications. In hybrid approaches, each critical actor proactively designates another appropriate actor 

to handle its failure when such a contingency arises in the future. We argue that a hybrid approach will 

better suit autonomous WSANs that are deployed for mission-critical time-sensitive applications due 

to the reduced recovery time and overhead. 

Figure 2. Graphic representation of a connected inter-actor network. 

 

Despite the fact that sensor networks have attracted considerable attention from the research 

community in recent years, however, “we are still nowhere near the production of industrial grade 

WSAN software that can be relied upon for mission-critical applications” [8]. The success or 

performance of WSANs in these applications is strongly dependent on the correctness of the 

algorithms/protocols running on the underlying network. Therefore, the criticality of the applications, 

distributed, dynamic and complex operation of the network necessitates for rigorous and reliable 

validation of recovery schemes. 
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3. Related Work  

3.1. Connectivity Restoration  

The issue of fault tolerance in different contexts for WSANs has only been studied in few 

publications. For instance, the fault-tolerant model presented in [9] assigns multiple actors to each 

sensor and multiple sensors to each actor in order to ensure guaranteed event notification, even in cases 

of either failure or inaccessibility. However, our fault-tolerant model operates in the context of 

maintaining inter-actor connectivity rather than reliable sensor-actor communication. Few researchers 

have exploited node mobility as a means for performance optimization both in sensor networks and 

WSANs. However, exploiting node mobility to mend severed topologies has just recently started to 

attract attention. The reader is referred to [10] for a comprehensive survey of node relocation strategies.  

The existing work can be categorized into block and cascaded movement. Block movement often 

requires a high pre-failure connectivity in order for the nodes to coordinate their response. An example 

of block movement based approaches is reported in [11], where the initial network is assumed to be  

2-connected and goal is to sustain such 2-connectivity even under link or node failure. The idea of 

movement of robots is similar to ours but their approach requires a centralized algorithm. Das et al. 

presented a distributed approach to the similar problem that strives to restore 2-connectivity in [12]. 

Unlike [11] and [12], our algorithm focuses on providing 1-connectivity.  

Block movements often become infeasible in the absence of a higher level of connectivity. 

Therefore, few researchers have pursued cascaded node movement that can be further categorized 

based on network state information that nodes are assumed to maintain. Some approaches like DARA [2], 

or PADRA [13] require each actor to maintain 2-hop neighbors. Others, such as RIM [3], C
3
R [4], and 

VCR [5] avoid the increased overhead for tracking 2-hop neighbors and require each node to maintain 

only its directly reachable nodes, i.e., 1-hop neighbors. Like our proposed PCR algorithm, DARA 

strives to restore connectivity lost due to cut-vertex failures. However, DARA requires more network 

state in order to ensure convergence. Meanwhile, in PADRA, Akkaya et al. identify a connected 

dominating set (CDS) of the whole network in order to detect cut-vertices. Since the CDS based 

method is not accurate for critical node detection, they perform a depth-first search (DFS) on each 

member for the CDS to confirm whether that the node is really a cut vertex or not. Although, they use 

a distributed algorithm their solution still requires 2-hop neighbors‟ information that increases 

messaging overhead. Another work proposed in [14] also uses 2-hop information to detect cut-vertices. 

The proposed PCR algorithm relies only on 1-hop information and reduces the communication 

overhead. Although RIM, C
3
R and VCR use 1-hop neighbor information to restore connectivity, they 

are purely reactive and do not differentiate between critical and non-critical nodes, whereas, PCR is a 

hybrid algorithm that proactively identifies critical nodes and designates them an appropriate backup 

that is responsible for restoring lost connectivity. 

3.2. Formal Methods 

Formal methods are mathematics-based techniques used for describing properties of software and 

hardware systems [15]. The Z notation is a model-centered approach usually used for specifying the 

behavior of programs by abstract data types and has standard set operators. The Z allows organizing a 
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system into its smaller components using a powerful data structure named schema. The schema defines 

a way in which state of a system can be specified and further refined by describing details of a  

system [16]. A schema has two parts, one for variables definitions and another for defining the 

properties of these variables.  

To the best of our knowledge, the only effort to model wireless sensor and actuator networks has 

been reported in [17]. They used Colored Petri Nets (CPNs) to model and validate some components 

of sensor and actuator networks. However, it is unclear that the CPN approach can be used to model 

more sophisticated WSANs algorithms like PCR. Recently, some works in the literature [18–20] have 

advocated the use of formal methods in ad hoc and sensor network protocol validation. For example, 

Maag et al. have proposed a formal specification based conformance testing methodology to validate 

the routing protocols in MANET, especially DSR [18], while the authors in [19] used Real-Time 

Maude for modeling, performance estimation and model checking of the state-of-the-art OGDC 

algorithm for sensor networks. A comprehensive survey of formal and informal techniques for 

protocol validation in ad hoc and sensor networks is presented in [20]. Some other similar work on a 

formal specification of MANET routing protocols can be found in [21–23]. 

Our work is different from the formal method-based approaches discussed above and others in  

that: (i) we model WSAN as a dynamic graph and transform PCR into a corresponding formal 

specification using Z notation. This formal specification is analyzed and validated using the Z Eves 

tool, and (ii) we simulate the specification to analyze the effectiveness and efficiency of PCR.  

4. Partitioning Detection and Connectivity Restoration 

As stated earlier, hybrid algorithms better suit mission-critical time-sensitive applications that 

require a rapid recovery. The proposed PCR algorithm is hybrid in the sense it consists of two  

parts i.e., pre-failure planning and post-failure recovery.  

Figure 3. Overview of the PCR algorithm. 
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Figure 3 shows the overall working of the PCR algorithm. In the pre-failure planning, PCR 

identifies critical/non-critical actors (primary) based on localized information and designates an 

appropriate backup for each critical node. The backup starts monitoring its primary and detects the 

failure through missing heartbeats. In the post-failure recovery, a pre-designated backup if critical 

notifies it‟s backup and moves to the location of the primary. This cascaded relocation continues until 

a non-critical replaces the primary. The detailed algorithm is described in the sections that follow. 

4.1. Pre-Failure Planning 

Failure of a critical actor disconnects the neighbors and they are unable to coordinate because they 

have limited network information. Therefore, PCR pursues pre-failure planning to identify critical 

actors and designate them an appropriate backup. 

Distinguishing critical/non-critical actors: As stated above, the failure of critical actor partitions 

the inter-actor network into disjoint segments. The absence of a non-critical node does not affect the 

connectivity. PCR opts to distinguish between critical/non-critical nodes and designate a backup for 

each of these critical actors. The existing algorithms to determine cut-vertices in a graph can be 

categorized into centralized and distributed. Centralized algorithms [24,25] may not be suitable for 

large scale dynamic networks due to the fact they involve huge communication overhead in 

maintaining network state information. Frequent changes in the WSAN topology favors distributed and 

highly localized algorithms. Some localized algorithms such as [26] require only 1-hop neighbors‟ 

positional information at the expense of lower accuracy of cut-vertices identification. Basically, some 

nodes are marked as critical while they are not cut-vertices globally. However, no critical node will be 

missed and the accuracy of determining non-critical ones is 100%. The fact that PCR prefers to 

designate a non-critical backup, such a category of approaches fits well and the reduced accuracy is not 

a major concern. Therefore, PCR employs a simple localized cut-vertex detection procedure that only 

requires 1-hop positional information to detect critical/non-critical nodes. The procedure is based on [26] 

and runs on each node in a distributed manner. An actor is critical if its immediate neighbors become 

disconnected without it, non-critical otherwise. Leaf nodes are also determined as non-critical. For 

instance, Figure 4(a) shows the 1-hop critical/non-critical nodes. The details of the procedure are 

provided in [27]. 

Figure 4. Determine critical nodes and assign backup: (a) 1-hop critical/non-critical and  

(b) designate backup using PCR. 

  
(a) (b) 
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Backup selection: The critical actors choose and designate an appropriate backup among neighbors 

once the critical/non-critical nodes are differentiated. Several criteria can be defined when choosing a 

backup, depending on the application-level interests. The selection of a backup among 1-hop neighbors 

is based on the following ordered criteria: 

1. Neighbor Actor Status (NAS): Each critical actor prefer to designate a non-critical node as 

backup since moving such a node will not affect inter-actor connectivity. Moreover, this will restrict 

the scope of recovery and reduce movement overhead. 

2. Actor Degree (AD): The number of neighbors reflects the actor degree. In case a non-critical 

node in the neighborhood is not available, PCR prefers to designate a least degree critical node as backup 

since few nodes will lose direct communication links to that backup when it moves. However, moving 

a critical node may trigger a series of cascaded relocations that we will discuss later in this section.  

3. Inter-actor Distance (ID): A nearby neighbor is preferred in case multiple neighbors have the 

same AD. This will help to shorten the recovery time and reduce the movement overhead that is 

crucial for resource-constrained mission-critical applications.  

An actor may be selected as backup for more than one node. A primary node selects another backup 

using the same procedure specified above in case a backup fails or moves outside the range of its 

primary. Since the backup selection criterion is based on 1-hop information, therefore, it may not 

always lead to an optimal solution. However, being highly localized helps PCR scale for large 

networks. Figure 4(b) shows the setup where each critical actor designates another as backup where 

the arrowhead points towards the primary. Note that PCR provides redundancy without requiring extra 

resources in terms of actors. It employs existing actors just to take care of each other. One may argue 

that PCR imposes additional overhead in the form of pre-failure planning, i.e., maintaining backup. In 

the pre-failure planning, PCR exploits the status update messages that actors exchange as part of their 

normal network operation. Therefore, PCR mainly involves computation overhead in terms of 

selecting and maintaining a backup. Since actors are powerful nodes, therefore, computation is not a 

major concern since it is far less energy-demanding than messaging and node movement. Nevertheless, 

PCR strives to limit this computation overhead to critical actors only. 

4.2. Primary Monitoring and Failure Detection 

Once each critical actor selects an appropriate backup, it is notified through regular heartbeat 

messages. The pre-designated backup starts monitoring its primary through heartbeats. Missing a 

number of successive heartbeats at backup indicates the failure of the primary. After failure detection, 

the backup triggers the post-failure recovery process as detailed in the following section. 

4.3. Post-Failure Recovery 

The post-failure recovery process is initiated by the pre-designated backup upon failure detection. 

The scope of recovery depends on the NAS. If the backup is a non-critical actor then it simply replaces 

the primary and the recovery would be complete. However, if the backup is also a critical node then a 

cascaded relocation is performed. Basically, repositioning of actor Ai in response to the failure of Af 
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will be interpreted by its backup Aj as if Ai is lost and Aj will thus move to replace Ai. The detail of the 

recovery process is as follows:  

The pre-assigned backup immediately triggers a recovery process once it detects failure of its 

primary. The status of backup determines the scope of recovery which can be among the following 

three scenarios. First, if a backup is a non-critical node the scope of recovery will be limited because it 

does not require further relocations. The backup actor moves to the location of the failed primary and 

exchanges heartbeat messages with its new neighbors. It selects and designates a new backup since it 

has become a critical node at the new position. This movement alerts the other primary nodes (if any) 

at the previous location to choose a new backup for themselves. An illustrative example is provided in 

Figure 5(a), where non-critical backup G simply replaces its primary (i.e., F) and selects a backup for 

itself. The second scenario is when the failed (primary) and backup node are both critical nodes and 

simultaneously serving as backup for each other. This scenario is articulated in Figure 5(b). Actor G is 

serving as backup of another actor A and vice versa as shown in Figure 5(b). The actor G detects 

failure of A and selects another actor “C” as backup, as shown in Figure 5(d). Then G moves to the 

position of A. The newly assigned backup actor performs a cascaded relocation as discussed below and 

is shown in Figure 5(e), with G replacing A, C replacing G and K replacing C. The third scenario is 

when the backup is a critical node. In this case, the backup actor will notify its own backup so that the 

network stays connected. This scenario may trigger a series of cascaded repositioning of nodes as 

explained above. 

Figure 5. Applying the recovery process of PCR. 

  

(a) (b) 

  

(c) (d) 

 

(e) 
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4.4. Pseudo Code of PCR Algorithm  

Figure 6 shows the high level pseudo code of PCR algorithm running on each actor in a distributed 

manner. Initially, all the actors are initialized as non-critical (line 1). A localized cut-vertex detection 

procedure determines whether node A is critical or not (lines 2–4). If actor A is critical then it will 

select and designate an appropriate backup actor among the neighbors (lines 5–7). The selection of 

backup is made based on the criteria specified in Section 4. The backup actor A detects failure of its 

primary by continuously monitoring its health through heartbeat messages. Upon detecting the failure 

of the primary, it initiates the recovery process. If backup actor A is non-critical, it simply moves to the 

location of F (lines 9–10). If node A is critical and simultaneously primary and backup of node F (i.e., 

SimPrimBackUp) then it selects another node as backup. In other words, node A and F were serving as 

backups for each other, Since when F fails, node A loses not only its primary but also its backup, 

therefore node A appoints another backup before going to replace F. Node A notifies its movement to 

newly assigned backup and moves to the location of F (lines 11–14). Otherwise, if node A is a critical 

node it notifies its backup and moves to replace F (lines 15–18). If node A receives a movement 

notification message from F, it checks whether F is serving as both primary and backup. If so then 

node A designates a new backup, notifies its neighbors and moves to replace F (lines 19–23), 

otherwise, it moves to replace F (lines 24–27).  

Figure 6. High level pseudo code for PCR algorithm. 

 
  

 PCR (A) 

1    critical-node(A) false 

2    if Neighbors (A) becomes disconnected without A then   

3 critical-node (A)  True 

4    endif 

5    if (isCritical(A) == true) 

6 AssignBackUp (A) 

7    endif   

8    If (Primary actor F fails) then 

9 if(isCritical(A) == false) then 

10     MoveToLocation(F, A) 

11 else if(SimPrimBackUp(F, A) == true) then   

12     AssignBackUp(A) 

13     NotifyBackUp(A) 

14     MoveToLocation(F, A) 

15 else 

16     NotifyBackUp(A) 

17     MoveToLocation(F, A) 

18 endif 

19    else if(A receives notification message from F) then 

20 if(SimPrimBackUp(F, A) == true) then 

21     AssignBackUp(A) 

22     NotifyBackUp(A) 

23     MoveToLocation(F, A) 

24 else  

25     MoveToLocation (F, A) 

26 endif 

27    endif 

MoveToLocation (F, A) 

28 Move A to the location of F 
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5. Formal Specification and Analysis 

In this section, reasoning of describing formal specification of complex systems is provided. An 

introduction and critical analysis to Z notation is also given. Finally, the suitability of applying Z 

notation in modeling of wireless sensor and actor networks is argued. 

5.1. Reasoning of Using Formal Description 

There exist various traditional tools and techniques which are typically used for expressing the 

properties of software systems, however, these methods require a full commitment because the 

specification produced must be used to construct a complete and consistent model which will be 

assumed as a baseline for the further development. For complex and incomplete models such methods 

are not effective for a complete validation and verification of a large scale software specification. 

Consequently, it needs to apply mathematics-based techniques to overcome the weaknesses of these 

traditional approaches. Formal methods are advanced mathematics-based techniques, having computer 

tool support, used for modeling and formal specification of complex and critical systems. Formal 

specification of a system requires a detailed and thorough study of the design. Although it cannot be 

proved that formal specification of a system is correct, in general, because initially requirements are 

always provided in an informal way, but, it can be used to prove the properties and consistency in the 

design enhancing confidence to develop the systems. Experience of applying formal methods [28] has 

shown that it is an effective way of modeling, specifying, analyzing and verifying of properties of 

complex systems.  

5.2. Z Notation 

Formal methods are notations based on discrete mathematics such as logic, set theory, graph theory, 

automata and algebraic systems having sufficient computer tool support used for describing and 

analyzing properties of software and hardware systems. Formal methods may be classified as property 

oriented or model descriptive. Property-based methods are used to describe software in terms of 

properties and invariants. The property-based specification languages are more abstract but are also 

executable. Model-oriented methods are used to construct models of a system emphasizing both the 

statics and dynamics of the system. There is a trade-off using model-oriented and property-based 

specification languages.  

Z notation is a model-centered approach based on sets, sequences, bags, relations, functions and 

predicate logic [16] which is used at an abstract level of specification of systems. Z can be used for 

specifying the behavior of distributed as well as sequential programs because of its abstract data types. 

The Z has standard set operators, for example, union, intersection, comprehensions, Cartesian products 

and power sets. 

The Z notation is applied in this research because it is a model-oriented approach having rigorous 

characteristics and is model-based on first order logic with set theory and, consequently, is powerful 

and very expressive, which is one of the requirements in selecting any specification language for 

modeling of distributed systems. Moreover, Z is based on the standard mathematical notations used for 

the specification of abstract properties unlike a detailed description language. Further, the Z notation 
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allows organizing a system into its smaller components using a powerful data structure named schema. 

The schema defines a way in which state of a system can be described and refined. Refinement is a 

promising way of Z supporting verifiable transformation from an abstract specification into an 

executable code. The use of schema structures helped us to reduce the complexity because of its 

abstract and re-useable characteristics. Formal specification described using Z notation can further be 

refined and transformed to an implemented system. In this way, we can claim that Z reduces the 

complexity of systems by abstraction and structuring power, and eliminates unnecessary details. 

Finally, development from abstraction to detailed analysis made it easy to propose a simple and 

understandable model ready to be used for simulation. 

5.3. An Integration of Graph Theory and Z Notation 

The applications of graph theory are becoming increasingly significant in all areas of computer 

science and engineering. Particularly, communication and network systems cannot be analyzed and 

optimized without using the structures and algorithms of graph theory. This is because the origin of 

graphs is based on describing networks, their properties and encodings. More important is that theory 

of graphs has been enriched in last couple of decades, particularly in the area of computer science, and 

its applications are extended to social and complex networks. As the Z method is based on set theory 

and first order predicate logic as mentioned above, the sets and relations are the fundamentals of 

describing composite types in Z notation. On the other hand, the structures of graphs are same that are 

defining collections of objects and then establishing links or relations over the objects. Hence, any 

model in graph theory can easily be transformed into Z notation for further analysis and proof 

generation using computer tools. That is why, initially, the wireless sensor and actor network is 

described using graph structures and then transformed to Z notation and an algorithm is proposed for 

network recovery in case of any failure in the system.  

5.4. Formal Specification of PCR Algorithm 

In this section, a formal specification of the proposed failure recovery algorithm for wireless sensor 

and actor network is described using Z. Formal analysis of the specification is provided using the 

Z/Eves toolset in the next section. First of all, topology under the wireless sensor and actor network is 

described, which must be maintained throughout the life of the network. The topology consists of a set 

of nodes and a set of edges. The set of nodes is a power set of Node where Node is assumed as a set at 

an abstract level of specification in Z notation. In modeling using sets in Z, a high level of abstraction 

is supposed. For example, we do not define any effective procedure for deciding whether an arbitrary 

element is a member of the abstract set. Consequently, Node defined below is a set over which 

operators of set theory cannot be defined. For example, cardinality to know the number of elements in 

the Node cannot be defined. Similarly, the subset, union, intersection and complement operators are 

not well-defined as well. To define such operations new set must be created based on the abstract set. 

The set of edges of the topology is a relation over the collection of the nodes. The topology schema is 

denoted by Topology which consists of two variables nodes and edges contained in the first part of the 

schema. The invariants over the topology are defined in the second part of it: 
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[Node]  

Topology 
nodes:  Node 

edges:  Node  Node

n: Node n  nodes e: Node  Node e  edges e . 1 = n e . 2 = n 

e: Node  Node e  edges 

   n1, n2: Node n1  nodes  n2  nodes e = n1 n2
n1, n2: Node n1 n2  edges n2 n1  edges 



Invariants: (1) For every node in the network topology, there is an ordered pair (edge) such that the 

node is either first or the second element of the ordered pair. (2) For every edge in the network, there 

exist two nodes such that the nodes formulate a link called edge in the network topology. It is assumed 

that the topology is a connected graph, that is, for any two nodes there is an edge. Any isolated actor in 

the network is not a part of the network topology. 

Wireless sensor actor networks employ a number of sensor nodes that report an event of interest to 

one or multiple actors. The sensors are inexpensive and have scarce resources, whereas, actors are 

more powerful nodes in terms of energy, communication and computation power.  

Formal specification of the sensor is described below by the schema Sensor. The schema contains 

five variables, namely, sensor identifier, its state, information about any event, neighbors and 

connectivity which are denoted by id, state, information, neighbors and connectivity, respectively. The 

state is a two-valued variable used to check if any event is captured. In the information variable, detail 

of the event is stored. As the sensor can communicate only with its neighbors, hence, information 

about neighbors is stored in the neighbors variable. The connectivity variable is used to check the 

status of the node which is either connected or disconnected to the network.  

[Data]; S Node 

State ::OK NOTOK 

Connectivity ::CONNECTED DISCONNECTED 

Sensor 
id: S 

state: State 

information:  Data 

neighbours:  Node 

connectivity: Connectivity 


state = OK  information =   state = NOTOK information   

connectivity = CONNECTED  neighbours    connectivity                                                       

= DISCONNECTED  neighbours =  


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Invariants: (1) The sensor is responsible for continuous monitoring of the environment. If an 

unwanted object is detected the data will be collected by the sensor and stored in the information 

variable. In this property, it is stated that if state of sensor is normal (OK) then there is no information 

in the sensor. If state of sensor is not normal then there must be some information stored in the sensor. 

(2) As the wireless sensor and actor network is a distributed system, hence, it is assumed that every 

node will have information about its neighbours at 1-hop. In this property, it is stated that a node is 

connected if the collection of its neighbours is a non-empty set. The node is disconnected if the set of 

its neighbours is an empty set.  

The role of an actor is extremely crucial for a timely response in order to prevent any serious 

consequences after a sensor node has reported an event. For this purpose, actors need to coordinate 

with each other for an effective and optimal response synchronizing the required operations. Therefore, 

actors establish and maintain inter-actor network topology in order to enable such communication. As 

the failure of a critical actor may partition the inter-actor network into a disjoint sub-network, 

consequently, backup preferably non-critical to every such node is required for the failure recovery. 

The backup actor node continuously monitors its critical, if any failure is detected then it initiates the 

recovery process by moving towards the primary until connectivity is restored. Formal specification of 

the actor is described below by the schema Actor. Based on the functionality, eight variables are 

extracted to describe role of an actor. As each actor must be uniquely identified like a sensor, hence, 

the first variable is the actor identifier. The second variable is used to define the type of the actor node 

and has two values, i.e., either critical or non-critical. As in case of failure of a critical node, the 

backup is required, the third variable is used for this purpose. Of course the backup must be from its 

neighbors. The fourth variable is for storing information about neighbors, because an actor must know 

about its neighbors for a failure recovery. The connectivity variable is to check if the actor is itself 

connected or disconnected. The last three variables are used to store information about the reported 

events from the sensors. The detected variable is used for storing information about all reported events. 

The pending variable is used to record events for which the action is still required. And the last one 

variable completed is used for recording the information about events for which action is completed.  

A Node 

Criticality ::CRITICAL NONCRITICAL 

Actor
id: A 

type: Criticality 

backup: Neighbour 

neighbours:  Neighbour 

connectivity: Connectivity 

detected:  Detected 

pending:  Detected 

completed:  Detected 


type = CRITICAL  # neighbours  2  type = NONCRITICAL # neighbours  2 

backup . type = ACTOR 
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nbr: Neighbour nbr  neighbours nbr . neighbour =backup . neighbour 

nbr: Neighbour 

   nbr  neighbours  nbr . neighbours   Node 

      backup . neighbours   Node 

   # backup . neighbours  # nbr . neighbours 

connectivity = CONNECTED  neighbours    connectivity                                                      

= DISCONNECTED  neighbours =  

d: Detected d  pending d . action = PENDING  d . data  

d: Detected d  completed d . action = COMPLETED  d . data =  

d: Detected d  detected d  pending  d  completed 

d: Detected d  pending  d  completed d  detected 



Invariants: (1) The node is critical if it has, at most, two neighbors and after its removal the 

network is partitioned, otherwise, the node is non-critical. (2) The backup of the actor node must be an 

actor node. (3) The backup of an actor node must be among one of its neighbours. (4) The backup of 

the node is the one with least degree among its neighbours. (5) The sensor node is connected if it has, 

at least one neighbour, otherwise it is disconnected. (6) As a safety property, in the set of detected 

sensors, if the action is pending then the detected issue exists in the database of the sensor. (7) In the 

set of detected sensors, if the action is completed then information is removed from the database of the 

sensor to make an optimized usage of the storage. (8) For each detected sensor, the action is either 

completed or pending. (9) For each sensor, if it is in the list of pending or completed then it must be in 

the list of detected sensors. The properties 8 and 9 are described for the consistency.  

The schema Detected defined below is used to store the information about the reported events from 

any sensor to an actor. The schema consists of three variables, namely, reporting sensor identifier, the 

event details and action having two values, that is, completed or required. 

Action ::PENDING COMPLETED 

Detected 
sensor: Node 

data:  Data 

action: Action 



In case of sensor definition, only neighbor identifiers were defined, but in case of actors, more 

information about neighbors is required. This is because a sensor needs only to sense the event and 

report to the responsible actor(s). However, the actor is assumed more powerful and its job is to 

coordinate with other actors to complete the activity efficiently, accurately and effectively after 

receiving the information from the sensors. That is why it needs more information about its neighbors. 

The schema Neighbour (used in definition of actor) consists of five variables, namely, neighbour 

(identifier), neighbours, type, criticality and distance. The variable criticality is used because non-

critical backup is preferred and, hence, this information is required for backup identification and 

assigning. The distance variable is used as it is also required for backup assigning and analysis. 
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Type ::ACTOR SENSOR 

Neighbour
neighbour: Node 

neighbours:  Node 

type: Type 

criticality: Criticality 

distance:  



As wireless sensor actor networks employs a number of sensors that report to actors and the 

concerned actors respond to events by following the network topology in order to prevent any serious 

consequences. The network is denoted by the schema WSAN which consists of three components, that 

is, sensors, actors and topology. The sensors is a power set of Sensor and similarly actors is a power 

set of Actor. The definitions of sensor, actor and topology are already described by using the schemas 

Sensor, Actor and Topology, respectively. All of these three main components of the network are put in 

first part of the schema and invariants are defined in second part of the schema in terms of predicates 

for well definedness. 

WSAN 
Topology 

sensors:  Sensor 

actors:  Actor 


s: Sensor s  sensors s . id  nodes   

n: Node n  nodes  s: Sensor s  sensors n = s . id
      a: Actor a  actors n = a . id
s: Sensor s  sensors 

   nbr: Node nbr  s . neighbours s . id nbr  edges 

a: Actor a  actors a . id  nodes 

a: Actor a  actors a . id a . backup . neighbour  edges 

a: Actor a  actors nbr: Neighbour nbr  a . neighbours 

        a . id nbr . neighbour  edges 

actor: Actor actor  actors 

   sensor: Sensor sensor  sensors actor . id = sensor . id 

s: Sensor s  sensors 

   a: Actor; path: seq Node a  actors  ran path  nodes 

        i:  i  dom path  i  1 .. # path - 1 path 1 = s . id 

                path # path = a . id  path i path i + 1  edges 



Invariants: (1) Every sensor of the WSAN is a node in the topology. (2) Every node in the 

topology is either a sensor or an actor of the WSAN. (3) Every neighbour of every sensor is connected 

in the topology. (4) Every actor of the WSAN is also a node in the topology. (5) Any neighbour of the 
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backup of an actor is not connected directly to the actor. (6) Every neighbour of every actor is 

connected with the actor in the topology. (7) For every actor there is a sensor having same identifier, 

that is, every actor acts as a sensor as well. (8) For every sensor there is a path from the sensor itself to 

some of the actors in the network. That is for every sensor there is, at least, one actor responsible for 

receiving information and performing an action. The path is defined as a sequence of nodes. The first 

element in the sequence is sensor and the last element is actor. Further, for every pair of consecutive 

elements in the sequence, it is an ordered pair and an edge in the network topology.  

As we know, failure of a critical actor divides the network into disjoint sub-networks. Hence, 

identification of critical actors is important after deployment of the network. Formal specification of 

identifying critical nodes is given below using the schema CriticalsIdentification. The schema takes 

WSAN as input and returns the set of critical nodes as output by using the criticals! variable. In Z 

notation, the symbol “!” is used after end of the output variable. As defined in the informal description 

of PCR algorithm, it employs a simple localized cut-vertex detection procedure that only requires  

1-hop positional information to detect critical nodes. The 1-hop information is stored in terms of 

neighbors of any node. The formal description of the critical nodes identification procedure is given in 

second part of the schema and its informal description is provided in terms of properties following the 

schema.  

CriticalsIdentification
WSAN 

criticals!:  Actor 


a: Actor a  criticals! a  actors 

criticals! = a: Actor 

        a  actors  sa, sb:  Node sa  nodes \ a . id  sb                                                    

 nodes \ a . id sa  sb =  n1, n2: Node n1  sa  n2  sb 

            path: seq Node ran path  nodes \ a . id
            i:  i  dom path  i  1 .. # path - 1 

            path 1  n1  path # path  n2 

          path i path i + 1 edges \ n: Node 

            n  nodes \ a . id  a . id n a


Properties: (1) Every critical node must be an element of the set of actors of the WSAN. (2) The 

set of critical actors of WSAN is identified and calculated as follows: if the critical node is removed 

from the network then the network is divided into at least two disjoint sub-networks. That is after 

removal of critical node from the network there exists at least two sets A and B of nodes such that A  

B =  and there does not exist any path from some nodes of A to some nodes of B. Hence if the 

network is partitioned after removal of a node from the network then the node is identified as critical 

and put into the set of critical nodes. 

Once the critical actors are identified, it needs to select and designate an appropriate neighbor to 

each critical as a backup. The formal specification of the criteria assigning a backup node is given 

below using schema BackupAssigning. The selection of backup is based on the following procedure: it 
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is determined that the backup is critical or non-critical. A non-critical actor is preferred to serve as 

backup. A non-critical actor with the least degree is a suitable candidate. The close backup actor is 

preferred in order to reduce the movement overhead and shorten the recovery time.  

BackupsAssigning 
  WSAN 

CriticalsIdentification 


    a: Actor | a  criticals!  (nbr: Neighbour 

        | nbr  a . neighbours   nbr . criticality = NONCRITICAL 

         (nbr1: Neighbour | nbr1  a . neighbours 

         nbr1  nbr  nbr . neighbours   Node  nbr1 . neighbours   Node 

             # nbr . neighbours  # nbr1 . neighbours)  a . backup = nbr) 

         (nbr1: Neighbour | nbr1  a . neighbours 

        (nbr2: Neighbour | nbr2  a . neighbours  nbr2  nbr1 

             nbr1 . distance  nbr2 . distance)   a . backup = nbr1)  



Properties: For every critical actor of WSAN as identified by the above schema, the backups are 

assigned by the following criteria: backup must be preferably non-critical, has the least degree among 

its neighbours and, has least distance as compared to all other backup candidates. 

In the above schemas, a formal procedure of identifying the critical nodes is defined and then a 

criteria of assigning a backup to the critical node is described. Now formal specification of assigning 

backups to the critical nodes is described below using the schema CriticalsBackups. The schema takes 

WSAN as input and assigns the backups to the critical nodes using the variable cribackups!. At first the 

critical node is verified and then an appropriate neighbor to the critical node is assigned as a backup 

meeting the required criteria. In the backup assigning, initially, the backup neighbor is preferred to be 

non-critical. Then least degree and close distance properties are verified as preferred requirements. If 

no such backup exists, then the condition of non-criticality is relaxed, however, the other conditions of 

assigning the backup must be satisfied.  

CriticalsBackups
WSAN 

cribackups!:  Actor 


a: Actor a  cribackups! a  actors 

cribackups! 

  = a: Actor a  actors 

       sa, sb:  Node sa  nodes \ a .id  sb  nodes \ a .id
         sa  sb =   n1, n2: Node n1  sa  n2  sb 

         path: seq Node ran path  nodes \ a . id
         i:  i  dom path  i  1 .. # path - 1 path 1  n1 

       path # path  n2  path i path i + 1  edges \ n:                                                    
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Node n  nodes \ a . id a . id n
        nbr: Neighbour nbr  a . neighbours 

        nbr . criticality = NONCRITICAL  nbr1: Neighbour 

          nbr1  a . neighbours  nbr1  nbr 

        nbr . neighbours   Node  nbr1 . neighbours   Node 

          # nbr.neighbours# nbr1.neighbours  a .backup = nbr
        nbr1: Neighbour nbr1  a . neighbours 

        nbr2: Neighbour nbr2  a .neighbours  nbr2  nbr1 

          nbr1.distance  nbr2.distance  a.backup = nbr1a


Properties: (1) Every critical node for which the backup is required, must be an element of the set 

of actors of the network. (2) In this property, first of all, it is verified that the node is critical for which 

backup is required by using the same logic as used in identification of critical nodes. Then existence of 

non-critical node among the neighbors is checked for assigning the backup, and if such a node exists it 

is assigned as a backup preferably with least degree and least distance for movement in case of 

recovery of the network. If there does not exist a non-critical node in the neighbors then a critical node 

might be assigned by meeting the other two conditions of least degree and least distance. If a  

non-critical node does not exit and there are more than one critical nodes with the same degrees of 

incidence then the node with minimum distance of movement will be selected as a backup node. In the 

property, the same process is repeated and defined for all the critical nodes for assigning the backups. 

Formal specification of verifying a failure node is described below by the schema Failure in the 

network topology. The node to be verified as failure is given as input and is checked if it is connected 

in the network topology. The symbol "?" at the end of failure? variable shows that it is an input to the 

schema Failure. This is a common practice in Z notation in defining input to any operation. The 

symbol used before WSAN in the schema shows that state of the schema is changed. 

Failure 
WSAN 

failure?: Actor 


failure?  actors 

failure? . neighbours = 
failure? . connectivity = DISCONNECTED 

nodes' = nodes \ failure? . id
edges' = edges \ n: Node n  nodes  failure? . id n  

edges  failure? . id n
actors' = actors \ failure?
s: Sensor s  sensors  a: Actor a  actors 

        path: seq Node ran path  nodes 

             i:  i  dom path  i  1 .. # path - 1 

                  path 1  s . id   path # path  a . id 

                      path i path i + 1  edges 


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Properties: (1) The failure node is an element of the set of critical nodes. (2) There does not exist 

any neighbor of failure, that is, the node is disconnected from the network. (3) The status of the failure 

node is disconnected in the connectivity variable. (4) The network topology is updated by removing 

the node from the set of nodes. (5) The network is disconnected and updated by removing all the edges 

incident at the failure node. (6) The set of actors is also updated in the network. (7) Finally, it is 

verified that there exist some sensors which cannot communicate with any of the actors to prove that 

network is disconnected.  

Once the failure node is detected and verified, the recovery process is initiated. The formal 

specification of the failure recovery is described by the Recovery schema. At each step of movement of 

a node few links will be removed and some others will be added. In formal specification, four variables 

are defined in addition to WSAN schema. The first one failure? variable represents the failure node 

which will be replaced with a new node named as replaced!. The other two variables represent 

removed and added links after movement of a node from its own position to replace the neighbor.  

Recovery 
WSAN 

failure?, replaced!: Actor 

brokenlinks:  Node  Node
newlinks:  Node  Node

failure?  actors 

replaced!  actors \ failure?
replaced! = failure? 

actors' = actors \ failure? sensors' = sensors 

nodes' = nodes \ failure? . id
edges' = edges \ brokenlinks  newlinks 

s: Sensor s  sensors' 

   a: Actor; path: seq Node a  actors'  ran path  nodes' 

        i:  i  dom path  i  1 .. # path - 1 path 1 = s . id 

                path # path = a . id  path i path i + 1  edges' 



Invariants: (1) The failure node exists in the set of nodes of the old topology. (2) The replaced 

node is not the failure node and is an element of the set of nodes of new topology. (3) The position of 

failure node is replaced with the newly replaced node. (4) The state of actors is updated after removing 

failure node from the collection of old actor-set. (5) The state of set of sensors is not changed. (6) The 

set of nodes of the topology is also updated after removing the failure node from the collection of old 

node-set. (7) The communication links of the network topology are also updated by removing the 

broken links and adding the newly established links. (8) Finally, it is verified that the network is 

connected, that is, for every sensor there is, at least, one actor such that there exists a path from the 

sensor to the actor in the network topology. 
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5.5. Model Analysis Using Z/Eves 

In this section, model analysis is done for the specification. It is noted that although computer tools 

improve the quality of software systems, on the hand, there does not exist any real computer tool which can 

ensure complete correctness of a model. It means even if the specification is well-written using any of 

the specification languages, it may still contain potential errors. That is an art of writing a formal 

specification that never guarantees that the system is correct, complete and consistent. However, if the 

specification is analyzed with computer tools it increases a confidence over the system to be developed. 

The Z/Eves is one of the powerful tools used for the analysis of Z specifications which is applied to 

analyze the system‟s schema expansion, pre-condition calculation, domain checking, syntax and type 

checking, and theorem proving. This is why we have used Z/Eves for analyzing the Z specification of 

hybrid connectivity restoration algorithm for WSAN. A snapshot of the specification analysis is 

presented in Figure 7. The first column on the left of the figure shows syntax checking and the second 

column represents the proof correctness of the specification. The symbol „Y‟ shows that the formal 

specification is syntactically correct and proof is also correct, while the symbol „N‟ represents that 

errors exist. All the schemas are checked to prove that specification is correct in syntax and has a 

correct proof. Some schemas of the specification were proved using reduction techniques available in 

the toolset. 

Figure 7. Snapshot of the model analysis. 

 

Summary of the analysis is presented in Table 1. In first column of the table, name of schema is 

given. The symbol “Y”, in column 2, indicates that all schemas are well-written and proved. Similarly, 

domain checking, reduction and proof by reduction are represented in columns 3, 4 and 5, respectively. 

The character “Y*” annotated with „*‟ shows that the schema is proved by performing reduction on the 

predicates part to make specification more meaningful. 
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Table 1. Results of model analysis. 

Schema Name Syntax Type Check Domain Check Reduction Proof 

Topology Y Y Y Y 

Sensor Y Y Y Y 

Detected Y Y Y Y 

Neighbour Y Y Y Y 

Actor Y Y Y* Y 

WSAN Y Y Y* Y 

CriticalsIdentification Y Y Y* Y 

BackupsAssigning Y Y Y* Y 

CriticalsBackups Y Y Y* Y 

Failure Y Y Y* Y 

Recovery Y Y Y* Y 

6. Results and Analysis 

In addition to specification analysis, we validated the effectiveness of PCR through extensive 

simulations. This section describes the simulation environment, performance metrics and  

experimental results. 

6.1. Experiment Setup and Performance Metrics 

In the simulation experiments, we have created connected inter-actor topologies that contain 

varying numbers of nodes (20–100). Nodes are deployed randomly in an obstacle-free area of  

1,000 m  600 m. To observe the impact, we have changed the transmission range of actors (50–200). 

The following performance metrics were used to assess the performance: 

o The total distance moved by all nodes involved in the recovery: This reflects the efficiency of 

PCR in terms of energy efficiency and movement overhead incurred during recovery. 

o The number of nodes engaged during the recovery: This metric indicates the scope of the 

recovery process. 

o The number of messages required to coordinate recovery among nodes: Again this metric 

gauges the communication overhead during recovery and ultimately affects energy dissipation.  

o The percentage of coverage reduction relative to the pre-failure level: Although the prime 

concern of PCR is to restore connectivity, however, node coverage is important for many 

setups. In addition to coverage loss due to node failure, the recovery process may negatively 

impact coverage. This metric assesses the effectiveness of PCR in terms of coverage reduction.  

o The degree of connectivity maintained after recovery: This metric indicates the availability of 

node independent paths and is measured by averaging the number of neighbors for each node.  

The following parameters were used to vary the WSAN configuration in the experiments: 

o The number of actor nodes (N) in the network affects the node density and the inter-actor 

connectivity.  

o The node communication range (r) influences the network connectivity and highly affects the 

recovery overhead in terms of movement distance and scope of recovery.  
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6.2. Baseline Approaches 

We compare the performance of PCR to the baseline approaches DARA [3], RIM [13] and  

DCR [27]. Like PCR, baseline approaches are distributed and exploit node mobility to restore 

connectivity. However, their procedures are different. When a node F fails, DARA selects a best 

candidate A among its 1-hop neighbors and replaces it. The algorithm is recursively applied to tolerate 

connectivity loss due to movement, i.e., A will be replaced with one of its neighbors and so on. On the 

other hand, RIM moves all the 1-hop neighbors towards F until they become connected. Like DARA, 

RIM is applied recursively to re-establish links affected by nodes movement. Both DARA and RIM 

are reactive schemes and do not provide for recovery ahead of time. Like PCR, DCR is a hybrid 

scheme that assigns a highest degree node as a backup.  

6.3. Results and Analysis 

The simulation experiments involve randomly generated topologies with varying actor counts and 

communication ranges. The number of actors has been set to 20, 40, 60, 80 and 100. The 

communication range of actors is changed among 50, 100, 150 and 200. When changing the node 

count, “r” is fixed at 100 m; and “N” is set to 60 while varying the communication range. Like baseline 

approaches, PCR is meant to recover from single actor failure. PCR may handle multiple node failures 

if they are far apart from each other and cause no conflicts during recovery. However, PCR and 

baseline approaches for a single node failure are not guaranteed to converge. Simultaneous failure of 

multiple nodes may cause conflicting conditions for PCR to converge successfully. Generally, the 

possibility of multiple simultaneous actor failure is exceptional; however, it may precipitated by 

disastrous events such as explosions in a battlefield. In such a case, failed actors are usually co-located. 

Recovery from such failures is very challenging and requires careful consideration. To handle a special 

case of multi-node failure, we have presented RAM in [27]. In the experiments, we identify critical 

actors and choose a cut-vertex at random to be failed. The results of individual experiments are 

averaged over 30 trials to ensure statistically stable results. All results are subject to 90% confidence 

interval analysis and stays within 10% the sample mean.  

Total distance moved: Figure 8(a,b) show the total distance traveled by nodes involved in recovery. 

PCR significantly outperforms reactive schemes, i.e., DARA and RIM, because it strives to move non-

critical nodes in order to prevent successive relocations. Both the graphs suggest that the performance 

advantage of PCR remains almost consistent while varying N and r. This is because PCR strives to 

avoid moving critical nodes that causes further partitioning and requires cascaded relocations. 

Furthermore, PCR only performs cascaded relocations in case non-critical backup in the neighborhood 

is not available. Figure 8(a) indicates that the performance of PCR scales very well and is not affected 

by the node density because of choosing non-critical nodes as backup. Similar observation can be 

made for the communication range as in Figure 8(b), where the movement overhead is significantly 

less as compared to the reactive schemes. However, PCR slightly performs worse than DCR. This is 

because DCR prefers to engage strongly connected nodes as backup. The rationale is that there is more 

probability to have non-critical nodes in the neighborhood of highly connected nodes. 
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Number of moved nodes: Figure 8(c,d) report the scope of recovery when PCR and the baseline 

approaches are applied. The graphs confirm the performance advantage of PCR which moves fewer 

actors than reactive schemes. This is because PCR limits the scope of recovery and avoids successive 

cascaded relocations by choosing non-critical nodes as backup. Furthermore, the performance of PCR 

remains almost constant while varying N and r, which indicates great scalability. However, again DCR 

slightly moves less number of nodes than PCR due to the same reason mentioned above.  

Number of messages exchanged: Figure 8(e,f) show the coordination messaging overhead as a 

function of the N and r. As expected, hybrid schemes (PCR and DCR) cause far less coordination 

overhead than DARA and RIM. This is because they limit message exchange only between a pair of 

primary and backup instead of all 1-hop and 2-hop neighbors as is the case in RIM and DARA 

respectively. In addition, unlike reactive schemes, PCR and DCR strive to engage non-critical nodes in 

the recovery which does not require coordination messages. Figure 8(e) shows that the messaging 

overhead of reactive schemes increases with the high node density. This is because the number of  

1-hop and 2-hop neighbors increases. Moreover, Figure 8(e,f) indicate that the messaging overhead in 

RIM significantly grows for a high actor density and long communication range because the number of 

recovery participants increases in both cases. On the other hand, the performance gap between PCR 

and DCR is minor relative to DARA and RIM. 

Figure 8. The total movement distance as a function of N in (a) and r in (b). The effect of 

changing N (c) and r (d) on number of nodes moved. Number of coordination messages, as 

a function of N in (e) and r in (f). 

  

(a) (b) 

  

(c) (d) 
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Table 8. Cont. 

  

(e) (f) 

Figure 9. The coverage reduction after recovery, as a function of N in (a) and r in (b). 

Degree of connectivity after recovery, while varying the network size (c) and radio range (d). 

  

(a) (b) 

  

(c) (d) 

Percentage of coverage reduction: Figure 9(a,b) report on the impact of recovery on coverage, 

measured in terms of percentage of coverage reduction relative to the pre-failure level, while changing 

the N and r. The action range is set to 50 m throughout these experiments. Overall, DCR confines the 

coverage loss and consistently outperforms other schemes. This result is attributed to the fact that 

moving highest degree nodes reduces overlapped coverage with neighbors and occupies the vacant 

spot. Figure 9(a) demonstrates that increasing the node density helps, other schemes in mitigating the 

coverage loss. The limited scale relocation slightly helps PCR to minimize loss of coverage.  
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Figure 9(b) indicates that the performance of RIM significantly worsens when growing the 

communication range. This is because RIM collectively engages neighbors in recovery and with the 

increased value of r, the network becomes more connected and the number of neighbors of F grows. 

RIM moves nodes inwards making the area around F to be more crowded (as we shall see later) while 

leaving uncovered parts at the network periphery and thus causes a significant loss of coverage. On the 

other hand, the schemes that employ a node in recovery among neighbors is not much affected while 

increasing the communication range. 

Degree of connectivity: Figure 9(c,d) demonstrate the degree of connectivity preserved by all 

approaches after recovery. Both figures clearly indicate that PCR maintains the same degree of 

connectivity as the other approaches despite several other performance advantages. This is mainly 

because PCR prefers to move non-critical and/or least degree nodes that have nominal repercussions 

on the connectivity. 

7. Conclusion and Future Work 

This paper has presented a hybrid partitioning detection and connectivity restoration algorithm for 

mission-critical applications of WSANs. Unlike most published schemes, PCR pursues pre-failure 

planning to distinguish between critical/non-critical nodes and designates an appropriate backup for 

each critical actor. The pre-designated backup continuously monitors and triggers a recovery in case of 

primary failure. The correctness and performance of the proposed scheme is validated through formal 

and simulation techniques respectively. We modeled the WSAN network as a dynamic graph and 

transformed PCR into a corresponding formal specification using Z notation. This formal specification 

is analyzed and validated using the Z Eves tool. Moreover, the performance of PCR is validated 

through extensive simulations. Simulation results have confirmed the effectiveness of PCR compared 

to contemporary schemes found in literature. In the future, we plan to evaluate the performance of 

PCR through a testbed network consisting of mobile robots.  
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