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Abstract: Stationary range laser sensors for intruder monitoringfrictded space violation
detections and workspace determination are extensively usrisky environments. In this
work we present a linear based approach for predicting tesemce of moving agents
before they trespass a laser-based restricted space. Puraah is based on the Taylor’s
series expansion of the detected objects’ movements. Tiee tlaakes our proposal suitable
for embedded applications. In the experimental resultgiézhout in different scenarios)
presented herein, our proposal shows 100% of effectivemegwedicting trespassing
situations.Several implementation results and stagistitalysis showing the performance
of our proposal are included in this work.
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1. Introduction

The tracking and prediction of objects or targets has seévapplications, such as traffic
surveillance 1], pedestrian detection1]2], mobile robot autonomous navigation in dynamic
environments3,4], intelligent transportation system2,p], among others. Several of these applications
require 2D and 3D target tracking, depending mainly on threlmer of degrees of freedom to be tracked
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by the system. Also, according to the application, the systan be focused on single and multiple
targets tracking.

In general, a target tracking process can be divided intoram stages:targets’ detectionrand
tracking procedurd6]. Thetargets’ detectiorstage is strongly related to the nature of the sensor used
according to the application requirements. A wide rangeeofssrs are currently used in objects or
target tracking, such as artificial vision sensors and rdager sensors. With this insigh/][uses
a stereoscopic camera for visual tracking of 3D obje@pufes a video sequence for single object
tracking, whereas9] uses a monocular vision system for rigid single objectkiag; also, [LO] presents
a monocular vision system for object tracking of moving algealthough the authors implement their
system on a mobile robot for following purposes. 6 fhe authors use video frames for multiple objects
tracking, whereasl[l] also uses video frames but for single object tracking.

Several procedures are used for object detection in aalifiagsion based applications. Y]]
the authors use the FFT (Fast Fourier Transform) of the intagketect a dark object over a white
background; a similar approach is presentedjmwhere the Fourier transform is used to extract features
from a video sequence for surveillance applications.1l),[the authors use frame differentiation and
adaptive background subtraction combined with simple das®ciation techniques to extract features.
For multi-object tracking,§] uses a spatio-temporal segmentation for features ekdrafrtom images.

In [13] the authors present an online EM-algorithm for visualreation of objects’ parameters. The
former are examples of objects’ tracking and detectiongiamificial vision systems.

Range laser sensors are also used for target tracking afppiis, such as the case shown
in [14], where a range laser sensor is used for environment mad&imen applying a SLAM
(Simultaneous Localization and Mapping) algorithm. A SLA&gorithm is used in mobile robot
applications 3,4,15-18] to concurrently estimate the robot’s position within ariemnment and to build
a model of such an environment. The latter is accomplisheding exteroceptive sensors, such as range
lasers, vision systems, ultrasonic sensets, The model built of the environment usually contains the
static and dynamic—or moving—elements. Such moving elésrere tracked using the same estimation
algorithm implemented for the SLAM execution—such as a Kainkilter, and Information Filter, a
Particle Filter, and their respective extensions (sE&1P-21] for further information). The object
detection is related to the model of the environment. Thad3#4], lines and corners are used for
objects determination.

In addition, range laser sensors are also used for intrudietesction, trespassing situations and
workspace determination, as pointed out by the manufast{Z223]. However, it is worth mentioning
that such applications are static: the workspace and th&sgrpositions remain unchanged during
the implementation and execution of the system. The intsudetection is based on a threshold
determination: if the intruder trespass the protected gmake, a previously determined action is
performed, regardless the intention of the intruder. Suchmplication is usually used in surveillance
systems and workspace protection in factorizs.|

Despite the detection algorithm and the sensor used by #teray thetracking procedurgroblem
can be solved by several approaches (in this work, we congideprediction problem as an extension
of the tracking problenper sg. Thus, R4] uses neural networks for multiple object tracking] (ises a
Kalman Filter for real time tracking;1[l] uses an adaptive block matching for the estimation of singl
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object’s motion. In 25|, the authors propose a passive monitoring system based3aussian model

of the motion of the object;] uses the Bhattacharyya coefficient for visual tracking f2@] uses

the Particle Filter as a tracking algorithm. Howeveét7][uses a star algorithm for visual tracking.
Considering that prediction is possible by means of an gpate tracking strategy, several approaches
can be found with this scope. Thus, B8] the authors propose a tracking and predicting approach
based on thAddaBoosalgorithm for multiple pedestrian scenarios; #9], the authors present a particle
filtering approach for predicting car’'s motion. On the othand, BO] presents the tracking performed
by the Extended Kalman Filter for predicting mobile robatistion. As can be seen, several approaches
can be used to solve the tracking and prediction problenty aa@mpirical procedures, user dependent
decisions and estimation algorithms.

The Taylor’s series expansion is also used as a tool for tiexbtracking and prediction problem.
In [2] the Taylor’'s expansion is used to obtain a linear model efBhattacharyya coefficient used in the
prediction procedure 9] uses the Taylor’'s expansion for linearization of the motiwodel in the Kalman
Filter. In [13], the Taylor’s series expansion is used for the lineariratf the objective function of the
optical flow used in the target tracking application. As carsben, the Taylor’s series expansion is used
for linearization purposes of intermediate process withexmain tracking procedure. A more extended
introduction and state of the art in target tracking procedwean be found ir3[1-34].

The main contribution of this work is a workspace supervisapplication based on the prediction
of trespassing situations by using multiple stationarygealaser sensors. The last is accomplished by
using the Taylor’s series expansion of the motion of theaetktargets as a tracking—and predicting—
procedureper se Despite the fact that our method is implemented using réagge sensors, the Taylor's
series expansion as a tracking procedure proposed in thisisiumdependent of the nature of the sensor.
In addition, the Taylor’s series expansion as a trackinggdare allows us to predict the trespassing
risks before they occur. We have also implemented our padgos multi-targets prediction. For each
proposed situation—single laser with single target, mldtiasers with single target, single laser with
multiple targets and multiple lasers with multiple targetse have performed real time experimentation
and statistical analysis showing the advantages of ourggap

This work is organized as follows: Secti@shows an overview of the proposed system, the sensors
description, the problem’s hypothesis and the mathemdticaulation of the proposal; Secti@shows
the experimentation and statistical results of each pregheguation. Sectiod presents the pros and
cons observed during the experimentation stage. Seststiows the conclusions of this work.

2. General System Architecture

Figurel shows the general system architecture of the proposed\ssiparsystem. It is composed
by four stages explained as following:

e Sensor Measurement AcquisitionConcerns the sensor functionality and the environment
information acquisition. In this work, we use range lasersses to acquire the information of
the surrounding environment.
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e Moving Objects Detection The environmental information acquired by the sensorssesdu
to detect the presence of objects—e.g., persons, animalgcles, etc—within the sensed
workspace.

e Action Executionlf the detected moving object falls within the restrictedion of the workspace,
then the system generates the appropriate action, degeodithe task in which the supervision
system is applied—for example, alarm activation, maclyieenergency stoggtc

Figure 1. General system architecture.
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The abovementioned three stages form a standard supersigtem 81]. In our work, we include
an extra stage©bjects Tracking and PredictionThus, in case where an object is detected within the
sensed workspace, this extra stage will allow for the ptemiof the movement of such an object. With
the prediction information available, the system is ablexecute the appropriate action before the object
enters the forbidden—or restricted—workspace, protgetinhat way both the object’s integrity and the
functionality of themain process

It is worth mentioning that such a prediction of the objeat®vements can be used for the
optimization of the sensed workspace by reducing its @sttiregion. Since the action execution is
based on the prediction information, if the predicted ofgegnovements do not compromise the process
nor its integrity, then there is no need of an action exeoutidevertheless, the last statement is strongly
related to the adopted horizon of prediction. FigArehows an example of this situation. Fig@@)
shows the case when the predicted movement (solid red aeoteys the restricted region of the
workspace (solid grey), whereas Fig@@) shows the case when the predicted object’'s movements do
not trespass the forbidden workspace. In both cases, al@s®yesensor was used to depict the examples.

Figure 2. Examples of object predictiona) shows the case when the predicted movements
fall within the restricted region of the workspac#) Ghows the case when the prediction
does not fall within the restricted area.
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In the following sections, each stage of Figuravill be explained in detail. However, as stated in
Sectionl, this work is focused on th@bjects Tracking and Predictiostage.

2.1. Sensor Measurement Acquisition

In this work,SICK range laser sensors were used, as the one shown in BigBteh sensors acquire
181 range measurements from 0 to 180 degrees up to a rangeneft8fs. As will be shown later, several
of these sensors were used during the experimentationodgthin this work range laser measurements
are processed, the mathematical formulation of our prdpest restricted to the nature of the sensor
used. Therefore, other sensors such as artificial visioesyss ultrasonic sensors or TOF cameras can

be used instead.

Figure 3. Range laser sensor used in this work.

2.2. Restricted Region Determination

The restricted workspace determination, as shown in Figlussbased on the supervision application.
Figure4 shows three different cases; Figdi@) shows the case where a symmetric restricted region is
used (solid dark grey). Such a case can be useful in appraapalert situations. Figuré(b) shows an
asymmetric restricted region (also in solid dark grey)saisituation is useful when a non-conventional
region of the workspace needs to be supervised. On the o#met, firigure4(c) shows the case of a
restricted workspace suitable for robot manipulator imm@atations, as the one shown BB]. It is
worth mentioning that the restricted workspace deternonas a designer criterion. In addition, two or
more laser sensors can be used for defining the restrictddspaxe, as will be shown in Secti@n

Figure 4. Three examples of restricted workspace configuration.
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2.3. Object Detection

In this work, the detection of moving objects within the seshgvorkspace shown in Figurgsand4
is based on point-based features detection previouslgptes in B,4]. Briefly, such a method can be
described as follows:

e From the set of 181 measurements acquired by the range &Essrsthe histogram methotlq
is used to determine possible point-based features andctiveesponding covariance matrices.

e If two or more consecutive measurements are associateddmea point-based feature, then its
center of masss determined.

e Eachcenter of massf the detected features is composed by three parameterange, angle and
covariance matrix. The range is the distance frontrger of masw the laser position; the angle
is the orientation of theenter of massvith respect to the orientation of the laser; the covariance
matrix is the variance associated with the detection method

e The parameters of each detected feature are transformediangto a global Cartesian reference
frame attached to the system @indy;, wherei stands for theé* detected feature).

¢ If the same object is detected in two consecutive laser stiags we are able to track it. In order
to do so, a matching criterion must be adopteel; the object detected in time+ 1 should be
the same than the one detected in tim&he Mahalanobis distanc&q] was used in this work to
match detected features.

It is worth mentioning that the object detection method nwer@d above allows for the detection of
multiple objects. Further information regarding such ahndtcan be found in34].

2.4. Prediction and Tracking: Mathematical Formulation

The linear prediction formulation proposed in this worka@sbd on the Taylor’s series expansi?9].
By using the Taylor’s series, we are able to predict the nmo#issociated with the detected moving
obstacles in the workspace of the sensor. In order to iltsswur proposal, let us suppose the following:
let z(¢) be the instantaneous position of a body moving along:tiveordinate in Equationlj (with
constant acceleration). Thus,

a(to)(t — to)?

5 (1)

z(t) = x(to) + v(to)(t — to) +
wheret represents timé,, is the initial instant;(¢,) is the body’s initial positiony(t,) is its velocity
anda(ty) is its acceleration. The Taylor’s expansiomf) is of the form shown in Equatiorgy.

dl’(to)
dt

l d2$(t0>
20 dt?

x(t) = x(ty) + (t—to) + (t —t0)* + R (2)

In Equation R), R,, is a residual term which contains the higher order valuearcigg the Taylor's
expansion of:(t). If we compare EquatiornLj to Equation 2), we can see that both expressions match
and that we can use the Taylor's expansion to estimate thismaot a given object by discarding,,,.

In fact, the horizon of our estimation is associated with due to the following:
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e In order to estimate:(¢) by using the Taylor's series expansion shown in Equat®n then
z(.) belongs at least t6", whereC? is the space of continuous functions with first and second
differential also continuous.

e If (.) € C3, then EquationZ) may include a term froni,,, associated with the third differential
of z(¢). Thus, the horizon of prediction is increased.

e Ingeneral, ifr(.) € C™, then the Taylor's expansion eft) can be up to its!"—differential term.

In addition, if we consider the Euler approximatiod? x(tgk?:fkff’“l—l) for A, = t, — tpy
sufficiently small, we can apply such an approximation to &un ) as shown below. Thus, for
z(.) € C%

L(thir) = o(lr) 3)
With the same insight, for(.) € C*:

w(trpr) = a(ty) + == (g ) = 20(ty) — a(ty1) (4)

tr _tk’l

In addition, forz(.) € C? and considering thak;, = ¢; — ¢; ; fori = 0.k + 1:

z(thy) =~ 2(ty) + %W(At) + %(m(tk)—z(tk—l))—A(g(tk—l)—x(tk—Q)) (A%)

(5)

= Sa(ty) — 2u(ty_y) + “a=2)

Therefore, if the sampling tim4,; is constant, we are able to find a predictionudf) for x(¢;.1)
based on the Taylor’s series expansion. The extension girtdeedure shown in Equation3){(5) for
z(.) € C™ is straightforward.

For the multi-dimensional case, Iétt) be anb-dimensional function such thdtt) € R*—whereR
is the space of the real valued numbers—and fligte C. Thus, the Taylor’s series expansionfdt)
is of the form:

ey =S B g, ©)

In Equation 6), f is expanded arount, and AP(f(t;)) is thep' differentiation of f with respect
to ¢ aroundt,. By applying the procedure shown in EquatioB%—5) and taking into account that
A, =t; —t;_, fori = 1...k + 1, we have that, for the three casgs.{ € C°, f(.) € C*andf(.) € C?):

(

f(trgr) =~ f(tr)

ftrrr) = 2f (k) — f(te-1) (7)

| ftrsr) & SF () — 2f (t) + L2
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Furthermore, for the two-dimensional case.( f(t) € R?) and taking into account the object
detection procedure presented in Secd let [z, ,, v:,,]” be the coordinates of thé detected object
at timet,,, with respect to a global Cartesian reference frame. Then,

2(i, ths1) ] 5 [ (i, ) ] ., [ (i, te_r) ] ! [ (i, ty_o)

Ry, 8
2| y(i,ty) y(i,te_1) 2| y(i, o) + (8)

whereR,, € R?. If we consider that the motion of the detected object falthin C?, then Equationg)
offers a suitable solution for predicting the motion of thgext (,, should be discarded). In addition,
given the algebraic formulation of the proposal, such a iptee approach can be implemented
embedded in both low cost and high cost micro-controllers.

It is worth mentioning that, if more precision is requirelde number of terms in EquatioB)(should
be extended (e.g., up to itd" term). Equation§) is the one implemented in this work for the motion
prediction of the detected objects, because it considergdiocity and the acceleration (associated with
the inertia) of the object (see Equatidh)( In addition, Equationg) can be applied to human motion
and to mobile robot’s motior28,30].

By inspection we can see that, ff.) € C?, then we need the previous knowledgefdf, ;) and
f(tx—2) in order to predictf(tx.1). Therefore, the very first prediction of the process shoolusaler
f(tk—1) andf(t,_o) as a previously defined values (e.g., zero). In our impleatimts, due to the errors
associated with the first predictions, we have discardeéir$tewo predictions.

In addition, if anr times forward prediction is expected after one object detecat timet,.), then
the expression in EquatioB)(can be successively applied to obtain a prediction up te tjm,.

2.5. Action Execution

The action execution, as shown in Figuteis a designer criterion and it is strictly related to the
supervision application nature. Depending on the appdinathe following situations might apply:

1. Surveillance For stationary lasers disposition, a supervision apfinacan be used to predict
the presence of intruders. In such a case, an alarm activedio be used as attiononce the
intruder’s trespass have been predicted.

2. Risk managementhe supervision system can be used to detect when a workeatis dangerous
place within the factory—such as automobile assembly Jiiresvhich robot manipulators are
in charge of the mechanic work. Thus, for example, once tlesgmrce of a worker within the
restricted workspace is predicted, the productive processbe stopped until the risk to the
worker’s integrity is no longer present.

3. Vehicles navigation For autonomous vehicle navigation, a supervision apfpticacan be used
for reactive behavior under non-expected situations, sscwoiding obstacles, emergency stops,
tangential deviation, among others16,36)].

Although several actions can be taken into account acogrdirthe application requirements, this
work is focused on th®bjects Tracking and Predictiostage, as stated in Sectign
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3. Experimental Results

Several experimental results were carried out in order dvghe performance of the proposal. They
can be grouped as follows:

Single laser with single object prediction.
Single laser with multiple objects prediction.
Multiple lasers with single object prediction.
Multiple lasers with multiple objects prediction.

For each mentioned case, 50 trials were run for two differesiricted workspace dispositions, see
Figure2. In 25 trials, the intention of the object was to trespassréstricted workspace, whereas in
the remaining 25 trials, the intention was the opposite. dihtee persons were considered as moving
objects for our supervision application. Each trial coteslof a different path followed by the subjects.
In addition, a second order prediction model (see Equafipm(as associated with the subjects’ motion;
r, the forward time of prediction, was setite= 10 andr = 50 (thus, we are able to predict upto, ., as
previously mentioned). Considering that the sampling tohthe system was set th, = 0.1 seconds,
then withr = 10 and» = 50 we are able to predict the motion of the objects up to one ar& fiv
seconds forward, respectively, in the same trial. Howetes,value can be changed depending on the
application’s requirements and the object’s behavior. Jta¢istical results presented below for each
mentioned case show the precision of our proposal to predspassing situations.

3.1. Single Laser with Single Object Prediction

Figures5 and 6 show two different restricted workspaces (solid dark greylhe range laser
measurements are represented by red dots and the scanmegiatight grey. The blue circles represent
the estimated object’s position. Such an estimation isoperéd by the object detection procedure
presented in SectioR.3 For visualization purposes, the Cartesian coordinatedras attached to the
SeNnsor’s position{ser Yiaser] = [0 0], with an orientatiord,,.., = 7/2) and the detected objects are
referred to such a coordinate frame. The small black segnasisbciated with the estimated objects (blue
circles) represent the path predicted by our proposal. Sumdith is based on the successive prediction
of the object’s position made by the Taylor’s series expamsas previously shown in Equatio8) (

Figure 5(a)-5(d) show four different situations in which our proposal preslithe single object
movements; Figur®&(e) shows a close-up of Figurg(c) for visualization purposes of the prediction
behavior. Figuré(f) shows the statistical results for this single object firgirapch. Withr = 10 and
for 25 trials in which the object/subject was intended taenmntto the restricted workspace, our proposal
was able to predict 100% of the cases of such a trespassergiont. However, for 25 trials in which the
object/subject was not intended to trespass, our systemalaso detect only 92% of the cases.( 23
trials) of such an intention of not trespassing. As can be,see have obtained a high rate of positive
predictions.
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Figure5. Single object prediction approach: first case-d) different cases;d) a close-up
of the predicted movementd) the statistical results of the experimentation.
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In addition, withr = 50 and for 25 trials in which the object/subject was intendettéspass, our
system was able to predict the 100% of the cases. Howev&Sforals in which the object/subject was
not intended to trespass, we were able to predict the 60%eafabesi(e., 15 trials). That s, in the 40%
of the remaining trials our system predicted the subjent@&rition (using Equatior8]) to be to trespass
when his/her actual intention was the opposite. Such a 6@#igiron correctness is due to the horizon
of prediction ¢ = 50). With » = 10 our system was able to predict the subject’'s motion up to encersd
before the motion; however, fer= 50, our proposal predicts the subject’s behavior up to five 1sés0
before his/her movements. Therefore, a higher rate of faiséictions was expected.
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Figure 6. Single object prediction approach: second casgb) (two examples; &) the
statistical results of the experiment.

AQ o 10

Y (meters)
Y (meters)
D

X (meters) X (meters)
(@ (b)

30

25 A

20 - ® [ntendend to
Trespass (25

15 1 —| trials)

10 A — Not intended

i | totrespass
(25 trials)
O -
r=10 r=50
(©)

Figure 6 shows another example of the single object prediction folingle-laser supervision
application. Figureés(a) and6(b) show two trials. The restricted workspace is different frthra one
shown in Figureb. For this new scenario, the statistical results, preseint&igure6(c), show that for
r = 10 andr = 50, the system was able to predict the 100% of the cases wherbjbet/subject was
intended to enter into the restricted workspace. Howeviegnithe intention of the object/subject was to
not trespass, the proposed system was able to detect sucteatidn for 96% of the cases with= 10
and for 76% of the cases with= 50. As can be seen, the statistical results shown in Fi§(zeshows
the same behavior than the results shown in Figife Nevertheless, the results shown in Fig@rare
slightly better than the ones shown in Figte

3.2. Single Laser with Multiple Objects Prediction

Figures7 and8 show the multi-objects case for the restricted workspalews in Figuress and6,
respectively. In both cases, up to three subjects/objeets detected.
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Figure 7. First approach of the multi-object detection using a sifgger sensor.a(b) two
examples; ) the statistical results of the experiment.
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Figure 8. Second approach of the multi-object detection using a silagler sensor.
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In Figure 7(a), the object/subject’s intention was to avoid the restdcteorkspace whereas in
Figure7(b) at least one subject intends to trespass such a workspapaeF{c) shows the statistical
results from 50 trials; in the first 25 trials, at least onehw bbject/subject’s intention was to enter into
the restricted workspace. In the remaining 25 trials, thention of the moving objects was to avoid
trespassing. As can be seen, withk= 10 andr = 50, our system has predicted 100% of trespassing
cases. However, for the prediction of the not trespassiag,aaur proposal presented a 92% of success
for r = 10 and 72% forr = 50.

With the same insight, Figui@shows two examples of the multi-object detection using dséricted
workspace shown in Figure&-8(b). In addition, Figure8(c) shows the statistical results for the
experiment. As can be seen, for= 10 andr = 50, there is 100% of achievement when the system
is used to predict the trespassing of multiple objects wheg intended to do so. However, when the
intention was to avoid trespassing, for= 10 the system showed 92% of effectiveness;for 50,
the system showed 72% of effectiveness in the predictiois.vilorth mentioning that, as stated for the
previous experiment, 25 trials were run for each situatiwows in Figure8(c).

3.3. Multiple Lasers with Single Object Prediction

As previously stated, we have implemented our supervisppli@tion to a system with multiple
range lasers, as the one shown in Figlemd10. The sensors disposition is as follows: one laser
is located afwiyser1 Yiaser1])? = [0 0], with an orientatiort;,..,; = 7/2; whereas the second laser
is located atz,ser2 Yiaser2]” = [5 5]7, with an orientationf,s.,» = w. The maximum range of
measurement, for both lasers, is set to 8 meters. The seldegea is the common restricted workspace.
The first laser prediction is drawn in solid black segmentsnghs the second laser prediction is drawn
in solid green segments. It is worth mentioning that eacérlaas implemented the prediction strategy
proposed in this work; in addition, they work independentiyhe latter means that each laser has
associated its own predictor based on its own moving objet#ation stage. Thus, one laser might
detect the moving object in a different position than theedgbn performed by the other laser. This is
so because the histogram detection method used het&jh depends on the shape of the object. Then,
if two detections are different, their corresponding pcédns might be different as well, as shown in
Equation 8). Blue circles in Figure9 and10represent the detected object.

Figure9(a)and9(b) show two examples of the experiment carried out using tweartagnd a common
restricted workspace; FiguB{c) presents the statistical results of the experiment whiehcansistent
with the results shown for the previous experiments. #e¢ 10 andr = 50, the system predicted
the 100% of the cases when the intention of the object/stibjes to trespass the restricted workspace.
However, when the intention was to avoid trespassing, teeesypredicted the 84% of the cases when
r = 10 and 76% when = 50. It is worth mentioning that 25 trials were carried out foclkea&ase, as
stated in the previous sections.
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Figure 9. Single object prediction by a multi-laser dispositiom,b two examples of the
performed experimentg) the statistical results of the experiment.
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Figure 10. Multi-object prediction using a multi-laser dispositio(a,b) two examples of
the performed experiment)(the statistical results of the experiment.
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Figure 10. Cont
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3.4. Multiple Lasers with Multiple Objects Prediction

As mentioned in SectioB8.3 Figure10 shows the multi-object prediction by a multi-laser system
using a common restricted workspace. Up to three objettjgsis were part of the experiment.
Figure 10(a)and 10(b) show two examples of this situation whereas FiglLidéc) shows the statistical
results. As can be seen, when the intention was to enterhetoeistricted workspace, the system was
able to predict the 100% of the cases for both= 10 andr = 50. However, as observed for the
previous experiments, when the intention was to avoid &&sipg, forr = 10 the system showed 88%
effectiveness. For = 50, the system showed also 88% effectiveness.

4. Discussion and L essons L earned

During the experimentation, a number of lessons were |elami¢h regard to the supervision
application strategy based on the Taylor’s predictioreaon proposed in this work. First, the precision
of the prediction is strongly related to the precision of de¢ection procedure. Thus, a noisy detection
procedure can transform a movement that originally beldog€—which is associated with a smooth
movement—into a movement that belong€tg such as an arbitrary movement.

Second, the effectiveness of the prediction is also affeayethe horizon used in the implementation.
As shown in the statistical results in Sectidhd-3.4, for » = 10 we have obtained better results in
predicting the motion of the objects when the intention veeavioid the restricted workspace. However,
in general, forr = 50 the system has shown worst results, mainly due to the fatwhanr = 50
the system formulates a prediction up to 5 seconds forwasdexpected, during this time, the object
can change its motion which can make the prediction to fdilis worth mentioning that, once the
predicted motion had estimated that the object will tresptse action execution of the system was to
emit an alarm.

Third, the multi-object case with both single or multi-lasgtuations has shown similar results
than the single-object case. Despite the fact that eaclttobps predicted independently, the objects
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detection procedure used has shown to be efficient for tHecappn. In addition, it is worth mentioning
that we have used subjects as objects for the execution ekferimentation.

Fourth, if the detected object moves following a straighéland the detection method is too noisy,
then the system will face a situation in which a linear movetmeight be detected as a random one.
Considering that the error in the detection is propagatetiégrediction, it also conditions the order
of the Taylor's expansion prediction to be used in the prece$herefore, it is recommendable to
have previous information regarding the detection methefficiency before choosing the order of the
Taylor’s expansion and its corresponding horizon of prisaiic

5. Conclusions

This paper has presented a new prediction method based taytloe's series expansion of the motion
of an object given its detection parameters. The accuratlyeahethod is related to the maximum order
adopted for the Taylor’'s expansion. Considering the akgelformulation of the prediction method, it is
suitable for implementation in embedded systems. Alsg, scalable: it can be adapted to the number
of objects whose motions are going to be predicted.

In addition, the proposed method was implemented in rangerdaased supervision systems for

the prediction of trespassing situations. Such situatimmes common when working in restricted
environments and free motion is not allowed due to riskyasituns. Our proposal has shown to be
effective to predict future trespassing situations. WHls tinsight, two main cases were presented:
the single-laser case with both single object and multecbprediction; and the multi-laser case with
both single object and multi-object prediction. For all tteses, our proposal had shown a 100% of
effectiveness in predicting intended trespassing siinatiHowever, the system had also predicted false
trespassing situationske., the object moved close to the restricted workspace witlregpassing it.
It is worth mentioning than 25 trials were run for each expemtal case using two different horizon
values: the prediction up to 10 times forward and up to 50 sifoeward. Predictions with an horizon
of 10 times forward have shown better statistical resulés thredictions with an horizon of 50 times
forwards. Several workspace dispositions were used t@tegiroposal.
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