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Abstract: Stationary range laser sensors for intruder monitoring, restricted space violation

detections and workspace determination are extensively used in risky environments. In this

work we present a linear based approach for predicting the presence of moving agents

before they trespass a laser-based restricted space. Our approach is based on the Taylor’s

series expansion of the detected objects’ movements. The latter makes our proposal suitable

for embedded applications. In the experimental results (carried out in different scenarios)

presented herein, our proposal shows 100% of effectivenessin predicting trespassing

situations.Several implementation results and statistics analysis showing the performance

of our proposal are included in this work.
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1. Introduction

The tracking and prediction of objects or targets has several applications, such as traffic

surveillance [1], pedestrian detection [1,2], mobile robot autonomous navigation in dynamic

environments [3,4], intelligent transportation systems [2,5], among others. Several of these applications

require 2D and 3D target tracking, depending mainly on the number of degrees of freedom to be tracked
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by the system. Also, according to the application, the system can be focused on single and multiple

targets tracking.

In general, a target tracking process can be divided into twomain stages:targets’ detectionand

tracking procedure[6]. The targets’ detectionstage is strongly related to the nature of the sensor used

according to the application requirements. A wide range of sensors are currently used in objects or

target tracking, such as artificial vision sensors and rangelaser sensors. With this insight, [7] uses

a stereoscopic camera for visual tracking of 3D objects; [8] uses a video sequence for single object

tracking, whereas [9] uses a monocular vision system for rigid single object tracking; also, [10] presents

a monocular vision system for object tracking of moving objects, although the authors implement their

system on a mobile robot for following purposes. In [6], the authors use video frames for multiple objects

tracking, whereas [11] also uses video frames but for single object tracking.

Several procedures are used for object detection in artificial vision based applications. In [7],

the authors use the FFT (Fast Fourier Transform) of the imageto detect a dark object over a white

background; a similar approach is presented in [1], where the Fourier transform is used to extract features

from a video sequence for surveillance applications. In [12], the authors use frame differentiation and

adaptive background subtraction combined with simple dataassociation techniques to extract features.

For multi-object tracking, [6] uses a spatio-temporal segmentation for features extraction from images.

In [13] the authors present an online EM-algorithm for visual estimation of objects’ parameters. The

former are examples of objects’ tracking and detection using artificial vision systems.

Range laser sensors are also used for target tracking applications, such as the case shown

in [14], where a range laser sensor is used for environment modeling when applying a SLAM

(Simultaneous Localization and Mapping) algorithm. A SLAMalgorithm is used in mobile robot

applications [3,4,15–18] to concurrently estimate the robot’s position within an environment and to build

a model of such an environment. The latter is accomplished byusing exteroceptive sensors, such as range

lasers, vision systems, ultrasonic sensors,etc. The model built of the environment usually contains the

static and dynamic—or moving—elements. Such moving elements are tracked using the same estimation

algorithm implemented for the SLAM execution—such as a Kalman Filter, and Information Filter, a

Particle Filter, and their respective extensions (see [16,19–21] for further information). The object

detection is related to the model of the environment. Thus, in [3,4], lines and corners are used for

objects determination.

In addition, range laser sensors are also used for intrudersdetection, trespassing situations and

workspace determination, as pointed out by the manufacturers [22,23]. However, it is worth mentioning

that such applications are static: the workspace and the sensors’ positions remain unchanged during

the implementation and execution of the system. The intruders detection is based on a threshold

determination: if the intruder trespass the protected workspace, a previously determined action is

performed, regardless the intention of the intruder. Such an application is usually used in surveillance

systems and workspace protection in factories [23].

Despite the detection algorithm and the sensor used by the system, thetracking procedureproblem

can be solved by several approaches (in this work, we consider the prediction problem as an extension

of the tracking problemper se). Thus, [24] uses neural networks for multiple object tracking; [9] uses a

Kalman Filter for real time tracking; [11] uses an adaptive block matching for the estimation of single
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object’s motion. In [25], the authors propose a passive monitoring system based on aGaussian model

of the motion of the object; [2] uses the Bhattacharyya coefficient for visual tracking and[26] uses

the Particle Filter as a tracking algorithm. However, [27] uses a star algorithm for visual tracking.

Considering that prediction is possible by means of an appropriate tracking strategy, several approaches

can be found with this scope. Thus, in [28] the authors propose a tracking and predicting approach

based on theAdaBoostalgorithm for multiple pedestrian scenarios; in [29], the authors present a particle

filtering approach for predicting car’s motion. On the otherhand, [30] presents the tracking performed

by the Extended Kalman Filter for predicting mobile robot’smotion. As can be seen, several approaches

can be used to solve the tracking and prediction problem, such as empirical procedures, user dependent

decisions and estimation algorithms.

The Taylor’s series expansion is also used as a tool for the object tracking and prediction problem.

In [2] the Taylor’s expansion is used to obtain a linear model of the Bhattacharyya coefficient used in the

prediction procedure; [9] uses the Taylor’s expansion for linearization of the motion model in the Kalman

Filter. In [13], the Taylor’s series expansion is used for the linearization of the objective function of the

optical flow used in the target tracking application. As can be seen, the Taylor’s series expansion is used

for linearization purposes of intermediate process withinthe main tracking procedure. A more extended

introduction and state of the art in target tracking procedures can be found in [31–34].

The main contribution of this work is a workspace supervision application based on the prediction

of trespassing situations by using multiple stationary range laser sensors. The last is accomplished by

using the Taylor’s series expansion of the motion of the detected targets as a tracking—and predicting—

procedureper se. Despite the fact that our method is implemented using rangelaser sensors, the Taylor’s

series expansion as a tracking procedure proposed in this work is independent of the nature of the sensor.

In addition, the Taylor’s series expansion as a tracking procedure allows us to predict the trespassing

risks before they occur. We have also implemented our proposal for multi-targets prediction. For each

proposed situation—single laser with single target, multiple lasers with single target, single laser with

multiple targets and multiple lasers with multiple targets—we have performed real time experimentation

and statistical analysis showing the advantages of our proposal.

This work is organized as follows: Section2 shows an overview of the proposed system, the sensors

description, the problem’s hypothesis and the mathematical formulation of the proposal; Section3 shows

the experimentation and statistical results of each proposed situation. Section4 presents the pros and

cons observed during the experimentation stage. Section5 shows the conclusions of this work.

2. General System Architecture

Figure1 shows the general system architecture of the proposed supervision system. It is composed

by four stages explained as following:

• Sensor Measurement Acquisition. Concerns the sensor functionality and the environment

information acquisition. In this work, we use range laser sensors to acquire the information of

the surrounding environment.
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• Moving Objects Detection. The environmental information acquired by the sensors is used

to detect the presence of objects—e.g., persons, animals, vehicles, etc.—within the sensed

workspace.

• Action Execution. If the detected moving object falls within the restricted region of the workspace,

then the system generates the appropriate action, depending on the task in which the supervision

system is applied—for example, alarm activation, machinery emergency stop,etc.

Figure 1. General system architecture.
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The abovementioned three stages form a standard supervision system [31]. In our work, we include

an extra stage:Objects Tracking and Prediction. Thus, in case where an object is detected within the

sensed workspace, this extra stage will allow for the prediction of the movement of such an object. With

the prediction information available, the system is able toexecute the appropriate action before the object

enters the forbidden—or restricted—workspace, protecting in that way both the object’s integrity and the

functionality of themain process.

It is worth mentioning that such a prediction of the object’smovements can be used for the

optimization of the sensed workspace by reducing its restricted region. Since the action execution is

based on the prediction information, if the predicted object’s movements do not compromise the process

nor its integrity, then there is no need of an action execution. Nevertheless, the last statement is strongly

related to the adopted horizon of prediction. Figure2 shows an example of this situation. Figure2(a)

shows the case when the predicted movement (solid red arrow)enters the restricted region of the

workspace (solid grey), whereas Figure2(b) shows the case when the predicted object’s movements do

not trespass the forbidden workspace. In both cases, a rangelaser sensor was used to depict the examples.

Figure 2. Examples of object prediction. (a) shows the case when the predicted movements

fall within the restricted region of the workspace; (b) shows the case when the prediction

does not fall within the restricted area.
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In the following sections, each stage of Figure1 will be explained in detail. However, as stated in

Section1, this work is focused on theObjects Tracking and Predictionstage.

2.1. Sensor Measurement Acquisition

In this work,SICK range laser sensors were used, as the one shown in Figure3. Such sensors acquire

181 range measurements from 0 to 180 degrees up to a range of 30meters. As will be shown later, several

of these sensors were used during the experimentation. Although in this work range laser measurements

are processed, the mathematical formulation of our proposal is not restricted to the nature of the sensor

used. Therefore, other sensors such as artificial vision systems, ultrasonic sensors or TOF cameras can

be used instead.

Figure 3. Range laser sensor used in this work.

2.2. Restricted Region Determination

The restricted workspace determination, as shown in Figure2, is based on the supervision application.

Figure4 shows three different cases; Figure4(a)shows the case where a symmetric restricted region is

used (solid dark grey). Such a case can be useful in approaching alert situations. Figure4(b) shows an

asymmetric restricted region (also in solid dark grey); such a situation is useful when a non-conventional

region of the workspace needs to be supervised. On the other hand, Figure4(c) shows the case of a

restricted workspace suitable for robot manipulator implementations, as the one shown in [35]. It is

worth mentioning that the restricted workspace determination is a designer criterion. In addition, two or

more laser sensors can be used for defining the restricted workspace, as will be shown in Section3.

Figure 4. Three examples of restricted workspace configuration.
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2.3. Object Detection

In this work, the detection of moving objects within the sensed workspace shown in Figures2 and4

is based on point-based features detection previously presented in [3,4]. Briefly, such a method can be

described as follows:

• From the set of 181 measurements acquired by the range laser sensor, the histogram method [15]

is used to determine possible point-based features and their corresponding covariance matrices.

• If two or more consecutive measurements are associated to a same point-based feature, then its

center of massis determined.

• Eachcenter of massof the detected features is composed by three parameters: its range, angle and

covariance matrix. The range is the distance from thecenter of massto the laser position; the angle

is the orientation of thecenter of masswith respect to the orientation of the laser; the covariance

matrix is the variance associated with the detection method.

• The parameters of each detected feature are transformed according to a global Cartesian reference

frame attached to the system (xi andyi, wherei stands for theith detected feature).

• If the same object is detected in two consecutive laser scans, then we are able to track it. In order

to do so, a matching criterion must be adopted;i.e., the object detected in timet + 1 should be

the same than the one detected in timet. The Mahalanobis distance [16] was used in this work to

match detected features.

It is worth mentioning that the object detection method mentioned above allows for the detection of

multiple objects. Further information regarding such a method can be found in [3,4].

2.4. Prediction and Tracking: Mathematical Formulation

The linear prediction formulation proposed in this work is based on the Taylor’s series expansion [2,9].

By using the Taylor’s series, we are able to predict the motion associated with the detected moving

obstacles in the workspace of the sensor. In order to illustrate our proposal, let us suppose the following:

let x(t) be the instantaneous position of a body moving along thex coordinate in Equation (1) (with

constant acceleration). Thus,

x(t) = x(t0) + v(t0)(t− t0) +
a(t0)(t− t0)

2

2!
(1)

wheret represents time,t0 is the initial instant,x(t0) is the body’s initial position,v(t0) is its velocity

anda(t0) is its acceleration. The Taylor’s expansion ofx(t) is of the form shown in Equation (2).

x(t) = x(t0) +
dx(t0)

dt
(t− t0) +

1

2!

d2x(t0)

dt2
(t− t0)

2 +Rm (2)

In Equation (2), Rm is a residual term which contains the higher order values regarding the Taylor’s

expansion ofx(t). If we compare Equation (1) to Equation (2), we can see that both expressions match

and that we can use the Taylor’s expansion to estimate the motion of a given object by discardingRm.

In fact, the horizon of our estimation is associated withRm due to the following:
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• In order to estimatex(t) by using the Taylor’s series expansion shown in Equation (2), then

x(.) belongs at least toC2, whereC2 is the space of continuous functions with first and second

differential also continuous.

• If x(.) ∈ C3, then Equation (2) may include a term fromRm associated with the third differential

of x(t). Thus, the horizon of prediction is increased.

• In general, ifx(.) ∈ Cn, then the Taylor’s expansion ofx(t) can be up to itsnth–differential term.

In addition, if we consider the Euler approximation:dx(t)
dt

≈
x(tk)−x(tk−1)

tk−tk−1

for ∆t = tk − tk−1

sufficiently small, we can apply such an approximation to Equation (2) as shown below. Thus, for

x(.) ∈ C0:

x(tk+1) ≈ x(tk) (3)

With the same insight, forx(.) ∈ C1:

x(tk+1) ≈ x(tk) +
x(tk)−x(tk−1)

tk−tk1
(tk − tk1) = 2x(tk)− x(tk−1) (4)

In addition, forx(.) ∈ C2 and considering that∆t = ti − ti−1 for i = 0..k + 1:

x(tk+1) ≈ x(tk) +
x(tk)−x(tk−1)

∆t
(∆t) +

1
2!

(x(tk)−x(tk−1))−(x(tk−1)−x(tk−2))

∆2

t

(∆2
t )

= 5
2
x(tk)− 2x(tk−1) +

x(tk−2)

2

(5)

Therefore, if the sampling time∆t is constant, we are able to find a prediction ofx(t) for x(tk+1)

based on the Taylor’s series expansion. The extension of theprocedure shown in Equations (3)–(5) for

x(.) ∈ Cn is straightforward.

For the multi-dimensional case, letf(t) be anb-dimensional function such thatf(t) ∈ Rb—whereR

is the space of the real valued numbers—and thatf(.) ∈ C l. Thus, the Taylor’s series expansion off(t)

is of the form:

f(t) =
l

∑

p=0

∆p(f(tk))

p!
(t− tk)

p +Rm (6)

In Equation (6), f is expanded aroundtk and∆p(f(tk)) is thepth differentiation off with respect

to t aroundtk. By applying the procedure shown in Equations (3)–(5) and taking into account that

∆t = ti − ti−1 for i = 1...k + 1, we have that, for the three cases (f(.) ∈ C0, f(.) ∈ C1 andf(.) ∈ C2):































f(tk+1) ≈ f(tk)

f(tk+1) ≈ 2f(tk)− f(tk−1)

f(tk+1) ≈
5
2
f(tk)− 2f(tk−1) +

f(tk−2)

2

(7)
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Furthermore, for the two-dimensional case (i.e., f(t) ∈ R2) and taking into account the object

detection procedure presented in Section2.3, let [xi,tk yi,tk ]
T be the coordinates of theith detected object

at timetk, with respect to a global Cartesian reference frame. Then,

[

x(i, tk+1)

y(i, tk+1)

]

=
5

2

[

x(i, tk)

y(i, tk)

]

− 2

[

x(i, tk−1)

y(i, tk−1)

]

+
1

2

[

x(i, tk−2)

y(i, tk−2)

]

+Rm (8)

whereRm ∈ R2. If we consider that the motion of the detected object falls within C2, then Equation (8)

offers a suitable solution for predicting the motion of the object (Rm should be discarded). In addition,

given the algebraic formulation of the proposal, such a predictive approach can be implemented

embedded in both low cost and high cost micro-controllers.

It is worth mentioning that, if more precision is required, the number of terms in Equation (8) should

be extended (e.g., up to itsnth term). Equation (8) is the one implemented in this work for the motion

prediction of the detected objects, because it considers the velocity and the acceleration (associated with

the inertia) of the object (see Equation (1)). In addition, Equation (8) can be applied to human motion

and to mobile robot’s motion [28,30].

By inspection we can see that, iff(.) ∈ C2, then we need the previous knowledge off(tk−1) and

f(tk−2) in order to predictf(tk+1). Therefore, the very first prediction of the process should consider

f(tk−1) andf(tk−2) as a previously defined values (e.g., zero). In our implementations, due to the errors

associated with the first predictions, we have discarded thefirst two predictions.

In addition, if anr times forward prediction is expected after one object detection (at timetk), then

the expression in Equation (8) can be successively applied to obtain a prediction up to time tk+r.

2.5. Action Execution

The action execution, as shown in Figure1, is a designer criterion and it is strictly related to the

supervision application nature. Depending on the application, the following situations might apply:

1. Surveillance. For stationary lasers disposition, a supervision application can be used to predict

the presence of intruders. In such a case, an alarm activation can be used as anaction once the

intruder’s trespass have been predicted.

2. Risk management. The supervision system can be used to detect when a worker isnear a dangerous

place within the factory—such as automobile assembly lines, in which robot manipulators are

in charge of the mechanic work. Thus, for example, once the presence of a worker within the

restricted workspace is predicted, the productive processcan be stopped until the risk to the

worker’s integrity is no longer present.

3. Vehicles navigation. For autonomous vehicle navigation, a supervision application can be used

for reactive behavior under non-expected situations, suchas avoiding obstacles, emergency stops,

tangential deviation, among others [4,16,36].

Although several actions can be taken into account according to the application requirements, this

work is focused on theObjects Tracking and Predictionstage, as stated in Section2.
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3. Experimental Results

Several experimental results were carried out in order to show the performance of the proposal. They

can be grouped as follows:

• Single laser with single object prediction.

• Single laser with multiple objects prediction.

• Multiple lasers with single object prediction.

• Multiple lasers with multiple objects prediction.

For each mentioned case, 50 trials were run for two differentrestricted workspace dispositions, see

Figure2. In 25 trials, the intention of the object was to trespass therestricted workspace, whereas in

the remaining 25 trials, the intention was the opposite. Up to three persons were considered as moving

objects for our supervision application. Each trial consisted of a different path followed by the subjects.

In addition, a second order prediction model (see Equation (8)) was associated with the subjects’ motion;

r, the forward time of prediction, was set tor = 10 andr = 50 (thus, we are able to predict up totk+r, as

previously mentioned). Considering that the sampling timeof the system was set to∆t = 0.1 seconds,

then with r = 10 and r = 50 we are able to predict the motion of the objects up to one and five

seconds forward, respectively, in the same trial. However,this value can be changed depending on the

application’s requirements and the object’s behavior. Thestatistical results presented below for each

mentioned case show the precision of our proposal to predicttrespassing situations.

3.1. Single Laser with Single Object Prediction

Figures 5 and 6 show two different restricted workspaces (solid dark grey). The range laser

measurements are represented by red dots and the scanned area is in light grey. The blue circles represent

the estimated object’s position. Such an estimation is performed by the object detection procedure

presented in Section2.3. For visualization purposes, the Cartesian coordinate frame is attached to the

sensor’s position ([xlaser ylaser]
T = [0 0]T , with an orientationθlaser = π/2) and the detected objects are

referred to such a coordinate frame. The small black segments associated with the estimated objects (blue

circles) represent the path predicted by our proposal. Sucha path is based on the successive prediction

of the object’s position made by the Taylor’s series expansion, as previously shown in Equation (8).

Figure 5(a)–5(d) show four different situations in which our proposal predicts the single object

movements; Figure5(e) shows a close-up of Figure5(c) for visualization purposes of the prediction

behavior. Figure5(f) shows the statistical results for this single object first approach. Withr = 10 and

for 25 trials in which the object/subject was intended to enter into the restricted workspace, our proposal

was able to predict 100% of the cases of such a trespassing intention. However, for 25 trials in which the

object/subject was not intended to trespass, our system wasable to detect only 92% of the cases (i.e., 23

trials) of such an intention of not trespassing. As can be seen, we have obtained a high rate of positive

predictions.
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Figure 5. Single object prediction approach: first case. (a–d) different cases; (e) a close-up

of the predicted movements; (f) the statistical results of the experimentation.
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In addition, withr = 50 and for 25 trials in which the object/subject was intended totrespass, our

system was able to predict the 100% of the cases. However, for25 trials in which the object/subject was

not intended to trespass, we were able to predict the 60% of the cases (i.e., 15 trials). That is, in the 40%

of the remaining trials our system predicted the subject’s intention (using Equation (8)) to be to trespass

when his/her actual intention was the opposite. Such a 60% prediction correctness is due to the horizon

of prediction (r = 50). With r = 10 our system was able to predict the subject’s motion up to one second

before the motion; however, forr = 50, our proposal predicts the subject’s behavior up to five seconds

before his/her movements. Therefore, a higher rate of falsepredictions was expected.
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Figure 6. Single object prediction approach: second case. (a,b) two examples; (c) the

statistical results of the experiment.
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Figure 6 shows another example of the single object prediction for a single-laser supervision

application. Figure6(a) and6(b) show two trials. The restricted workspace is different fromthe one

shown in Figure5. For this new scenario, the statistical results, presentedin Figure6(c), show that for

r = 10 andr = 50, the system was able to predict the 100% of the cases when the object/subject was

intended to enter into the restricted workspace. However, when the intention of the object/subject was to

not trespass, the proposed system was able to detect such an intention for 96% of the cases withr = 10

and for 76% of the cases withr = 50. As can be seen, the statistical results shown in Figure5(c) shows

the same behavior than the results shown in Figure5(f). Nevertheless, the results shown in Figure6 are

slightly better than the ones shown in Figure5.

3.2. Single Laser with Multiple Objects Prediction

Figures7 and8 show the multi-objects case for the restricted workspaces shown in Figures5 and6,

respectively. In both cases, up to three subjects/objects were detected.
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Figure 7. First approach of the multi-object detection using a singlelaser sensor. (a,b) two

examples; (c) the statistical results of the experiment.
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Figure 8. Second approach of the multi-object detection using a single laser sensor.
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In Figure 7(a), the object/subject’s intention was to avoid the restricted workspace whereas in

Figure7(b) at least one subject intends to trespass such a workspace. Figure7(c) shows the statistical

results from 50 trials; in the first 25 trials, at least one of the object/subject’s intention was to enter into

the restricted workspace. In the remaining 25 trials, the intention of the moving objects was to avoid

trespassing. As can be seen, withr = 10 andr = 50, our system has predicted 100% of trespassing

cases. However, for the prediction of the not trespassing case, our proposal presented a 92% of success

for r = 10 and 72% forr = 50.

With the same insight, Figure8 shows two examples of the multi-object detection using the restricted

workspace shown in Figures6–8(b). In addition, Figure8(c) shows the statistical results for the

experiment. As can be seen, forr = 10 andr = 50, there is 100% of achievement when the system

is used to predict the trespassing of multiple objects when they intended to do so. However, when the

intention was to avoid trespassing, forr = 10 the system showed 92% of effectiveness; forr = 50,

the system showed 72% of effectiveness in the prediction. Itis worth mentioning that, as stated for the

previous experiment, 25 trials were run for each situation shown in Figure8(c).

3.3. Multiple Lasers with Single Object Prediction

As previously stated, we have implemented our supervision application to a system with multiple

range lasers, as the one shown in Figures9 and10. The sensors disposition is as follows: one laser

is located at[xlaser,1 ylaser,1]
T = [0 0]T , with an orientationθlaser,1 = π/2; whereas the second laser

is located at[xlaser,2 ylaser,2]
T = [5 5]T , with an orientationθlaser,2 = π. The maximum range of

measurement, for both lasers, is set to 8 meters. The solid grey area is the common restricted workspace.

The first laser prediction is drawn in solid black segments whereas the second laser prediction is drawn

in solid green segments. It is worth mentioning that each laser has implemented the prediction strategy

proposed in this work; in addition, they work independently. The latter means that each laser has

associated its own predictor based on its own moving object detection stage. Thus, one laser might

detect the moving object in a different position than the detection performed by the other laser. This is

so because the histogram detection method used herein ([15]) depends on the shape of the object. Then,

if two detections are different, their corresponding predictions might be different as well, as shown in

Equation (8). Blue circles in Figures9 and10represent the detected object.

Figure9(a)and9(b)show two examples of the experiment carried out using two lasers and a common

restricted workspace; Figure9(c) presents the statistical results of the experiment which are consistent

with the results shown for the previous experiments. Forr = 10 andr = 50, the system predicted

the 100% of the cases when the intention of the object/subject was to trespass the restricted workspace.

However, when the intention was to avoid trespassing, the system predicted the 84% of the cases when

r = 10 and 76% whenr = 50. It is worth mentioning that 25 trials were carried out for each case, as

stated in the previous sections.
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Figure 9. Single object prediction by a multi-laser disposition. (a,b) two examples of the

performed experiment; (c) the statistical results of the experiment.
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Figure 10. Multi-object prediction using a multi-laser disposition.(a,b) two examples of

the performed experiment; (c) the statistical results of the experiment.
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Figure 10. Cont.

0


5


10


15


20


25


30


r = 10
 r = 50


Intendend to 

Trespass (25 

trials)

Not intended 

to trespass 

(25 trials)


(c)

3.4. Multiple Lasers with Multiple Objects Prediction

As mentioned in Section3.3, Figure10 shows the multi-object prediction by a multi-laser system

using a common restricted workspace. Up to three objects/subjects were part of the experiment.

Figure10(a)and10(b)show two examples of this situation whereas Figure10(c) shows the statistical

results. As can be seen, when the intention was to enter into the restricted workspace, the system was

able to predict the 100% of the cases for bothr = 10 and r = 50. However, as observed for the

previous experiments, when the intention was to avoid trespassing, forr = 10 the system showed 88%

effectiveness. Forr = 50, the system showed also 88% effectiveness.

4. Discussion and Lessons Learned

During the experimentation, a number of lessons were learned with regard to the supervision

application strategy based on the Taylor’s prediction criterion proposed in this work. First, the precision

of the prediction is strongly related to the precision of thedetection procedure. Thus, a noisy detection

procedure can transform a movement that originally belongsto C2—which is associated with a smooth

movement—into a movement that belongs toC0, such as an arbitrary movement.

Second, the effectiveness of the prediction is also affected by the horizon used in the implementation.

As shown in the statistical results in Sections3.1–3.4, for r = 10 we have obtained better results in

predicting the motion of the objects when the intention was to avoid the restricted workspace. However,

in general, forr = 50 the system has shown worst results, mainly due to the fact that whenr = 50

the system formulates a prediction up to 5 seconds forward. As expected, during this time, the object

can change its motion which can make the prediction to fail. It is worth mentioning that, once the

predicted motion had estimated that the object will trespass, the action execution of the system was to

emit an alarm.

Third, the multi-object case with both single or multi-laser situations has shown similar results

than the single-object case. Despite the fact that each object was predicted independently, the objects
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detection procedure used has shown to be efficient for the application. In addition, it is worth mentioning

that we have used subjects as objects for the execution of theexperimentation.

Fourth, if the detected object moves following a straight line and the detection method is too noisy,

then the system will face a situation in which a linear movement might be detected as a random one.

Considering that the error in the detection is propagated tothe prediction, it also conditions the order

of the Taylor’s expansion prediction to be used in the process. Therefore, it is recommendable to

have previous information regarding the detection method’s efficiency before choosing the order of the

Taylor’s expansion and its corresponding horizon of prediction.

5. Conclusions

This paper has presented a new prediction method based on theTaylor’s series expansion of the motion

of an object given its detection parameters. The accuracy ofthe method is related to the maximum order

adopted for the Taylor’s expansion. Considering the algebraic formulation of the prediction method, it is

suitable for implementation in embedded systems. Also, it is scalable: it can be adapted to the number

of objects whose motions are going to be predicted.

In addition, the proposed method was implemented in range laser-based supervision systems for

the prediction of trespassing situations. Such situationsare common when working in restricted

environments and free motion is not allowed due to risky situations. Our proposal has shown to be

effective to predict future trespassing situations. With this insight, two main cases were presented:

the single-laser case with both single object and multi-object prediction; and the multi-laser case with

both single object and multi-object prediction. For all thecases, our proposal had shown a 100% of

effectiveness in predicting intended trespassing situations. However, the system had also predicted false

trespassing situations—i.e., the object moved close to the restricted workspace without trespassing it.

It is worth mentioning than 25 trials were run for each experimental case using two different horizon

values: the prediction up to 10 times forward and up to 50 times forward. Predictions with an horizon

of 10 times forward have shown better statistical results than predictions with an horizon of 50 times

forwards. Several workspace dispositions were used to testour proposal.
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