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Abstract: In recent years, the number of proposed fall-detection systems that have been 
developed has increased dramatically. A threshold-based algorithm utilizing an 
accelerometer has been used to detect low-complexity falling activities. In this study, we 
defined activities in which the body’s center of gravity quickly declines as falling activities 
of daily life (ADLs). In the non-falling ADLs, we also focused on the body’s center of 
gravity. A hyperplane of the support vector machine (SVM) was used as the separating 
plane to replace the traditional threshold method for the detection of falling ADLs. The 
scripted and continuous unscripted activities were performed by two groups of young 
volunteers (20 subjects) and one group of elderly volunteers (five subjects). The results 
showed that the four parameters of the input vector had the best accuracy with 99.1% and 
98.4% in the training and testing, respectively. For the continuous unscripted test of one 
hour, there were two and one false positive events among young volunteers and elderly 
volunteers, respectively. 

Keywords: accelerometer; threshold-based classifier; falling detection; activities of daily 
life; support vector machine 

 

1. Introduction 

In 2010, 10.7% of Taiwan’s population was age 65 or older. According to the government’s 
evaluation, this proportion will become over 20% by 2025. Among the elderly, falls are not only life 
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threatening [1] but also herald an inability to live independently [2]. Injuries from falls include broken 
bones, superficial cuts and abrasions to the skin as well as connective and soft tissue damage [3–5]. 
Detection of a fall would help to reduce the time between the fall and the arrival of medical  
attention [6,7], which could be realized either through an automatic fall-detection system or through a 
Personal Emergency Response System (PERS). However, the most common existing PERS using the 
push-button pendant is not always a satisfactory fall-detection method when elderly people lose 
consciousness or faint [8]. 

In recent years, the number of proposed fall-detection systems developed has increased  
dramatically [1,9]. The waist is a popular location for a fall-detection system because it provides 
reliable indications of full-body movements [10–12]. Studies have evaluated a set of fall-detection 
algorithms on data that recorded from 20 middle-aged volunteers (40–65 years old), performing six 
different falls and four scripted activities of daily living (ADL) [10,11]. The same ADLs were also 
recorded from 21 adults (aged 58–98 years) in a residential care unit. The results showed that a threshold 
on the impact and posture can achieve 97.5% sensitivity and 100% specificity. Chao et al. [13] recorded 
seven male subjects performing eight different types of falls and 17 functional ADLs. Using a 
combination algorithm of acceleration cross-products and post-fall postures, a sensitivity of 100% and a 
specificity of 49.8% were obtained. Bourke et al. [14] recorded 10 young healthy volunteers 
performing 240 falls and 120 ADLs and 10 elderly healthy volunteers performing 240 scripted ADLs; 
they employed thresholds on the velocity, impact and posture to achieve 100% specificity and 
sensitivity with a false-positive rate of 0.6 FP/day for continuous unscripted activities. 

In previous studies, the signals of a tri-axial accelerometer were combined to produce many action 
parameters, such as the total sum vector, the dynamic sum vector, the sliding sum vector, the velocity 
and the tilting angle. Prior studies [14,15] have defined thresholds as criteria for fall-detection systems. 
A falling ADL is considered as falling down, such as forward fall, backward fall and lateral fall with 
both legs straight or with knee flexion [9–16]. The ADLs consist of sitting on a bed or chair, lying on a 
bed, walking up and down the stairs and walking [9–16]. However, the acts of standing and falling down 
are not classified as falling ADLs. Falling ADLs also include sitting at the bedside and slipping on the 
ground, sitting on a wheelchair and slipping on the ground, rolling off a bed or falling out of bed [17]. 

Support vector machine (SVM)-based classification methods represent a major development in 
pattern recognition research, for which innovation is the ability to find a hyperplane dividing samples 
into two classes and having the widest margin between them. Moreover, the hyperplane concept can 
extend a higher dimensional set with a kernel function to make a nonlinear separating hyperplane. This 
hyperplane, with maximum margins, can be formulated as a quadratic optimization problem in feature 
space. The subsets of patterns that are closest to the decision boundary are called support vectors. 
Therefore, SVMs have been applied to many pattern recognition and classification problems in 
bioinformatics [18–22]. Brown et al. [23] described a successful use of SVMs applied to gene 
expression data for the task of classifying unseen genes. Dehmeshki et al. [24] used SVMs for the 
classification of lung data. Chu et al. [25] applied SVMs for cancer diagnosis based on micro-array 
gene expression data and protein secondary structure prediction. Guler and Ubeyli [26] used SVMs on 
the classification of EEG signals. SVMs are also applied to ECG signal analysis and arrhythmia 
classification [27–29]. SVMs can also be used as criteria to detect the QRS complexes in 12-lead 
electrocardiograms [30]. 
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In this study, we will first define falling ADLs as actions in which the center of gravity of the body 
quickly descends. These activities include, but are not limited to, slipping while ascending stairs, 
slipping while descending stairs, stumbling and falling down forwards, backwards falling down, lateral 
falling down, and falling down with a weak leg but also sitting on a bedside and slipping onto the 
ground, sitting in a wheelchair and slipping onto the ground, rolling down from a bed, and falling 
down on a bed. Moreover, the accelerometer measures the moving acceleration. If a non-falling ADL 
does not include the body’s center of gravity falling down, then it is certain to be distinguished from 
the falling ADLs. Thus, our studies focus on non-falling ADLs in which the action involves the center 
of gravity falling. The non-falling ADLs include walking up stairs, walking down stairs, sitting down 
on a bed, standing up from a bed, sitting down in a wheelchair, standing up from a wheelchair, 
walking, lying down, sitting up from lying, squatting down, and standing up. Second, we used the 
hyperplane of the SVM as the separating plane to replace the traditional threshold method for the 
detection of falling ADLs on a comprehensive dataset containing simulated falling ADLs, non-falling 
ADLs, and continuously scripted ADLs, including falling ADLs and continuous unscripted ADLs 
performed by young and elderly volunteers with our designed device. 

2. Overview of System 

Figure 1 shows the flow diagram of our method. Subjects wore our designed device at the waist, 
which had a tri-axial accelerometer (Kionix Inc., KXPA4-2050, Range: ±2 g), a Bluetooth module 
(Atrie Inc., BTM-204B), and a microprocessor (Texas Instruments Inc., MSP430 F5438). The 
resolution was 12 bits and the sampling rate was 200 Hz for the signals of the tri-axial accelerometer. 
Digital accelerometer signals were then transferred to a Bluetooth chip and transmitted wirelessly to a 
remote server. A Visual Basic-based interface system was used to receive a Bluetooth transmitted 
signal and also to display and store information. Furthermore, feature extraction and falling ADL 
detection were performed by a program coded in Matlab. 

Figure 1. Overview of system. 

 

3. Feature Extraction 

Four different parameters that are associated with falling ADLs were examined: total sum vector, 
fast changed vector, vertical acceleration, and posture angle [14–16]. First, the total sum vector, 
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SVTotal(t), containing both the dynamic and static acceleration components is calculated from the 
sampled data, as indicated below: 

)()()()( 222 tAtAtAtSV zyxTotal ++=  (1)

where Ax(t), Ay(t), and Az(t) is the acceleration in the x-, y-, and z-axes at time t, respectively. 
Second, the fast changed vector, CVFast(t), is calculated using the differences between the maximum 

and minimum acceleration in a 0.1 s sliding window for each axis, as follows: 
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where Amax and Amin are the maximum and minimum acceleration values in a 0.1 s sliding window. 
Next, the vertical acceleration, VA(t), is calculated as follows: 
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where SVD(t) is calculated similar to the high pass filtered data, by using Equation (1), and G  is the 
gravitational component. Finally, the Posture angle, Φz(t), is defined as the angle between the VA(t) 
and gravity, as follows: 
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4. Support Vector Machines 

Considering a linearly separable dataset {Xi, Di}, i = 1, …, m, where Xi is the input pattern for  
the ith example and Di is the corresponding desired output (1, or −1), a hyperplane could be identified 
as the decision surface. This hyperplane can be written as follows: 
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where W is the coefficients’ vector of the hyperplane function and b is the distance from the origin 
perpendicular to the hyperplane. The margin between the hyperplane and the nearest point is 
maximized and can be considered as a quadratic optimization problem: 
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When W and b are rescaled, the point nearest to the hyperplane has a distance of 1/||w||. By the use 
of Lagrange multipliers αi ≥ 0, and the Kuhan–Tuker theorem, the solution is given by the following: 
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Only a small fraction of the αj coefficient is nonzero. The corresponding pairs of Xj are known as 
support vectors (SV) and they define the decision boundary. All of the other input patterns with 
corresponding zero αj values are rendered irrelevant.  

If the data are noisy, there will, in general, be no separation in the feature space. To optimize the 
margin slack vector, we need to introduce slack variables to allow the margin constraints to be 
violated. We can rewrite the objective function of the quadratic optimization problem as the following: 
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The solution given is similar to Equation (8) and the Lagrange multipliers are 0 ≤  αi ≤  C,  

i = 1, …, m. Finally, the hyperplane decision function for the input pattern vector X can be written as 
follows: 
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By replacing the inner product XT 
j X with the kernel function K(X, Xj), the input patterns are mapped 

to a higher dimensional space [31]. In this higher dimension, a separating hyperplane is constructed to 
maximize the margin. 

We used LIBSVM software to detect the falling ADLs. LIBSVM is an integrated software package 
for support vector classification, regression and distribution estimation [32]. In the present problem, 
the Gaussian radial basis function was used to construct the kernel function, which is given below: 

)exp(),(
2

jjK XXXX −−= γ  (12)

where parameter γ can be viewed as the radial’s size, which is set at 5.3. The cost parameter C is 4.7. 

5. Experimental Results 

There are three experimental procedures, including simulated ADL-based young volunteers, 
continuous unscripted ADL without falling ADL-based young and elderly volunteers, and continuous 
unscripted ADL with three falling ADL-based young volunteers. The classification performances were 
examined based on the sensitivity, specificity, and total classification accuracy. The sensitivity is the 
number of true positive (TP) decisions divided by the number of actual positive cases; the specificity is 
the number of true negative (TN) decisions divided by the number of actual negative cases. The total 
classification accuracy is the number of correct decisions divided by the total number of cases. 

5.1. Simulated ADL 

In this experiment, the two-fold cross-validation was used on half of the recorded data for training 
and the second half of the data from the same individuals for testing. Another testing was used on half 
of the subjects for training and half of the subjects for testing. However, much personal equipment has 
to be calibrated before use for the user; therefore using the user's behavior to train personal equipment 
is a more feasible method. 
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Ten healthy young volunteers (Set 1 in Table 1), five male and five female, performed 10 simulated 
falling ADLs and 11 simulated non-falling ADLs. Each ADL was repeated 10 times for the first 
experiment. The volunteers ranged from 24 to 35 years (27.2 ± 3.6 years), with a body mass of  
68–111 kg (84.27 ± 14.4 kg) and a height of 1.65 to 1.96 m (1.81 ± 0.1 m). Simulated falling ADLs 
and non-falling ADLs were organized and are numbered in Table 2. The height of the bed was 62 cm, 
and the height of the wheelchair was 50 cm. 

Table 1. Information on the volunteers for all of the experiments. 

Set No. Gender Age (year) High (cm) Weight (kg) BMI 

Set 1 

M_1 Male 22 182 73 22.5 
M_2 Male 23 178 73 21.7 
M_3 Male 24 187 80 22.8 
M_4 Male 24 178 73 23.0 
M_5 Male 24 173 98 32.7 
F_6 Female 25 160 50 19.5 
F_7 Female 24 168 53 18.7 
F_8 Female 25 167 55 19.7 
F_9 Female 32 163 50 18.8 

F_10 Female 17 155 47 19.5 

Set 2 

EF_1 Female 70 155 46 19.1 
EF_2 Female 71 150 65 28.9 
EF_3 Female 83 148 47 21.5 
EF_4 Female 73 158 60 24.0 
EM_5 Male 71 178 80 25.2 

Set 3 

CM_1 Male 28 175 79 25.8 
CM_2 Male 28 173 60 20.0 
CM_3 Male 28 175 68 22.2 
CM_4 Male 24 170 95 32.9 
CM_5 Male 24 176 88 28.4 
CF_6 Female 19 158 50 20.0 
CF_7 Female 18 160 48 18.8 
CF_8 Female 19 162 52 19.8 
CF_9 Female 19 165 55 20.2 
CF_10 Female 22 155 71 29.6 

In simulated ADLs, we randomly chose five recorded signals of every ADL for each subject as the 
training input. Thus, the falling ADLs have 500 datasets, and the non-falling ADLs have 550 dataset. 
We extracted the ADL parameters described in Section 3 from the recorded signals. The training 
dataset were transformed into the format of LIBSVM. A training instance matrix is an m by n matrix. 
In this study, n is the ADL parameter’s number. The number of training instances was equal to the 
sampled number of 1,050 selected datasets. The profile of the CVFast parameter was used to mark the 
falling range. We found the maximum value of the CVFast of each falling ADL. This value multiplied 
by 0.87 was set as the threshold. The elements of the training label vector were set to 1 when the 
training instance was over this threshold and were set to −1 when it was not over the threshold or 
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belonged to a non-falling ADL. Table 3 shows the optimal training results with different parameters’ 
combinations. We found that the combination of four parameters has the best results, with an accuracy 
of 99.14%, a sensitivity of 99.60%, and a specificity of 98.73%. Therefore, we used this SVM model 
to test the three experimental procedures. The first phase is the test of the simulated ADL.  

Table 2. A series of falling and non-falling ADLs. 

Falling ADLs Non-Falling ADLs 
No. Action No. Action 
1 Slip and ascending stairs 11 Ascending stairs  
2 Slip and descending stairs 12 Descending stairs 
3 Forward fall 13 Sitting down on bed 
4 Backward fall 14 Standing up from bed 
5 Falling down from bed 15 Sitting down in wheelchair 
6 Fall down from wheelchair 16 Standing up from wheelchair 
7 Rolling down from bed 17 Walking 
8 Lateral fall 18 Lying down 
9 Falling down to bed 19 Lying up 
10 Fall for the weak leg 20 Squatting down 
  21 Standing up 

Table 3. The training results with different parameter combinations. 

Parameters Accuracy (%) Sensitivity (%) Specificity (%) 
SVTotal, CVFast, VA, Φz 99.14 99.60 98.73 

SVTotal, CVFast, VA, 93.43 100.00 87.45 
SVTotal, CVFast, Φz 88.76 100.00 78.55 

SVTotal, VA, Φz 94.10 91.60 96.36 
CVFast, VA, Φz 98.95 99.40 98.55 
SVTotal, CVFast 96.38 98.80 94.18 

SVTotal, VA 61.81 19.80 100.00 
SVTotal, Φz 68.10 33.00 100.00 
CVFast, VA 79.71 57.40 100.00 
CVFast, Φz 83.81 100.00 69.09 

VA, Φz 88.00 75.60 99.27 

Another 1,050 datasets were used to test the performance of the SVM. Table 4 shows the testing of 
the optimal results with different parameter combinations with the same criteria in training the SVM 
models. We also find that the results of four parameters are best, with an accuracy of 98.38%,  
a sensitivity of 97.40%, and a specificity of 99.27%. In addition, the pieces of equipment used in the 
test include one Intel i5 M480 2.67 GHz processor, 4 GB memory and Windows 7 operating system 
while the Matlab software 2009 version was used for development. The computation time was mainly 
spent on calculating the feature vectors as well as the kernel function and weight sum of the support 
vector. The experimental results showed that it takes about 1ms to calculate the feature vector, while 
the number of support vectors is about 10% of that of the training samples. Moreover, it takes about  
3 ms to calculate the kernel function, so the computation time is about 4 ms which is less than the 
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sampling time 5 ms. Therefore, this proves that the proposed method could be effective in real 
applications. 

Table 4. The testing results with different parameter combinations. 

Parameters Accuracy (%) Sensitivity (%) Specificity (%) 
SVTotal, CVFast, VA, Φz 98.38 97.40 99.27 

SVTotal, CVFast, VA, 90.19 99.80 81.45 
SVTotal, CVFast, Φz 83.52 99.80 68.73 

SVTotal, VA, Φz 90.19 93.20 87.45 
CVFast, VA, Φz 98.10 98.00 98.18 
SVTotal, CVFast 97.33 99.00 95.82 

SVTotal, VA 60.67 17.60 99.82 
SVTotal, Φz 69.81 36.60 100.00 
CVFast, VA 83.24 65.00 99.82 
CVFast, Φz 82.95 64.80 99.45 

VA, Φz 93.24 89.20 96.91 

To analyze what actions are easily misclassified, Table 5 shows the frequency of the false 
classification of each ADL and the accuracy. The action of slipping when ascending stairs has the 
worst classification. The reason likely has to do with the procedure of the simulated action.  

Table 5. The frequency of the false classification of each ADL. 

Falling ADL Non-Falling ADL 

Action 
# of 

False 
False 
Rate 

Action 
# of 

False 
False 
Rate 

Slip and ascending stairs 4 0.8% Ascending stairs 0 0.0% 

Slip and descending stairs 2 0.4% Descending stairs 2 0.4% 

Forward fall 0 0.0% Sitting down on bed 0 0.0% 

Backward fall 1 0.2% Standing up from bed 1 0.2% 

Falling down from bed 0 0.0% Sitting down in wheelchair 0 0.0% 

Fall down from wheelchair 2 0.4% Standing up from wheelchair 0 0.0% 

Rolling down from bed 2 0.4% Walking 0 0.0% 

Lateral fall 0 0.0% Lying down 0 0.0% 

Falling down to bed 2 0.4% Lying up 0 0.0% 
Fall for the weak leg 0 0.0% Squatting down 1 0.2% 

   Standing up 0 0.0% 

Figure 2 shows the decomposition of the motion, with the subject walking up the stairs, slipping and 
forward and falling down with a knee flexion, and the body lying on the stairs. We could find that the 
falling acceleration of the body’s center of gravity and the falling distances are all lower than the other 
falling ADLs. Moreover, in continuous action including three falling ADLs, the types of missing 
detection are very similar to the types of worse classification in the simulated actions when the action 
of slipping and ascending stairs was excluded. These results show that the SVM method has a unified 
approach for the falling ADLs. 
  



Sensors 2012, 12 12309 
 

 

Figure 2. The sequence of images for the activity of slip when ascending stairs. 

  
(a) (b) (c) 

5.2. Continuous Unscripted ADL without Falling Activities 

In continuous unscripted studies, five elderly volunteers, one male and four female (Set 2 in  
Table 1), who ranged from 70 to 83 years (74.3 ± 2.9 years), with a body mass of 46 to 65 kg  
(54.5 ± 4.7 kg) and a height from 148 to 158 cm (152.7 ± 2.3 cm), wore the device continuously for up 
to one hour. In this group, one subject had apoplexy and one subject had fallen down twice and broken 
his right leg bone and left humerus. During this time, volunteers conducted their normal activities, 
including sitting, lying, walking, walking up and down stairs, and doing house work. These studies 
took place at the volunteers’ homes. Second, the same young volunteers (Set 1 in Table 1), including 
three males and two females, who executed the simulated experiment also performed continuous 
unscripted ADL, the same as the elderly volunteers, for up to one hour. These studies took place at the 
volunteers’ school. 

There are two conditions under which continuous action contains only non-falling ADLs for one 
hour. The four parameter combination in the input vector was used to test the SVM model. The false 
positive (FP) quantity and false positive rate (FP/h) were utilized to show the performance. The results 
from the same five young volunteers are shown in Table 6. The total time is 385.1 minutes and the FPs 
occurred three times. The false positive rate is 0.48 FP/h. The result from the five elderly volunteers is 
shown in Table 7. The total time is 363.8 minutes and there is one FP. The false positive rate is  
0.18 FP/h. Figure 3 shows the SVTotal signal for the continuous action of the EF_3 subject. There is one 
FP during the act of walking down the stairs. The above results show that elderly people with slow and 
moderate activities have a lower FP rate than young people with intense and fast activities. On the 
other hand, the falling definition that we detected in this paper is different from that of previous studies. 
Therefore, the FP rate we obtained is relatively high than the threshold-based algorithm in unscripted 
continuous experiments. 
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Table 6. The FP number for the subjects of Table 1 Set 1 in continuous unscripted ADL 
without falling activities in the experiment. 

Volunteers Time (min) FP 
F_6 79.1 0 
M_3 74.8 1 
M_5 84.2 0 
F_7 67.6 2 
M_2 79.4 0 
Total 385.1 3 

FP Rate (FP/h) 0.48 

Table 7. The FP number for the subjects of Table 1 Set 2 in the continuous unscripted 
ADL without falling activities in the experiment. 

Volunteers Time (min) FP 
EF_1 72.1 0 
EF_2 71.1 0 
EF_3 76.2 1 
EF_4 76.3 0 
EM_5 68.1 0 
Total 363.8 1 

FP Rate (FP/h) 0.18 

Figure 3. The SVTotal signal of continuous actions of the EF_3 subject. 

Time(s) 

5.3. Continuous Unscripted ADL 

In continuous action, including three times falling ADLs, another ten young volunteers conducted 
this experiment (Set 3 in Table 2). Five males and five females, who ranged from 24 to 28 years  
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(26.4 ± 2.2 years), with a body mass of 68–111 kg (84.27 ± 14.4 kg) and a height from 170 to 176 cm 
(173.8 ± 1.1 cm), continued to wear the device for 5 minutes. They not only conducted the non-falling 
ADLs, like the elderly volunteers, but also conducted falling ADLs three times during this period. 

Because the action of slipping and ascending stairs is a more difficult action, we only conducted 
nine falling ADLs. The results show, in Table 8, that FP is zero, but there are three false negatives 
(FN). We analyzed the TP and TN of each falling ADL in Table 9. Falling down from a wheelchair, 
rolling down from a bed, and falling down to a bed all have one missing detection. Figure 4(a) shows 
the SVTotal signal for the continuous action of the CM_3 subject whose falling ADLs were falling down 
to a bed, falling down from a bed, and lateral falling down; these falling ADLs were all correctly 
detected. Figure 4(b) shows the SVTotal signal for the continuous action of the CM_1 subject whose 
falling ADLs were falling down from a wheelchair, forward falling down, and falling down from a 
bed; these falling ADLs had one missing detection. 

Table 8. The statistics of falling ADL detection for subjects of Table 1 Set 3 in the 
continuous unscripted ADL experiment. 

Volunteers TP FN FP 
CM_1 2 1 0 
CM_2 3 0 0 
CM_3 3 0 0 
CM_4 2 1 0 
CM_5 3 0 0 
CF_6 3 0 0 
CF_7 2 1 0 
CF_8 3 0 0 
CF_9 3 0 0 

CF_10 3 0 0 
Total 27 3 0 

Sensitivity 90% 

Table 9. The analysis of different falling ADL detections in a continuous unscripted ADL experiment. 

Falling ADL Numbers TP FN 
Slip and descending stairs 2 2 0 

Forward fall 4 4 0 
Backward fall 3 3 0 

Lateral fall 3 3 0 
Falling down from bed 3 3 0 

Fall down from wheelchair 3 2 1 
Rolling down from bed 2 1 1 

Fall for the weak leg 6 6 0 
Falling down onto bed 4 3 1 

Total 30 27 3 
  



Sensors 2012, 12 12312 
 

 

Figure 4. The SVTotal signal for the continuous action of the (a) CM_3 and (b) CM_1 subjects. 

Time(s) 
(a) 

Time(s) 
(b) 

5.4. The Comparison with the Threshold-Based Algorithm 

Previous studies have frequently used a threshold-based algorithm with the impact and posture after 
the fall as the most popular method for fall detection [10,11,13–16]. The falling ADLs are described by 
calculating an action’s parameters, such as the SVTotal, CVFast, VA, Φz, or velocity, and defining their 
upper and lower falling thresholds with respect to the impact and the posture. A boxplot (see Figure 5 
or Figure 6) was used to set the thresholds of these parameters. Moreover, previous studies have 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-1

0

1

2

3

4

5

SVTotal 

SVTotal 

Falling down 
to bed. 

Falling down 
from bed. 

Lateral fall 

Fall down 
from 

wheelchair. 

Forward fall. Falling down 
from bed. 



Sensors 2012, 12 12313 
 

 

focused on the actions of standing and falling down as the falling ADLs. We know that these falling 
actions are all encompassed in the body’s center of gravity as it quickly falls down, and the falling 
distances are the highest compared to the non-falling ADLs. Thus, the upper or lower fall threshold 
could be used to separate the falling ADL and the non-falling ADL, for which the sensitivity and 
specificity all are 100%. However, the falling ADLs must also include sitting on a bedside and slipping 
onto the ground, sitting in a wheelchair and slipping onto the ground, rolling down from a bed, or 
falling down to a bed. The falling acceleration of the body’s center of gravity in these falling ADLs is 
not larger than the actions of standing and falling down, and the falling distances are close to the 
moving distances of the non-falling ADLs. Under these conditions, the threshold-based method is not 
expected to have very good results. 

Figure 5. The boxplots of the CVFast parameter for all of the ADLs. (a) The upper peak 
values of the CVFast signal, for which the upper falling threshold is 0.8. (b) The lower peak 
values of the CVFast signal, for which the upper falling threshold is 1.26. 

CVFast CVFast

 (a)  (b) 

Figure 6. The boxplots of the CVFast parameter for only four falling ADLs. (a) The upper 
peak values of the CVFast signal, for which the upper falling threshold is 1.25. (b) The 
lower peak values of the CVFast signal, for which the upper falling threshold is 1.29. 
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We used boxplots to define the upper and lower falling thresholds of four parameters that were used 
to separate the falling ADLs and the non-falling ADLs. The results of the simple threshold-based 
method in our study are shown in Table 10. The best threshold was the upper falling threshold of 
CVFast, of which the specificity was 81.9%. Figure 5 shows the boxplot of CVFast; the upper and lower 
falling thresholds were 0.8 and 1.26, respectively. If we considered the upper and lower falling 
thresholds of all the parameters, the specificity only reached 82.5%. They were much lower than our 
proposed SVM method. If we only considered forward falling down, backward falling down, literal 
falling down and falling down with leg weakness as falling ADLs, then the results of the SVM could 
attain an accuracy of 100% in the training and testing. The simple threshold-based method was used to 
detect these falling actions, with the results shown in Table 11. The best threshold was the upper 
falling threshold of CVFast, of which the specificity was 98.5% and the whole specificity was 98.6%. 
This result was very close to the results of previous studies. However, the result was also lower than 
the SVM method. Figure 6 shows the boxplot of CVFast; the upper and lower falling thresholds were 
1.25 and 1.29, respectively. 

Table 10. The testing results of threshold-based methods for all of the ADLs. 

Parameters Specificity of Upper Threshold (TN) Specificity of Lower Threshold (TN)
SVTotal 0% 5.2% 
CVFast 81.9% 0% 
Φz 4.6% 6.7% 
VA 0% 0% 

Total specificity 82.5% 

Table 11. The testing results of the threshold-based method for only four falling ADLs. 

Parameters Specificity of Upper Threshold (TN) Specificity of Lower Threshold (TN)
SVTotal  0.00% 5.2% 
CVFast 98.5% 0.00% 
Φz 4.6% 29.9% 
VA 0.00% 0.00% 

Total specificity 98.6% 

6. Conclusions 

We used the hyperplane of the SVM as the threshold for detecting the 21 ADLs, including 10 
falling ADLs and 11 non-falling ADLs. The most successful parameter combination,  
SVTotal + CVFast + VA + Φz, achieved a training sensitivity and specificity of 99.60% and 98.73%, and a 
testing sensitivity and specificity of 97.40% and 99.27%, respectively If the threshold-based method 
was used to detect the falling ADLs, then the specificity was only 82.5%. Thus, the conclusion is that 
when the parameters of falling and non-falling ADLs are very close, the results of the SVM method 
are better than the threshold-based algorithm. In unscripted continuous experiments, the FP rates were 
0.48 FP/h, 0.18 FP/h and 0 FP/h for the same young volunteers, for elderly volunteers and for different 
young volunteers, respectively. In continuous action, including three times falling ADLs, the 
sensitivity also became 90%. On the other hand, the falling definition that we detected in this paper is 
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different from that of previous studies. Therefore, the FP rate we obtained is relatively high than the 
threshold-based algorithm in unscripted continuous experiments. 
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