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Abstract: There are now a great many domains where information is recorded by sensors 
over a limited time period or on a permanent basis. This data flow leads to sequences of 
data known as time series. In many domains, like seismography or medicine, time series 
analysis focuses on particular regions of interest, known as events, whereas the remainder 
of the time series contains hardly any useful information. In these domains, there is a need 
for mechanisms to identify and locate such events. In this paper, we propose an events 
definition language that is general enough to be used to easily and naturally define events 
in time series recorded by sensors in any domain. The proposed language has been applied 
to the definition of time series events generated within the branch of medicine dealing with 
balance-related functions in human beings. A device, called posturograph, is used to study 
balance-related functions. The platform has four sensors that record the pressure intensity 
being exerted on the platform, generating four interrelated time series. As opposed to the 
existing ad hoc proposals, the results confirm that the proposed language is valid, that is 
generally applicable and accurate, for identifying the events contained in the time series. 
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1. Introduction 

There are now a great many domains where sensors record a lot of information as data streams for a 
set time period or on a permanent basis. Those data streams are then analysed with the aim of 
extracting useful knowledge from the information recorded by the sensors. 

There are different approaches to analysing data in search of useful information. One approach 
relies on the process known as knowledge discovery in databases (KDD), which is a non-trivial 
process that aims to extract useful, implicit and previously unknown knowledge from large volumes of 
data. Data mining is a discipline that forms part of the KDD process and is related to different fields of 
computing, like artificial intelligence, databases or software engineering [1]. Data mining techniques 
can be applied to solve a wide range of problems. Techniques used to solve problems related to the 
study of phenomena measured with sensors in particular are very important. 

There are a lot of data mining techniques and algorithms for analysing single-valued data. However, 
domains where large volumes of data are generated and recorded by sensors as continuous streams, 
such as measurements by seismographs, patient monitoring devices or fire detection mechanisms, are 
increasingly common. This type of data, called time series, have peculiarities whose analysis requires 
specialized techniques. 

Formally, a time series can be defined as a sequence TS of time-ordered data TS = {TSt, t = 1,…,N}, 
where t represents time, N is the number of observations made during that time period and TSt is the 
value measured at time instant t. In some domains, the value of not one but several observations might 
be measured at each time point, leading to multidimensional time series. 

There are many well-known problems in time series analysis and different data mining techniques 
to solve them. Most time series analysis techniques consider whole time series [2,3]. However, there 
are many problems where it is requisite to focus on certain regions of interest, known as events, rather 
than analysing the whole time series [4]. This applies in areas concerned with analysing momentary 
events. One example is seismography, where the points of interest occur when the time series shows an 
earthquake, volcanic activity leading up to the earthquake or replications. 

From the viewpoint of information theory, the concept of time series event is closely related to the 
concept of entropy [5,6]. System entropy means the amount of information contained in a set of system 
symbols. In our case, the systems are time series, and the events are regions of the series that contain 
more information, that is, that have greater entropy. 

The conception of what an event is varies from domain to domain. Suppose, for instance, that the 
events of the time series in a particular domain are the peaks generated by the local maxima. Given 
two time series, SA and SB (Figure 1), there are two regions of interest in series SA and three in series 
SB. Let us assume that the interesting features of the events in this particular domain are Duration and 
Amplitude. Comparing the two series, we find that the first event in SA (EA1) is very like the second in 
SB (EB2) because both events have a similar duration and amplitude. The third event in SB (EB3) is also 
very like the second in SA (EA2). In this case, series SA and SB have two events in common and are, 
therefore, very alike. 
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Figure 1. Charts showing two time series and event features. 

 

To be able to extract useful knowledge from time series containing events, it is necessary to first 
identify those events, as they are the only regions of the time series that provide information of 
interest. For example, to extract conclusions about the characteristics of seismographic phenomena in a 
particular geographical region, we will have to analyse those instants recorded by the seismograph that 
match up with the occurrence of such phenomena, as the information recorded in the remainder, when 
there is no seismic activity at all, is of no interest to the expert. The identification of such events is an 
open problem. Most existing techniques do not solve this problem: they are either only applicable in 
particular domains for which they propose ad hoc mechanisms or they propose the identification of 
meaningless landmarks of the series that are as they do not include any expert knowledge. To solve 
this problem, we propose an events definition language for multi-dimensional time series. This 
language is designed to be general enough for application in any domain. After the events have been 
defined, a translation tool designed as part of this research automatically generates source code in a 
high-level language that can be instantiated by specific time series, returning a list of events that they 
contain. This tool manages to reduce the dimensionality of the series whereby they can be converted 
into a sequence of events that make sense to the expert. To test the validity of this language, it was 
applied to time series generated in the medical field of stabilometry. Stabilometry is a discipline 
looking into human balance. A device, called posturograph, is used to study balance-related functions. 
The patient stands on a platform and completes a series of tests. We used a static Balance Master 
posturograph. In a static posturograph, the platform on which the patient stands does not move. The 
platform has four sensors, one at each of the four corners: right-front (RF), left-front (LF), right-rear 
(RR) and left-rear (LR). While the patient is completing a test, these sensors record the pressure 
intensity being exerted on the platform, generating four interrelated time series. 

The proposed language, which will be described in Section 3, will be applied to this type of time 
series. The results of applying the language will be discussed in Section 4, whereas the findings and 
future work will be detailed in Section 5. Beforehand, we will present work related to this article in 
Section 2. 
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2. State of the Art  

In this section, we describe techniques concerned with time series events analysis, where events 
mean regions of a time series that provide meaningful information. One of the first proposals for 
analysing time series events was presented in [7], describing a framework called TSDM. TSDM was 
based on the definition of an events characterization function to determine how far ahead an event can 
be forecast. Clustering techniques are used as a tool for grouping event forecasting patterns. The 
method was applied to financial time series with the aim of forecasting when there will be a steep 
increase in the value of a company on the stock exchange, as there is an interesting buying opportunity 
just before the increase. Figure 2 shows a time series representing a stock exchange price. The 
diamonds present the stock exchange value, whereas the boxes denote buying opportunities. 

Figure 2. Financial time series. 

 

Other proposals, like [8], resemble the above technique, except that, in this case, there is a priori no 
knowledge on the form of the patterns preceding an event. This technique also proposes a way of 
identifying events. By applying a function of interest to each possible subsequence of the time series, 
only subsequences obtaining a value of interest greater than a certain threshold are considered as 
events. This process, however, looks to be too costly from the computational viewpoint, as a window 
would have to move over the time series and evaluate the function of interest for each subsequence. 
Additionally, this process would have to be repeated for all possible window sizes, as, generally, the 
events duration is not known beforehand.  

Event identification is one of the major challenges, as they are the only time series regions that 
provide information of interest from which the expert can to extract useful knowledge. There are 
proposals in this respect. Guranik and Srivastava [9] propose dividing the time series into subsequences, 
which are further divided until they meet a particular stopping condition. The basic idea of this 
proposal is to divide the time series using change points, that is, points at which the behaviour of the 
time series changes. 

The technique described in [10] has some similarities with the above in the sense that it is based on 
analysing the time series landmarks, which are the maximum, minimums and break points. They 
propose a procedure called Minimal Distance/Percentage Principle (MDPP) to smooth the curves, 
storing only 1.5% of the original data of the time series, and with an error of only 7.5%. This 
smoothing procedure is based on the idea of removing the landmarks when they are very close to each 
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other on both the x- and y-axis. They consider the use of a series of transformations (amplitude, time 
warping,…) that they apply to the landmarks. The technique proposes to store characteristics of the 
maximums and minimums of the curve. Several of these characteristics are invariant when some 
transformations are applied, and only the invariant characteristics are taken into account when 
searching similar series under particular transformations. For example, if the time warping 
transformation is applied to the landmarks of two series and the distance after that transformation is 
less than a particular threshold, we can conclude that those two series are similar but one is 
compressed with respect to another, that is, if we temporally compress one of the series, we get the 
other or a similar series. 

The above two techniques have a drawback; they do not use expert knowledge to determine the 
regions of interest of the series but are based on the analysis of certain landmarks of the series like the 
extreme points or break points. These proposals are insufficient as, in many domains, the conditions 
for determining events go beyond the mere identification of a landmark. 

Another method is proposed in [11] to build reference models from heterogeneous time series, that 
is, the magnitude measured in each time series does not necessarily have to be the same. This is a very 
versatile scheme but also has the drawback of requiring a previous step to transform the time series to 
the same magnitude. The method is based on the previous transformation of the time series to a set of 
events, which are subsequences of the time series that meet certain conditions. The process of 
determining these conditions is highly dependent on the domain in question and many low-level 
changes are required to move from one domain to another. Once the time series have been divided into 
events sequences, they are analysed using artificial intelligence techniques, known as interval temporal 
logic (ITL). 

ITL is based on defining relationships among temporal intervals (precede, coincide, contain, etc.). 
An algorithm using ITL elements is defined to extract associations among the different events to 
determine, for example, what events precede others, what events coincide with others, etc. The 
technique has been evaluated with time series that measure wind speed and air pressure in Beijing. 
Interesting temporal patterns relating both magnitudes were obtained after applying the technique to 
those data. 

The events definition language proposed as result of our research aims to solve the limitations of 
the above approaches that focus solely on one-dimensional time series analysis and are insufficient for 
identifying events in any other domain because they are not very portable, they do to use expert 
knowledge necessary to correctly define what an event is in each domain, and are not applicable to 
multidimensional time series.  

3. The Proposed Solution: An Events Definition Language in Time Series 

There are few proposals in the literature that deal with the problem of event identification. In actual 
fact, methods usually divide a time series into subsequences based mainly on statistical concepts such 
as the change point. Many such techniques are not general enough for use in different domains as each 
domain is different to the others and therefore the conditions determining whether something is or is 
not an event are particular to each domain. 
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This is compounded by the circumstance that most techniques deal with events in one-dimensional 
time series, obviating the complexity arising when we have multidimensional time series, as there may 
be dependencies among the different attributes (dimensions) of the time series. 

To overcome the weaknesses of existing techniques, which may not be general enough for use in 
different domains and with multidimensional time series, we have proposed a formal events definition 
language enabling domain users to define events in domain time series. Apart from that language, we 
have developed a translator that checks whether an events definition obeys the language rules and is 
lexically, syntactically and semantically correct. Otherwise, errors are reported to the user. When the 
events definition is correct, it is translated to source code in a high-level language, automatically 
generating a module that contains the source code to identify the events in the time series of the 
respective domain. This module provides a method that outputs the events identified in the time series 
that it receives as a parameter. In this section, we give an overview of the proposed language and the 
developed translation tool. 

3.1. Language Description 

To specify the events definition language, we have followed a process that aims to simulate how a 
human being visualizing a time series naturally locates events. When identifying events, people 
intuitively try to locate points in the series that have certain particularities. Generally, these are points 
at which the series takes an outlier value in relation to the other points of the series. These points are 
usually maximums, minimums, points at which the series intersects a particular value, etc. Sometimes, 
these points of interest have to be filtered to determine which are really interesting and which do not 
meet the necessary conditions to be so. After locating the points of interest, human beings try to search 
backwards in the series for the point that meets a particular condition and determines the start of the 
event. Similarly, they search forward in the series to determine where the event ends. Normally these 
start and end points are points at which the series is or returns to normal before and after the 
occurrence of the event.  

The proposed language uses basic concepts of set theory, logic, algebra and descriptive statistics. 
Set theory is necessary as the points of interest of the series are located by means of a process of 
refining more general sets of points as described earlier. Logic is required to establish the conditions 
that determine what really is a point of interest in the series and what conditions such points have to 
meet to be part of an event. Algebra plays a fundamental role as arithmetic operations are needed to 
perform calculations on sets of points of interest in the series and their respective value. Finally, 
descriptive statistics is used to represent the normality or stability of the series, where such normality is 
represented by means of descriptive measures of centralization and dispersion, such as the mean, mode 
or standard deviation. These measures are used to determine regions of the series that are removed 
from normality and have high entropy and which, therefore, are potential events. 

From the formal viewpoint, the proposed language uses a ALFEUC-type description logic 
(according to the usual naming convention based on labels) [12], that is, a description logic with a base 
language (AL) that models concepts, roles and individuals and also includes functional properties (F) 
to characterize events using descriptive statistics, full existential qualification (E) to algebraically 
model the comparison against models or patterns and concept union (U) and negation (C) to process 
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time series according to set theory. Some of the elements of the language are predefined and others 
will have to be defined for each particular domain. The aim is to offer a simple language that is 
comprehensive enough to be generally applicable. The events definition procedure is as follows: 

1. Define the set of points of interest in the time series, which will be the basis for defining events. 
Note that these sets refer to time instants (timestamps) and not to the value that the time series 
takes at that time instant. Therefore, these sets will be ordered, will not contain repeated 
elements and will include only positive integer values. 

2. Use of the basic language elements and the sets of points of interest to define the events. 
We have devised a series of basic predefined elements for the events definition language that 
will usable in any domain and should be helpful to users who will not have to define such 
elements. These elements are outlined in Table 1. 

Table 1. Basic events definition language elements. 

Basic Elements Description 

Time series 
Definition 

Ordered set of measurements in a time interval., 
Dimensions are conceived as interdependent mathematical 
functions in multidimensional time series 

Examples stockexchange_price series; 

Statistical measures 
Definition 

A series of basic predefined statistical measures is defined 
for each dimension 

Examples 
Average (avg), mode (mode), median(med), standard 
deviation (stdev) and variance (var) 

Sets of predefined points 
Definition 

Some points tend to be of interest in most domains, like, 
for example, the moments in the series where a maximum 
is reached 

Examples 
Series timestamps (timestamps), local maxima (max) and 
local minima(min) 

Arithmetical operators 
Definition Basic arithmetical operators 
Examples +, −, *, /, etc. 

Relational operators 
Definition 

Operators that are useful for comparing and establishing 
relationships among elements 

Examples <, >, <=, etc. 

Arithmetical functions 
Definition More sophisticated arithmetical functions 

Examples 
Square root (sqrt), exponent (exp), absolute value (abs), 
etc. 

/…/ /…/ 

Logic operators 
Definition Operators that can be applied to Boolean type data 
Examples AND, OR, NOT 

Set operators 
Definition Operators for handling sets 
Examples ∅, ∩, ∪, ⊃, ⊇, ⊂, ⊆, ∀, ∃, etc. 
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The language also includes other basic elements present in any language, such as, for example, 
identifiers, numerical and logical constants, etc. The body of each events definition is delimited by 
braces and preceded by the reserved word def. The def body contains the three types of elements 
described below. An events definition can include any number of elements provided that they are 
arranged in the following order. 

3.1.1. Statement of Time Series 

The time series can be either multidimensional or one-dimensional, but only real number series are 
considered (if they were integer value series, all the values would be transformed to real numbers). To 
define a time series, we use the reserved word series and, then, we specify the name of the time series. 
A statement can include any number of time series (at least one), where each statement is separated by 
a semicolon (;). The first two rows of Table 2 specify the details of the syntax for stating time series 
together with several examples. 

Table 2. Event definition language syntax. 

Events Definition Parts Description 

Time Series 
Syntax series series_name; 

Examples 
series series1; 
series series2; 

Sets of points 
of interest 

Using 
conditions 

Syntax 
set set_name 
{ id1 in set_name’ 
such that CONDITION }; 

Example 
set MaxMultiples50 
{x in max(STA) such that ((x % 50) == 0)}; 

/…/ /…/ 

Sets of points 
of interest 

Using 
operators 

Syntax set new_set = old_set1 OPERATOR old_set2; 

Examples 
set mySet = mySet1 joint mySet2; 
set mySet’ = mySet1 diff mySet2; 
set mySet’’ = mySet1 intersec mySet2; 

Events 

Syntax 

event event_name 
{ break_point in set_name, 
start in set_name 1, 
end in set_name 2 
such that CONDITION } 

Example 

event ev 
{ break_point in MaxMultiples50, 
start in TSA, 
end in TSA 

such that 
previous(break_point, TSA) == start 
&& next(break_point, TSA) == end }; 

No two time series can have the same name. Once a time series has been defined, it will then be 
able to be used for the definition of statistics and basic sets on the time series. Additionally, time series 
will also be able to be used as part of an arithmetical expression. 
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3.1.2. Definition of Points of Interest/Landmarks 

The sets of points of interest contain timestamps that the domain expert considers to be relevant and 
are the basis for later defining events. A set of points of interest is always defined from a previously 
defined or predefined set. This simplifies the expert’s job. There are two options: 

• Condition-based definition. In this case, sets can be defined based on the elements of  
pre-existing sets by filtering with a condition. To do this, we use the notation described in  
Table 2. The set_name’ identifier must correspond to a previously defined (predefined or 
derived) set. The predefined sets of the language include the set max, which contains all the 
timestamps of a time series in which there exists a local maximum, and the set min, which 
contains all the timestamps of a time series in which there is a local minimum. The scope of the 
id1 identifier is confined to the braces that are used to define the set.  
Table 2 includes an example of a set called MaxMultiples50 composed of the all the timestamps 
of the time series TSA where there is a local maximum and that are multiples of 50. 

• Operator-based definition. In this case, a set is defined from another two sets defined 
previously using the union, intersection and difference operations. The notation used is again 
listed in Table 2. In this case, new_set is the name of the new set that is to be defined and 
old_set1 and old_set2 are previously defined sets. The names of both old_set1 and old_set2 have 
to be different than the name of the new_set. On the other hand, OPERATOR can take the values 
of joint (union), intersec (intersection) or diff (difference). Although it is perfectly possible to 
define these sets using conditions, we have decided to include these operator-based mechanisms 
of definition to make things easier for users. Table 2 includes several examples of the definition 
of sets using the above operators. 

No two sets can have the same name. Once a set has been defined, it can then be used to define 
other sets and to define events. A definition can include any number of sets (even none), where each 
definition is separated by a semicolon (;). 

3.1.3. Definition of Events Proper 

An event type is always defined using points of previously defined sets, and an event break point, 
plus the event start and end points, are determined. The events definition notation is listed in the 
bottom two rows of Table 2. The set_name, set_name1 and set_name2 identifiers must correspond to 
the previously defined sets. These can be the same or different sets. The scope of the break_point is 
confined to the braces used to define the events. 

The bottom row in Table 2 includes an events definition example that uses the set MaxMultiples50 
defined earlier in Table 2. Suppose that, in a particular domain, the points of this set are the break 
points and that the events start at a timestamp before and end at a timestamp after these break points. 
Considering that previous and next are two predefined language operators (respectively returning the 
previous and next element to one given in a particular set), this type of events are defined as illustrated 
in the bottom row of Table 2. 
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3.1.4. Definition of Conditions and Expressions 

The conditions used to define sets of points and events can be built from expressions and relational 
and set operators. Additionally, compound conditions can also be defined using the logic operators and 
(‘&&’), or (‘||’) and negation (‘!’). Moreover, the expressions can be simple or compound. The simple 
expressions can be integer, real or Boolean. A simple expression can be: 

• An identifier 
• An integer constant 
• A real constant 
• A Boolean constant (true or false) 
• The start of an event. This is a special type of identifier that must always have the same name. 

For this purpose, we use the reserved word start. 
• The end of an event. This is a special type of identifier that must always have the same name. 

For this purpose, we use the reserved word end. 
• The break point of an event. This is a special type of identifier that must always have the same 

name. For this purpose, we use the reserved word break_point. 

It is also possible to define compound expressions, making use of the different arithmetic operators, 
the time series access operators and the set operators. 

Even though the events definition language is very rich, there can be circumstances in which it is 
very hard to express some sort of special type of specific operation in any particular domain. To solve 
any such exceptional problem, the language provides for a mechanism whereby the expert, with the 
help of a programming literate assistant, can define functions in a high-level language that will be 
rendered just so in the code generation process. 

These embedded functions will have been defined at the start of the file (before defining the time 
series), specifying their name, output value type, number and type of parameters and including the 
code in the respective high-level language (between the special characters /@ and @/). The syntax is 
as follows: 

extmethod name output_type parameter_no parameter_type* 

/@ 

HIGH-LEVEL LANGUAGE TYPE 

@/ 

; 

That is, we use the reserved word extmethod, the function name, output type, parameter number, 
parameter type and the method code between special characters. We can define as many functions as 
we like, each separated by a semicolon. The admissible types for the output value are bool, int, float 
and void. The admissible types for the input parameters are bool, int and float. The function name and 
types have to match the function name and types defined between the special characters (/@ and @/) 
in the respective high-level language, although this is the language user’s responsibility. 
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A series of video tutorials are available on the YouTube platform, each detailing how to use part of 
the application and the data that it outputs. The video tutorials are currently available in Spanish, as 
this is the language of the experts now using the system (video tutorials in English are to be made 
available to experts in the next phase): 

• Editing events definition files (http://www.youtube.com/watch?v=0tdsPLmbEWA) 
• Correcting errors (http://www.youtube.com/watch?v=v-DQeWY4YVM) 
• Using generated source files (http://www.youtube.com/watch?v=NKcRfZJO61U) 

As mentioned, the above tool enacts a compiler-like translation process, executing different lexical, 
syntactical and semantic analysis and code generation phases. In the following, we describe the design 
decisions taken regarding the events definition language translator for each of the above phases (for a 
more detailed description of translation tool design and implementation issues, see [13,14]). 

3.2.1. Lexical Analysis 

We have designed and implemented a lexical analyser to be able to check the lexical correctness of 
an events definition. The smallest meaningful language elements (tokens) are as follows: 

• <ID, ptr(ST)>  Identifier. In this token, ptr(TS) is the pointer to the respective identifier in the 
symbol table. 

• <PR, ptr(ST)>  Reserved Word. In this token, ptr(TS) is the pointer to the reserved word in 
the symbol table. 

• <INT, num>  Integer constant. For this token, num is the numerical value of the integer 
constant. 

• <REAL, num>  Real constant. For this token, num is the numerical value of the real constant. 
• <BRACE_O,->  Opening brace (‘{’). 
• <BRACE_C,->  Closing brace (‘}’). 
• <SC,->  Semicolon (‘;’). 
• <PAR_O,->  Opening parenthesis (‘(’). 
• <PAR_C,->  Closing parenthesis (‘)’). 
• <COMMA,->  Comma(‘,’). 
• <AOP, n>  Arithmetical operator (n is the operator code, as set out in Table 3). 
• <ROP, n>  Relational operator (ROP operator code in Table 4). 
• <CMDOP, n>  Conditional operator (CMDOP operator code in Table 5). 
• <TSAOP, n>  Time series access operator (TSAOP operator code in Table 6). 
• <SETOP, n>  Set operator (SETOP operator code in Table 7). 
• <FUNCTION, code>  External function. This token represents the source code of a high-level 

function defined in C#. These functions are a resource for use in circumstances where it is very 
hard to express some sort of special type of operation with the proposed language. A function is 
not considered as a token in a high-level language. In this case, however, it is a smallest 
meaningful element that can be seen as a character string that will be rendered unchanged in the 
code generation process. 
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Tables 3 to 7 list the different types of language operators and their associated numerical code. 

Table 3. Arithmetic operators. 

AOP + - * / % abs exp sqrt 
n 0 1 2 3 4 5 6 7 

Table 4. Relational operators. 

ROP = = != < <= > >= 
n 0 1 2 3 4 5 

Table 5. Conditional operators. 

CMDOP && || ! 
N 0 1 2 

Table 6. Time series access operators. 

TSAOP .value f’ f’’ 
N 0 1 2 

Table 7. Set operators. 

SETOP n 
= 0 
in 1 

joint 2 
intersec 3 

diff 4 
subc 5 

subcp 6 
sup 7 

supcp 8 
exists 9 
forall 10 
isfirst 11 
islast 12 
next 13 

previous 14 

To recognize the language tokens, we have built a regular grammar and a deterministic finite 
automaton, which is extended with a series of semantic actions. Both are detailed in the following. 
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The lexical analyser grammar productions for the events definition language are as follows: 
A  l’K | dN | { | } | ( | ) | ; | , | + | - | * | % | /C | = P | !Q | <R | >S | &T | |U | fV | delA | .Z 

K  lK | dK | λ 

C  / D | @EM | λ 

D  c’D | CAR A 

EM  c’’EM | @EM’ 

EM’  / 

N  dN | .F | λ 

F  dF1 

F1  dF1 | λ 

P  = | λ 

Q  = | λ 

R  = | λ 

S  = | λ 

T  & 

U  | 

V  ’V1 | lK | dK | λ 

V1  ’ | λ 

Z  vZ1  

Z1  aZ2  

Z2  lZ3  

Z3  uZ4  

Z4  e  

In this grammar, the axiom is A, and the non-terminals are A, K, C, D, EM, EM’, N, F, F1, P, Q, R, 
S, T, U, V, V1, Z, Z1, Z2, Z3 and Z4. 

The other symbols are terminals. There follows a description of some special terms: 

l’ = any letter except ‘f’ 
l = any letter (a-Z) 
d = any digit (0–9)  
del = delimiter (space, tabulator, carriage return) 
c’ = any character except ‘CR’ (carriage return) 
c’’ = any character except at ‘@’ 
CAR = carriage return 

Figure 4 shows the deterministic finite automaton proposed for the time series events definition 
language. 
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Figure 4. Lexical Analyser Automaton. 

 

The automaton includes several semantic actions, which are described below: 

• Read (R): Reads an input file character. 
• PreConcat (PC): Action that is executed when the first character of an identifier is read. It 

places the read character in the first position of the global id variable and sets its length to one, 
where length is a variable parameter indicating the maximum possible identifier length. 
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• Concat (C): Operating like PreConcat, it inserts the read character in the global id variable in the 
relative position indicated by the length variable, increasing this variable by one unit. 

• Classify_Word (CW): An action executed when a lexeme has been received. The mission of 
this action is to determine whether the received lexeme is a reserved word, an operator, an 
identifier already existing in the symbol table or a new identifier. To do this, it searches a table 
that contains the language operators composed of letters (abs, exp, sqrt, etc.) for the read lexeme. 
If it finds the lexeme, it generates the respective token. If it is not an operator, CW will search 
the symbol table to find out whether it is a reserved word. If it is, CW will generate the 
respective token. If it is not a reserved word, it is an identifier and, therefore, CW checks that it 
does not exceed the length limit. If the length is correct, CW checks whether the identifier was 
already in the symbol table, and if not, it inserts the identifier. Finally, CW uses the Generate 
token semantic action to generate the respective token with the symbol table address of the 
identifier or reserved word (as applicable). We have used a hash table to implement the symbol 
table to assure search efficiency. 

• PreCalculateNum (PCN): Action that assigns the number variable to the numerical value 
associated with the read character. 

• CalculateNum (CN): Action used to add the read digit to the number that we have processed. 
To do this, it multiplies the numerical value of the read digit by 10 and adds it to the number 
variable that stores the value of the number read so far. 

• PreCalculateReal (PCR): Action that is executed when reading the first digit of the decimal 
part of a number. The value 1 is assigned to the digit_position variable. Then the read digit is 
divided by the value (10* digit_position) and the result is added to the number variable which 
has been generated while the integer part of the number was read. 

• CalculateReal (CR): Action used to add the read digit to the number that we have processed. To 
do this, it increments the digit_position variable by one unit. Then it divides the read digit by the 
value (10* digit_position) and adds the result to the sum of the number variable that accumulates 
the value of the number read so far. 

• ReadFunction (RF): Action that executes while the C# code of an external function is being 
read. When the first character is read, its length is initialized to 1 and that character is stored in 
the first code position. For the following characters, this action stores the character read at the 
end of the code variable and increments its length by one unit.  

• GenerateToken (GEN_TOKEN <-,->): This action receives one or two parameters and 
generates the respective token accordingly. It checks whether it fits into the two reserved octets 
(less than 216) if it is an integer or into four octets if it is a real number. No further checks are run 
for other non-numerical tokens. 

3.2.2. Syntactic Analysis 

We have designed and implemented a syntactic analyser to check the syntactic correctness of an 
events definition. This syntactic analyser is based on a free context grammar that includes the 
developed events definition language syntax. The details of the grammar are shown in Table 8. 
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Table 8. Syntactic analyser grammar. 

Grammar Elements 
Axiom A 

Terminals 

{def, {, }, serie, id, ; , ‘,’ , (, ), mean, mode, median, stdev, variance, max, min, 
set, in, event, such, that, ||, &&, !, true, false, <=, <, >=, >, ==, !=, .value, f’, f’’, 
+, −, *, /, %, abs, exp, sqrt, integer_cst, real_cst, break_point, start, end, =, joint, 
intersec, diff, subc, subcp, supc, supcp, exists, forall, isfirst, islast, next, 
previous, int, bool, float, void, extmethod, function} 

Non Terminals {A, D, ST, ST1, STAT_TYPE, BS_TYPE, S, CJ, OP_CJ, EV, EV1, SING, BG, 
ED, C, C1, C2, C3, R, E, E1, E2, E3, EM, P, P1, TD, TPS, TPS1, TP} 

Productions 

A  def { D } | λ 
D  EM ST S EV 
ST  serie id; ST1 
ST1  serie id; ST1 | λ 
S  set id {CJ}; S | set id = id OP_CJ id; S | λ 
CJ  id in id such that C 
OP_CJ  joint | intersec | diff 
EV  event id {SING BG ED such that C}; EV1 

EV1  event id {SING BG ED such that C}; EV1 | λ 
SING  break_point in id, 
BG  start in id, 
ED  end in id 
C  C || C1 | C1 

C1  C1 && C2 | C2 
C2  !C3 | C3 
C3  (C) | true | false | R 
R  E <= E | E < E | E >= E | E > E | E = = E | E != E | E in id |subc (id,id) | 
subcp(id,id) | supc(id,id) | supcp(id,id) | exists id in id such that C | forall id in id 
such that C | isfirst(E,id) | islast(E,id) 
E  E + E1 | E – E1 | E1 
E1  E1* E2 | E1/E2 | E1%E2 | E2 
E2  -E2 | E3 

E3  id | integer_cst | real_cst | start | break_point | end | id.value(E) | f’ id(E) | 
f’’ | id(E) | next(E,id) | previous(E,id) | abs(E) | sqrt(E) | exp(E,E) | (E) | 
BS_TYPE(id) | STAT_TYPE (id) | id (P) 
BS_TYPE  max | min 
STAT_TYPE  mean | mode | median | stdev | variance 
P  E P1 | λ 
P1  , E P1 | λ 
EM  extmethod id TD integer_cst TPS function ; EM | λ 
TD  int | float | bool | void 
TPS  TP TPS1 | λ 
TPS1  , TP TPS1 | λ 
TP  int | float | bool 
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3.2.3. Semantic Analysis 

The semantic analyser is the last of the three input file analysis stages to be carried out. The goal of 
this analysis is to capture any user errors that the lexical and syntactic analysers are unable to detect. 

This analyser breaks with the idea of a standard scheme such as is used in the syntactic analyser. 
The actions that it carries out are tailored for each grammar. Even so, there is a strong relationship 
between the two, as they share data structures, and the syntactic analyser controls the execution of the 
semantic analyser. 

All the logic of the semantic analyser is located in simple actions called semantic actions. These 
actions are a set of instructions that are always executed under the same scenario, associated with the 
reduction of a syntactic grammar rule. For example, the semantic action A  B = C {Action1} 
indicates that Action1 will be executed when the syntactic analyser carries out a reduction applying 
rule A  B = C.  

The semantic analyser is mainly concerned with type analysis throughout the file, although, 
depending on the programmer and the design of the other two analysers, it may have a number of other 
functionalities. 

For all the details on the semantic actions designed and implemented for the events language 
translator, see [14]. 

3.2.4. Code Generator 

The translator is the part of the tool responsible for generating object code written in a high-level 
language from the data structures received from the above three analysers. 

The translation generates three output files: a file containing some predefined language functions, a 
file containing embedded functions and a file with the translation of the events definition to a high-
level language. Each file contains the following elements: 

• Predefined Functions File. Any predefined function or functions (max, min, mean, stdev, 
variance, mode, median, exp, sqrt, subc, subcp, supc, supcp, isfirst, islast, in, joint, diff, intersec, 
next or previous) used by the user in the source code will be loaded just once in this file. 

• Embedded Functions File. This file stores the code of the functions written in a high-level 
language that the user has added as an extension to the events definition. 

• Translation File. This file contains the results of the translation of the source code to the  
high-level language, making public the events identification operations on real time series that 
are passed as parameters. 

Figure 5 shows a class design diagram for the subsystem implementing the application’s  
translation module. This module (class codeGenerator), combined with the semantic analyser (class 
semanticAnalyser), uses the syntactic analysis stack (class LRstack) and the symbol table (class 
STmanager) to translate the input file managed by the respective module (classes translationFileManager 
and fileManager). The class labelGenerator is a module used to improve the usability of our system 
including labels in different languages (English and Spanish) to adapt to users’ native language. 
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Figure 5. Simplified code generator class diagram. 

 

4. Case Study: Stabilometry Experimentation 

Balance disorders and vertigo are two of the most common diseases that physicians come up against 
every day. About 30% of the population will have experienced an episode of vertigo before they reach 
the age of 65. As of 65 years, this type of disease becomes much more prevalent, and is considered as 
the primary cause of falls in elderly people. 

Stabilometry is a set of techniques that analyse people’s postural control [15,16]. It is also known as 
posturography, statokinesiometry and posturometry. To gather information about postural control, 
stabilometry is based on the use of dynamometric platforms, sensitive to the horizontal and vertical 
forces to which they are subjected. These forces are recorded by sensors appropriately situated on the 
platforms that are then connected to software systems capable of visualizing the position of the 
subject’s centre of gravity. Figure 6 shows a patient performing a test on a stabilometric platform. 

Figure 6. Patient completing a test on a stabilometric platform. 

 

Stabilometry dates back to around 1850, when Romberg [17] conducted some studies to check the 
sway of individuals with their eyes open and closed, and Bárány (Nobel Prize in Medicine) described 
postural instability and explored the vestibular-spinal function in patients with vestibular injuries [18]. 
The birth of stabilometry in the late 19th century led to the development of a number of postural 
control techniques that were very uncomfortable and invasive for the patient. Hence, a second current 
of thought that set out to record sway by analysing the pressure exercised by the subject on a platform. 
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This tendency culminated with Baron’s statokinesiometer [19], a very popular posturographic system 
composed of four electromagnetic pressure sensors. This device can be considered to be the forerunner 
of today’s stabilometric systems. 

Postural control is a key element for understanding a person’s ability to perform their routine 
activities. The aim is to maintain body equilibrium, either at rest (static equilibrium) or in motion or 
subject to a range of stimuli (dynamic equilibrium). There are two main objectives:  

• Balance, that is, the ability to maintain projections of the centre of gravity within the base  
of support.  

• Posture, that is, the ability to keep the different parts of the body correctly aligned with each 
other and the surrounding environment. 

To measure postural control, patients take a series of test. The different tests are designed to single 
out the principal sensory, motor and biomechanical components of balance with the aim of being able 
to assess an individual’s ability to use them individually or jointly [20]. 

Although stabilometry was originally devised merely as a patient postural control and balance 
assessment technique, it is now considered to be a useful tool for diagnosing ([21,22]) and treating 
balance-related disorders [23]. Some examples of its use are: 

• Analysis of the influence of age and sex on postural control, primarily the study of balance loss 
in elderly people and people with motor diseases [24–27]. 

• Balance analysis in patients with neurological diseases [21,28]. 
• Study of the effect of different drugs on balance [29]. 

Modern posturography is divided into two major types: 

(a) Static posturography: uses fixed platforms for measuring patient sway through the pressure 
exerted by their feet on the platform. 

(b) Dynamic posturography: is based on the use of a platform placed on a horizontally movable 
support, which inclines forward or backward and rotates around an axis that is collinear with 
the ankles. One of the best-known dynamic posturography systems was developed by Nashner 
([30]) and then studied by Black [31,32].  

Throughout this research, we have used a modern static posturography device called Balance 
Master, manufactured by NeuroCom® International [33]. Previous research has demonstrated its 
accuracy and reliability for postural control analysis [34,35]. 

The most renowned hospitals and reputable medical and sports institutions own a Balance Master or 
another device manufactured by the same company nowadays. This type of device is used in different 
fields, including ear, nose and throat specialities, neurology, psychiatry, geriatrics or sports medicine. 
Although it is better known and more popular in the United States, the use of this type of devices is a 
challenge for medical and sports institutions in Europe and especially Spain. 

Balance Master is a simple but very powerful device. It is composed of a metal plate placed on the 
floor and divided into two interconnected longitudinal plates. The metal plate is surrounded by a 
wooden platform, whose only mission is to prevent patients from stumbling and falling. The patient 
stands on the metal plate and completes different types of tests. The patient has to complete the tests in 
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a particular order following the physician’s instructions. The set of tests completed by the patient in a 
session is composed of what is called an assessment protocol. The aim of each assessment protocol is 
to measure different parameters related to patient balance. Additionally, each assessment includes 
trials, including minor variations. Finally, each trial is repeated several times. 

In our research, we have used the three assessment protocols that output most information for 
domain experts. These are called Unilateral Stance (US), Limits of Stability (LOS) and Rhythmic 
Weight Shift (RWS). The three assessment protocols generate time series showing events, that is, 
regions of special interest for experts in the domain. The possible events appearing in the time series of 
each assessment protocol are described below: 

• US (Unilateral Stance): The aim of this assessment protocol is to measure patient ability to keep 
their balance standing on one foot with either eyes open and eyes closed. Ideally patients should 
remain static throughout the assessment protocol and not sway at all. Too much sway is a 
possible sign of some sensory or vestibular disorder. Little sway would be a good symptom of 
patient balance. 
Each trial lasts 10 seconds, during which the patient has to remain as immobile as possible with 
just one foot on the plate (Figure 7). 
To complete the assessment protocol, patients have to perform all four trials (each trial is 
repeated three times. Depending on the trial, the patient will have their eyes open or closed. The 
four assessment protocol trials are: 

o Left foot (on platform) and eyes open 
o Left foot (on platform) and eyes shut 
o Right foot (on platform) and eyes open 
o Right foot (on platform) and eyes shut 

In this assessment protocol, the computer stores four integer values every 10 milliseconds, that 
is, 1,000 tuples each with four values are stored for each repetition of each trial. 
The most important aspect of this assessment protocol from the expert’s viewpoint is the analysis 
of patient balance losses during the assessment protocol. The main aim is to find out how much 
the patient sways, whether this swaying ends in balance loss, that is, whether the patient is 
obliged to put down the foot which should be raised throughout. 

• LOS (Limits of Stability): The aim of this assessment protocol is to measure the maximum 
distance patients can intentionally displace their centre of gravity and stay there for a time with 
both feet on the platform without losing balance or stepping. This assessment protocol is useful 
for measuring patient reaction time, directional control, centre of gravity movement velocity and 
maximum distance that patients can displace their centre of gravity without moving their feet 
(Figure 8). Ideally reaction time should be low. A high reaction time is a possible sign of 
cognitive dysfunction or motor disease. Additionally, patients should also be able to control the 
direction of movement, which they should do quickly and without hesitation. Low direction of 
movement control could be sign of the patient having some central nervous system disease, such 
as Parkinson’s disease. Patients should also get as close as possible to targets without moving the 
position of their feet on the platform. A patient that is unable get close to the target may have 
motor problems. 
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Each assessment protocol trial lasts 10 seconds, during which patients have to try to  
displace their centre of gravity towards a target position and stay there until the end of the  
assessment protocol. During this assessment protocol, a circle is visualized on the computer 
screen. This circle represents patient centre of gravity. A red box is also displayed. This 
represents the target point. That is, patients know both the position of their centre of gravity and 
the target point at any time. Patients have to use different inclination movements to displace their 
centre of gravity towards the target. Patients have to complete each of the eight trials (each trial 
is repeated once) to complete the assessment protocol. In each trial, patients have to displace 
their centre of gravity to a particular position (depending on the trial) in order to reach a 
particular point until the 10 seconds are up. The assessment protocol trials are detailed below: 

o Forward (Figure 9) 
o Forward–Right  
o Right  
o Backward–Right 
o Backward 
o Backward–Left 
o Left 
o Forward–Left 

In this assessment protocol, the computer stores four integer values every 10 milliseconds, that 
is, 1,000 four-value tuples are stored for each repetition of each trial. According to the criteria 
extracted from the medical expert, the most important aspect of this assessment protocol is the 
analysis of approximations to and deviations from the target. Figure 10 shows an example of a 
patient trajectory for the LOS assessment protocol Right trial. In this case, patients have to 
displace their centre of gravity to their right. The green colour highlights the positive 
movements, whereas the negative movements are highlighted in red. In this particular case, the 
first movement starts at the source and moves towards the target, a second movement moves 
away from the target, and a third movement, in this case, positive, again moves towards and 
reaches the target. 

• RWS (Rhythmic Weight Shift): The aim of this assessment protocol is to quantify patient ability 
to voluntarily move their centre of gravity laterally from left to right and forward and backward 
between two targets at various speeds. To do this, the screen displays a circle and a human figure 
that represents the patient’s centre of gravity. The patient has to incline their body from side to 
side and move their centre of gravity in pursuit of the moving circle. Several lines are also 
displayed on screen forming a wall. They represent the point beyond which the centre of gravity 
should not move. The assessment protocol is useful for measuring patient ability to control the 
direction in which they are moving (directional control), as well as the centre of gravity 
movement velocity laterally and forward and backward. Ideally directional control should be 
high, that is, patient movements should to be precise, track the circle and not be overly brusque. 
High directional control is a sign that the patient is very able to move their centre of gravity 
laterally or forward and backward. If directional control is low, patients might have some control 
of movement disorder. Movement velocity should also be adequate, that is, patients should track, 
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but not overtake or lose, the circle. Each trial of this assessment protocol has a different duration. 
To complete the assessment protocol, patients have to perform each of its six trials (each trial is 
repeated once). In each trial, patients should displace their centre of gravity laterally or forward 
and backward (depending on the trial) in pursuit of the moving circle with both feet on the 
platform. The assessment protocol trials are: 

o Lateral–Slow. Its duration is 18 seconds.  
o Lateral–Medium. Its duration is 12 seconds.  
o Lateral–Fast. Its duration is 6 seconds.  
o Forward/Backward–Slow. Its duration is 18 seconds.  
o Forward/Backward–Medium. Its duration is 12 seconds.  
o Forward/Backward–Fast. Its duration is 6 seconds.  

Figure 11 shows the patient trajectories for each trial. 

Figure 7. Patient completing the US assessment protocol with right foot on platform and 
eyes open. 

 

Figure 8. Target positions towards which patients have to displace their centre of gravity 
in the LOS assessment protocol. 
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In short, every 10 milliseconds, the platform sends four integer values to the computer for storage. 
Therefore, when an assessment protocol is completed, we have a series of values collected at different 
time points. That is, we have a four-dimensional time series, as four values are stored for each time 
instant. Figure 12 shows an example of a time series generated by the posturograph, recording, for 
each time instant (represented as DP in Figure 12), the value of each of the four sensors. The SH value 
is always 0 as it is only used during the posturograph calibration process. 

Figure 12. Part of a time series generated by a posturograph.  

 

Once the patient-related time series have been recorded and stored, physicians use the software 
installed in the computer to visualize and draw conclusions from the data. The software system 
installed in the computer outputs different parameters about each patient, such as, for example, balance 
or sway velocity, which are extracted from that patient’s time series. 

In our research, we used stabilometric time series from a total of 30 patients suffering from 
Ménière’s disease to evaluate the events definition language. Menière’s disease affects the internal ear 
and is primarily characterized by vertigo (code H81.0 of the International Statistical Classification of 
Diseases and related Health Problems established by the ICD). Stabilometry is primarily concerned 
with the study of diseases characterized by the presence of vertigo. Thirty is considered a reasonable 
number of patients, taking into account that access to this type of private information is limited and 
stabilometric assessment protocols are highly complex (provide a lot of information but are at the same 
time costly in terms of time and resources). 

4.2. Events in Stabilometry 

We have used the time series events definition language proposed in Section 3 to locate the events 
in the above time series. We then used the purpose-built software to check the lexical, syntactic and 
semantic correctness of the events definition for the stabilometric case. Finally, we used this software 
to translate the events definition to source code in C#. This source code has been used to identify the 
events in stabilometric time series. 

In the following, we present, for each assessment protocol type, the events definition used as a basis 
for translation and integration into the global system. Events are defined for the US, LOS and RWS 
assessment protocols only, as they are the only assessment protocols where, according to the criteria 
elicited from medical experts, it makes sense to speak of events. 
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4.2.1. US Assessment Protocol 

The US assessment protocol aims to measure the patient’s ability to keep their balance standing on 
one foot with either eyes open or eyes closed. Ideally patients should remain static and not sway at all 
throughout the assessment protocol. An interesting event type for this assessment protocol is when 
patients lose balance and put down their raised foot. This event type is known in the domain as 
stepping. When there is stepping, the raised foot sensor will record the increased pressure. Figure 13 
shows the time series for a patient that has completed the US assessment protocol. The curves at the 
top of the chart are the values recorded by the RR and RF sensors, that is, the right foot sensors, which 
is the support foot. The curves that at the bottom of the chart plot the values recorded by the LR and 
LF sensors, that is, the raised left foot sensors. This chart highlights the pressure peaks that are 
generated when a stepping event takes place. 

Figure 13. US assessment protocol time series highlighting two stepping events. 

 

The first interesting circumstance illustrated in Figure 13 is the fact that the value of the LR and LF 
dimensions is almost static (with a small margin of variance) throughout, except when stepping takes 
place. Therefore, a balance value can be defined for those dimensions. This balance value could be a 
statistical measure like the mode. 

Figure 13 also clearly illustrates that every time that there is a stepping event, there is a particular 
time instant where the LF and LR sensors record a local maximum and the RR and RF sensors record a 
local minimum. This point is approximately at the centre of the stepping event. 

Therefore, the central point of a stepping event could be defined as the point where: 

1. There is a local minimum of RR and RF and a local maximum of LF and LR simultaneously. 
2. The local maximum of LF is relatively distant from the balance value (mode) of the LF  

time series. 
3. The local maximum LR is relatively distant from the balance value (mode) of the LR time series. 

If we locate points that meet the above conditions, we will have located the event. To determine 
when the event starts and ends, all we have to do is to consider the points where LR and LF intersect 
with their respective modes and take the point immediately prior to the central point of the stepping 
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event as the start of the point and the point immediately after the central point of the stepping event as 
the end of the stepping event. 

For the time series events definition language to define the above events, it is necessary first to state 
the four dimensions of which each stabilometric time series is composed (this statement would be 
preceded by the reserved word def). 

// Time series statement 

lf series; 

lr series; 

rf series; 

rr series; 

As mentioned earlier, we are interested in searching for time instants where RF and RR are 
minimum and LF and LR are maximum. This set of points is called cand1: 

set cand1 

{ 

x in lf 

such that 

(x in max(lr)) 

&& (∃ y in max(lf) such that abs(x-y) < TIME_AXIS_THLD) 

&& (∃ z in min(rf) such that abs(x-z) < TIME_AXIS_THLD) 

&& (∃ w in min(rr) such that abs(x-w) < TIME_AXIS_THLD) 

}; // The TIME_AXIS_THLD is elicited from the expert 

However, we are only interested in the points of cand1 where the value of the series corresponding 
to the raised foot is relatively distant from the mode. This set of points is cand2: 

set cand2 

{ 

y in cand1 

such that 

((lf.value(y) + lr.value(y)) – (mod(lf) + mod(lr))) > INTENSITY_THLD 

}; // The INTENSITY_THLD threshold is elicited from the expert 

Finally, we need the intersections of one of the two time series for the raised foot (for example, LF) 
with the balance value (mode) in order to then define the start and end of the event. This set of points 
will be called intersec: 

set intersec 

{ 

z in lf 

such that 

lf.value(z) == mod(lf) 

}; 
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The next step after defining the sets of necessary points is to define the events. In this case, the 
break point of the event is a member of cand1, whereas the start and end of the event will be members 
of the intersec set. To find out where each event starts and ends, we have to analyse the set of points 
cand2. As specified above, the stepping events would be: 

event stepping 

{ 

break_point in cand2, 

start in intersec, 

end in intersec 

such that 

(previous(break_point,intersec) == start) 

&& (next(break_point,intersec) == end) 

}; 

Clearly, we search for the centre of the stepping event (a point in cand2) and then we search for the 
points that come before and after this point in the intersec set, thus perfectly defining the event. 

4.2.2. LOS Assessment Protocol 

The procedure for the LOS assessment protocol is somewhat different than in the US assessment 
protocol. Generally speaking, the goal of this assessment protocol is for patients to displace their centre 
of gravity to a target point and stay there for a time. For the expert, it is especially interesting to 
analyse the approximations and deviations from the target. These are the two events for definition. 

In this case, the four-dimensional stabilometric time series has been transformed into a new  
one-dimensional time series that records the distance to the target at each time instant. To do this, we 
have used the values of the four dimensions to determine the position of patient centre of gravity at 
each time instant and have calculated the distance of the centre of gravity to the target by means of 
elementary geometric operations. We want to find the parts of the transformed series whose distance to 
the target increases (deviations) and decreases (approximations). 

def 

{ 

 // Time series definition 

serie transf; 

 

// Definition of approximation events 

Approximation event  

{ 

break_point in max(transf), 

start in max(transf), 

end in min(transf) 

such that 
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(break_point == start) 

&& (next(break_point,min(transf)) == end) 

}; 

 

// Definition of deviation events 

move away event 

{ 

break_point in min(transf), 

start in min(transf), 

end in max(transf) 

such that 

(break_point == start) 

&& (next(break_point,max(transf)) == end) 

}; 

} 

Note that approximations are the parts between one time series maximum and the next minimum. 
Deviations, on the other hand, are the parts between a time series minimum and the next maximum. 

4.2.3. RWS Assessment Protocol 

In the RWS assessment protocol, we work with the four-dimensional time series. In this assessment 
protocol, the dimensions are paired, that is, they follow a similar pairwise trajectory. The trajectory 
also has a sinusoidal form, such that when two of the dimensions are maximum, the other two are 
minimum. Additionally, there are points where four dimensions of the series intersect. 

The events or segments of interest stretch from the points where RR and RF are minimum and LF 
and LR are maximum to the points where RR and RF are maximum and LF and LR are minimum, 
taking in a point where the four time series intersect. In the following we present the proposed 
definition for this type of event: 

def 

{ 

// Time series definition 

serie lf; 

serie lr; 

serie rf; 

serie rr; 

 

// Complex sets definition 

// Points at which the four time series  

// intersect 

set cand1 
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{ 

x in lf 

such that 

 (abs(lf.value(x) - lr.value(x)) < THLD) 

 && (abs(lf.value(x) - rf.value(x)) < THLD) 

 && (abs(lf.value(x) - rr.value(x)) < THLD) 

}; // The THLD is elicited from the expert 

 

 

// Those points where there LF and LR are maximum and RF //and RR are minimum 

// in  

set cand2 

{ 

y in lf 

such that  

(y in max(lf)) 

&& (∃ x in max(lr) such that abs(y-x)< THLD’) 

&& (∃ w in min(rf) such that abs(y-w) < THLD’) 

&& (∃ z in min(rr) such that abs(y-z) > THLD’) 

}; // The THLD’ threshold is elicited from the expert 

 

// Those points where LF and LR are minimum and RF //and RR are maximum 

set cand3 

{ 

z in lf 

such that  

(z in min(lf)) 

&& ((∃ x in min(lr) such that abs(z-x) < THLD’’) 

&& (((∃ y in max(rf) such that abs(z-y) < THLD’’) 

&& (((∃ w in max(rr) such that abs(z-w) < THLD’’) 

}; // The THLD’’ threshold is elicited from the expert 

 

// Events definition  

// The events range from one point of cand2 to another of cand3, 

// through one of cand1 

lateral event  

{ 

break_point in cand1, 
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start in cand2, 

end in cand3 

such that 

(previous(break_point, cand2) == start) 

&& (next(end,cand1) == break_point) 

}; 

} 

We can use the proposed translator to obtain source code in a high-level language from this events 
definition without having to make low-level changes in the application. 

4.3. Discussion of Results 

One of the main motivations for the proposed events definition language is that existing methods 
for identifying events in time series, which are closely associated with particular domains, are 
extremely specialized and require major very low-level changes for adaptation to other domains. 
Therefore, one of the biggest advantages of the language proposed in this article is its generality and 
applicability to multiple domains. 

Thanks to the implemented translator, the events definition language should be able to generate 
source code in a high-level language in order to precisely locate events in time series, emulating a 
domain expert. In this respect, our proposal can be considered as an intelligent expert system as it 
emulates the reasoning of experts in a particular domain and it is intended to be used by those experts. 

To evaluate our proposal, we have taken stabilometric data from a total of 30 patients, each of 
which completed different assessment protocol trials. Additionally, the medical protocol stipulates that 
each trial of certain should be repeated three times. The US assessment protocol has four, the LOS 
assessment protocol has eight and, finally, the RWS has six trials. The total number of time series 
considered is, therefore, 1,620 = 30(patients) × 18(trials) × 3(repetitions). 

To evaluate the precision of our events identification proposal on the above 1,620 time series, we 
asked a stabilometric domain expert to identify the events in those series and we then applied our 
technique to do the same thing. For each time series, we have measured the precision of our proposal 
using Equation (1) that measures the degree of similarity (SIM_Exp_Lang) between the number of 
events identified by the expert (#EVExp) and by our language (#EvLang). Note that this formula offers a 
normalized result in the interval [0,1], where 1 indicates a total coincidence between the number of 
events identified by the expert and by the language. The worst case is when the expert locates events in 
a series and our system does not identify any: ܵܯܫா௫௣ಽೌ೙೒ ൌ 1 െ ห#ݒܧா௫௣ െ ா௫௣ݒܧ#௅௔௡௚หݒܧ# . (1) 

From a global analysis of the 1,620 time series, we find that there is good match between the expert 
and proposed language, as shown by the mean similarity, which is greater than 98%, between the 
expert and language (Table 9). This value is very close to the ideal. 
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Table 9. Global results of the application of the events definition language to the 
stabilometric domain. 

#Series #࢖࢞ࡱ࢜ࡱതതതതതതതതതത #ࢍ࢔ࢇࡸ࢜ࡱതതതതതതതതതതത ࢍ࢔ࢇࡸ_࢖࢞ࡱ_ࡹࡵࡿതതതതതതതതതതതതതതതതതതതതത 
1620 5.32 5.64 0.981 

Apart from the global results, we have conducted a detailed analysis of the time series. To do this, 
we have taken a representative sample of the situations where the language turned out to be worse:  
60 time series where the expert and language were least similar, as shown in Table 10. This table lists 
the series identifier, the assessment protocol to which it belongs (US, LOS or RWS), the trial, number 
of events identified by the expert, number of events identified using the language and the match 
between the two. For simplicity’s sake, the trials have been encoded in the table as established in [33] 
by the company that commercializes the posturograph used in this research. 

Table 10. Detailed results of the 60 least similar stabilometric time series. 

Series_Id Assessment Protocol Trial #EvExp #EvLang SIM_Exp_Lang 
1 US 1 3 2 0.67 
2 US 1 4 3 0.75 
3 US 1 3 2 0.67 
4 US 2 5 4 0.80 
5 US 2 2 1 0.50 
6 US 2 5 4 0.80 
7 US 2 4 3 0.75 
8 US 2 4 3 0.75 
9 US 2 3 2 0.67 

10 US 2 4 3 0.75 
11 US 2 3 2 0.67 
12 US 2 4 3 0.75 
13 US 2 5 4 0.80 
14 US 2 4 3 0.75 
15 US 2 3 2 0.67 
16 US 3 3 2 0.67 
17 US 3 3 2 0.67 
18 US 4 5 4 0.80 
19 US 4 4 3 0.75 
20 US 4 3 2 0.67 
21 US 4 5 3 0.60 
22 US 4 4 3 0.75 
23 US 4 3 2 0.67 
24 US 4 4 3 0.75 
25 US 4 5 4 0.80 
26 US 4 3 2 0.67 
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Table 10. Cont. 

Series_Id Assessment Protocol Trial #EvExp #EvLang SIM_Exp_Lang 
27 US 4 4 3 0.75 
28 LOS 5 3 4 0.67 
29 LOS 5 4 5 0.75 
30 LOS 5 3 4 0.67 
31 LOS 6 6 8 0.67 
32 LOS 6 3 4 0.67 
33 LOS 6 4 5 0.75 
34 LOS 6 5 6 0.80 
35 LOS 6 3 4 0.67 
36 LOS 8 4 5 0.75 
37 LOS 8 4 5 0.75 
38 LOS 9 3 4 0.67 
39 LOS 10 4 5 0.75 
40 LOS 11 3 4 0.67 
41 LOS 11 2 3 0.50 
42 LOS 11 3 4 0.67 
43 LOS 11 5 6 0.80 
44 LOS 11 3 4 0.67 
45 LOS 12 4 5 0.75 
46 LOS 12 5 6 0.80 
47 LOS 12 3 4 0.67 
48 LOS 12 2 3 0.50 
49 RWS 14 7 9 0.71 
50 RWS 14 8 10 0.75 
51 RWS 15 11 14 0.73 
52 RWS 15 12 15 0.75 
53 RWS 15 11 14 0.73 
54 RWS 15 12 15 0.75 
55 RWS 15 12 14 0.83 
56 RWS 17 7 9 0.71 
57 RWS 18 11 13 0.82 
58 RWS 18 12 14 0.83 
59 RWS 18 11 13 0.82 
60 RWS 18 12 15 0.75 

To explain the behaviour of the SIM_Exp_Lang in these time series, we have studied the descriptive 
statistics of the SIM_Exp_Lang variable, shown in Table 11. 

Table 11. Descriptive Statistics of the SIM_Exp_Lang. 

 N Mean Std. Dev. Variance 

95% Confidence 
Interval for Mean 

Minimum Maximum 
Lower 
Bound 

Upper 
Bound 

SIM_Exp_Lang 60 0.717 0.074 0.006 0.698 0.736 0.5 0.833 
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Fitting the SIM_Exp_Lang variable to a probability law, we find that the best fit of that variable is 
equivalent to a normal distribution. The Kolmogorov-Smirnov test data prove this point for that fit, as 
shown in Table 12. 

Table 12. Kolmogorov-Smirnov Test data fitting SIM_Exp_Lang. 

D 0.204 
D (standardized) 1.579 
p-value bilateral 0.054 

alpha 0.05 

At the significance level alpha = 0.050, we can accept the null hypothesis that there is no difference 
between the accumulated empirical and theoretical distributions of a normal and of the SIM_Exp_Lang 
variable on which the test is based. Looking at the discretized histogram of the SIM_Exp_Lang 
variable, we obtain the result shown in Figure 14. 

Figure 14. Discretized histogram of the SIM_Exp_Lang variable. 

 

We find that, even in the 60 worst cases, the system responds with a SIM_Exp_Lang very close to 1 
in over 90% of the cases. Having characterized the variable under study, we proceed to study the 
covariance of the SIM_Exp_Lang variable with respect to the characteristics studied in the sample, 
assuming that each variable is explained in terms of the other qualitative variables (assessment 
protocol and trial) and quantitative variables (#EvExp). To do this, we conduct an ANCOVA of the 
SIM_Exp_Lang variable with the adjustment results shown in Table 13. 

Table 13. ANCOVA of the SIM_Exp_Lang variable. 

Adjustment Coefficients: 
R (correlation coefficient) 0.802
R² (coefficient of determination) 0.644
R²aj. (adjusted coefficient of determination) 0.522
SCR 0.118
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Table 13. Cont. 

Evaluation of the Value of the Information Output by the Variables (H0 = Y = Moy(Y)): 
Source df Sum of Squares Mean Square Fisher’s F Pr > F 
Model 15 0.213 0.014 5.297 <0.0001 

Residuals 44 0.118 0.003   
Total 59 0.330    

#EvExp 1 0.094 0.094 35.185 <0.0001 
Assessment protocol 2 0.058 0.029 10.829 0.000 

Trial 14 0.061 0.004 1.615 0.113 

The adjusted value R2 indicates that 52% of the SIM_Exp_Lang variable is explained by the 
variables that characterize each time series. From these data, we deduce that system behaviour is 
independent and equivalent in each assessment protocol and trial type. The information value 
generated by such variables is not very representative, as indicated by Fisher’s F equal to 5.297, which 
is much greater than the critical F value for the degrees of freedom of SIM_Exp_Lang (100) and the 
degrees of freedom of the studied variables 815), which, with an alpha value = 0.05, is F = 2.123.  

Figure 15. Relationship between SIM_Exp_Lang and the Assessment protocol variable. 

 

Figure 16. Relationship between SIM_Exp_Lang and the trial variable. 
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Considering the information that each variable inputs to the model, we have that the number of 
events identified by the expert is irrelevant for SIM_Exp_Lang (F = 35.185), as is the assessment 
protocol type (F = 10.89). The only variable that may input some information to the above regression 
model is the particular trial completed as part of the assessment protocol. To visualize how such 
variables affect SIM_Exp_Lang, we have plotted the charts illustrated in Figures 15 and 16. 

This chart shows the mean of SIM_Exp_Lang obtained in each assessment protocol type. The worst 
reading is for the LOS assessment protocol, whereas the best is for the RWS assessment protocol. 
After analysis, it appears that: 

(a) The deviations for the US assessment protocol occurred when stepping took place towards the 
end of the assessment protocol and patients did not complete the assessment protocol because it 
ended before they regained their balance. This is a circumstance that the expert identifies by 
looking at the series, but the language does not identify as the specified events definition 
conditions are not met, namely, that the event must have a measurable extreme point within the 
series and not a point beyond the end of the series that has to be guesstimated. The fuzzy 
consideration of this type of events is beyond the scope of this research and is stated as future 
research in Section 5. 

(b) The deviations for the LOS and RWS assessment protocols are due to the fact that the expert 
confuses overlapping trajectories and considers different trajectories to be the same. This means 
that our system identifies events that are not visible to the expert and is a very valuable support 
tool in these cases. 

Precisely, the results obtained for the LOS assessment protocol were worse because the above 
discrepancy occurred more often in the LOS assessment protocol time series. The RWS assessment 
protocol results were better because the discrepancy is less common in the RWS assessment protocol 
time series.  

Looking at how each particular assessment protocol affects the value obtained in SIM_Exp_Lang, 
we get the chart illustrated in Figure 16. 

In this chart, we find that the mean value for SIM_Exp_Lang never drops below 7 for any of the 60 
worst time series. The worst ratings are for trials 3, 9 and 11, because the resulting time series  
were affected by the above discrepancy, which was compounded by the fact that the variable 
(SIM_Exp_Lang) formula penalizes such discrepancies especially when there are relatively few events, 
as in the case of the time series of trials 3, 9 and 11. 

The next step is to check whether the system has operated equivalently with respect to each patient 
type without any variables characterizing patients possibly having influenced the system. To do this, 
we ran a study of the variances obtained for the value SIM_Exp_Lang in each of the time series for the 
same patients. An ANOVA study shows that there are significant variations in the value of 
SIM_Exp_Lang from one patient to another. The results of the study are shown in Table 14. 
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Table 14. ANOVA of the SIM_Exp_Lang variable. 

Model analysis (Type I SS):    
Source DF Sum of Squares Mean Square Fisher’s F Pr > F 
#EvExp 1 916.650 916.650 828.131 <0.0001 

Model analysis (Type III SS):    
Source DF Sum of Squares Mean Square Fisher’s F Pr > F 
#EvExp 1 916.650 916.650 828.131 <0.0001 

We have run two types of study, called type I and type III sums of squares, to check whether the 
data are balanced, that is, whether the system behaves equally with respect to one and the same time 
series irrespective of the processing order. The value is equal in both studies and additionally Fisher’s 
F is also very high, F = 828 >> 253, where 253 is the critical F for alpha = 0.05 for those degrees of 
freedom. Accordingly, the system is 99.999% sure to have behaved equally with respect to different 
patients, irrespective of their particular characteristics. 

After a detailed study of the SIM_Exp_Lang, the last part of the study is given over to the #EvExp 

variable, that is, the number of events that the system identifies, which is evidently a causal variable  
of the values obtained for SIM_Exp_Lang. The aim of this study is to obtain a reliable linear or 
parametric regression model with the aim of inferring how many events the system will identify in 
terms of the events identified in the same time series by an expert. To do this, we built a regression 
model that we used to obtain the data shown in Table 15. 

Table 15. Regression Model for #EvExp variable. 

Summary for Quantitative Variables: 
Variable Mean Standard Deviation 

#EvExp 5.067 2.985 
Adjustment Coefficients:  
R (correlation coefficient) 0.967 
R² (coefficient of determination) 0.935 
R²aj. (adjusted coefficient of determination) 0.933 
SCR 64.200 

This time the resulting regression model is very reliable, with an adjusted R2 very close to 1. This 
means that the value of EvLang is totally dependent on EvExp, something which is, on the other hand, to 
be expected, and can be inferred from the modelling shown in Table 16. 

Table 16. Adjustment data of regression model. 

Model Parameters:    

Parameter Value 
Standard 
Deviation 

Student’s t Pr > t 
Lower Bound 

95% 
Upper Bound 

95% 
Intersection −1.240 0.269 −4.606 <0.0001 −1.779 −0.701 

#EvExp 1.320 0.046 28.777 <0.0001 1.229 1.412 
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The model is described by Equation (2) that is illustrated in Figure 17. #݃݊ܽܮݒܧ ൌ  െ1.24023586101952 ൅ 1.32044128835912 כ  (2) ݌ݔܧݒܧ#

Figure 17. Regression model between variables EvExp and EvLang. 

 

Using that model, based on the experience obtained for the 60 worst cases, regression yields the 
number of events identified by the system in a time series with the precision plotted by the chart in 
Figure 18. 

Figure 18. Regression data and straight line between variables EvExp and EvLang. 
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for time series in the stabilometric domain (as shown in Table 9, where #ݒܧா௫௣തതതതതതതതതത = 5.32) and any other 
domain, taking into account the duration of the analysed time series, which is of the order of a  
few seconds. 

Another important point apart from precision is to evaluate the generality of the proposed language. 
In our research, we have tested the language on disparate domains. One is stabilometry, considered in 
this paper as a reference domain. However, our language has been applied to other branches of 
medicine, such as neurology and cardiology, to define events in time series extracted from 
electroencephalograms and electrocardiograms, respectively. Additionally, the language has been 
applied to define events in stock exchange time series where the points of interest of the series occur 
when there is sharp drop in value (there is a good selling opportunity just before the fall) or a sharp 
increase (there is a good buying opportunity just before the increase). For an exhaustive description of 
the application of the language to the above domains and the respective results, see [13]. 

5. Conclusions and Future Work 

There are many proposals in the area of time series analysis. However, there are new challenges in 
the field, one of which is the identification of regions of interest (events) for experts in each domain. 

We have proposed a one-dimensional and multi-dimensional time series events definition language. 
Additionally, the specification of the events definition language has been rounded out with the 
development of a translator that checks whether the events definition is lexically, syntactically and 
semantically correct. If so, that events definition is automatically translated to source code of a  
high-level programming language. The proposal of this language is a big help and saves time for its 
potential users, as time series events identification is a complex task requiring costly ad hoc methods 
for each domain. 

The proposed language has been tested on data from the medical domain with satisfactory results. 
Specifically, the techniques have been applied to structurally complex data from the field of 
stabilometry, which is a discipline that studies human balance. The good results obtained when testing 
the events definition language on the data of different stabilometric assessments confirm its generality. 

Some research lines raising new challenges to upcoming researchers remain open. An important 
aspect related to events definition is how to determine the conditions that decide whether something is 
or is not an event in a particular domain. In the case of the domain studied in this research, we have 
defined the events using relational and threshold operators. For example, in the stabilometric domain 
US assessment protocol, a region of a series is considered to be a stepping event when there is a local 
extreme point and the stepping intensity is greater than a particular threshold. If pressure is less than 
the threshold, it is not considered a stepping event. In many other domains, however, it is very 
difficult, if not impossible, to make such a distinction. Therefore, we fancy fuzzy logic as being an 
interesting and, at the same time, useful option for tackling this line of research. This way, it would be 
possible to incorporate the concept of event certainty into the proposed schema. This would indicate 
how sure a time series region is to be an event. Thanks to the concept of certainty, we would obtain 
richer events models in which more importance would be attached to events with greater certainty. 

Another important matter related to events definition is that domain experts may not be computer 
literate enough to be able to program an events definition alone and, therefore, may require help from a 
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computer specialist to do this. To overcome this difficulty, the proposed schema could incorporate a 
functionality enabling experts to define the events visually without having to use the language directly. 
This functionality could be composed of a layer to automatically transform the expert’s graphical 
definition into a textual events definition based on the proposed language. Work on this topic is 
already under way. 
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