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Abstract: This paper describes the environment perception system designed for intelligent
vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the
cooperation of multiple lasers and cameras to realize several necessary functions of
autonomous navigation: road curb detection, lane detection and traffic sign recognition.
Multiple single scan lasers are integrated to detect the road curb based on Z-variance method.
Vision based lane detection is realized by two scans method combining with image model.
Haar-like feature based method is applied for traffic sign detection and SURF matching
method is used for sign classification. The results of experiments validate the effectiveness
of the proposed algorithms and the whole system.

Keywords: autonomous vehicle; travel environment perception system; multi-sensor
cooperation; road and lane detection; traffic sign detection

1. Introduction

Intelligent Vehicle System (IVS) is a comprehensive system which should have several necessary
functions: travel environment perception, self-localization, path planning and vehicle control. Travel
environment perception is the foundation of other functions in IVS. This paper introduces the
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multi-sensor fusion travel environment perception system designed for our autonomous vehicle
SmartV-II. The main functions include road curb detection, lane detection and traffic sign recognition.
With the help of this travel environment perception system, SmartV-II became the only robot to complete
comprehensive test section of the 2010 Future Challenge in time, see Figure 1.

IVS has been studied for a long time, especially since the DAPRA Challenge held in 2005. Many
effective solutions have been proposed for road and lane detection and traffic sign recognition.

Figure 1. (a) At approximately 3:04 pm on Oct 18, 2010, SmartV-II was the first robot to
complete the Future Challenge; (b) Autonomous Vehicle SmartV-II, developed by Wuhan
University.

(a) (b)

1.1. Road and Lane Detection

Road can be mainly divided into structured road and unstructured road based on the structure
information. The former means regular road with visible lane markings, such as highway and most urban
road. For structured road, lane detection and following as the key technology have been studied over last
two decades. Some effective lane detection systems have been proposed, such as AWSTM, AutoVue,
RALPH ([1–3]), AURORA [4], SCAR [5], GOLD ([6,7]), and LOIS [8]. These lane detection algorithms
can be mainly grouped into two categories: edge based methods and model based methods. Edge based
methods are most widely used [9,10].They are fast but highly dependent on the method used to extract
the edges corresponding to the lane boundaries. When the road condition is complex, these methods
may easily fail. Common road models include triangle model, straight line model, clothoid model,
polynomial model and spline model, etc. Wang et al. [11] computed the likelihood probability through
fitting the detected features to the model, and Kang et al. [12] and Wang et al. [13] found the extreme
value of the energy function to the lane location, then the Kalman filter was used for predicting the
parameters of the model. These algorithms would be time-consuming because of the iterative operation.
Unstructured road refers the irregular road without normal markings such as campus and park road,
rural road and off-road. In the situation, researchers mainly focus on the natural road boundary and
drivable range detection [14–17]. Lieb et al. [14] used one-dimensional template matching and the
sum of squared differences combined with optical flow to determine the most similar regions in front
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of vehicle. This method can hardly deal with the situation where there is an unexpected obstacle in
the front. Dynamical sampling windows are used for training range detection in [15], but the selected
range can not represent the real road classes feature space well. Our previous solution of lane detection
is reported in [18]. In this paper, we apply a more believable method based on laser information for
locating the road range, because the laser has more reliability depth information which is easier to find
structural change. In [19], a trigonometry based road detection method using laser scanner is proposed,
which applies the relationship of neighboring three laser points. However, because of the ranging
error, the relationship may be destroyed and this method will be less robust as the range increases.
In this paper, a Z-Variance based road curb detection method is proposed, which is range independent.
Chen et al. [20] also introduced some recent developments of active vision in robotic systems.

1.2. Traffic Sign Detection and Recognition

Traffic sign detection and recognition in realtime is a vital issue in IVS and Driver Assistance System
(DAS). One decade age, realtime performing systems have been successfully achieved [21–23]. Traffic
sign recognition usually consists of two components: detection and classification. First, the location
of the traffic signs are found and the target rectangles are extracted in the detection stage. To which
category does the candidate sign belong is the main issue needing to be addressed in the classification
phase. For traffic sign detection, color segmentation is the most common method. RGB color model
is widely used [24]. RGB color space has a higher sensitivity to light intensity. Therefore, HIS and
HSV which are not affected by the lighting changes have been used [25,26]. Some other authors also
used YIQ [27], YUV, L*a*b [28] and CIE color spaces. Some authors developed databases of color
pixels, look-up tables and hierarchical region growing techniques [26,29,30]. Shape based method is
usually used for a final detection after the color segmentation. Many circle, ellipse and triangle detection
methods also have been used. Soetedjo and Yamada [31] discussed ellipse detection in complex scene
with neighborhood characteristics and symmetric features of the simple coding. Piccioli et al. [32]
analyzed the color information and geometrical characteristic of the edges to extract possible triangular
or circular signs. For traffic sign classification, many methods have been employed for traffic signs
classification such as template matching, LDA, SVM, ANN and other machine learning methods. OCR
systems are applied in [28,33,34] using the pictogram-based classification by template matching and
cross-correlation. In [35,36], the authors make use of the LDA to distinguish between the road signs.
The Multi-Layer Perception [37] is widely used in the current approaches. Neural networks are also
widely adopted [38,39]. Support vector machines (SVM) are largely adopted to classify the inner
part of road signs [40]. Random forests, an ensemble learning technique, are used in [41] to classify
signs, and a comparison is made between this technique and SVM and AdaBoost. In recent years, one
of the most accepted and widely used approach in object detection has been proposed by Viola and
Jones [42]. Their approach is based on a cascade of detectors, where each detector is an ensemble of
boosted classifiers based on the Haar-like features. Inspired by detector presented in [42], we apply this
method combined with color segmentation for the traffic sign detection. Different from above solutions,
this paper presents a low-cost multi-sensor integrated system to realize the necessary functions based on
several novel algorithms. The contributions of this paper are as follows:
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1. By reasonably arranging several simple low-cost sensors, our system can realize complex functions
without high-end sensors. Combination of cameras and lasers based road detection method can
deal with not only structured road but also unstructured road.

2. Multiple sensors are skillfully installed for covering more view around the vehicle to satisfy the
situation that the vehicle drives with high speed or passes a turn with high curvature.

3. Traffic signs are divided into six classes; for each class, we trained a classifier based on Haar-like
features for the detection and the scale invariant feature SURF is used for the sign classification.

The rest of the paper is organized as follows. Section 2 introduces the layout of the sensors. Section 3
describes Z-variance based road curb detection. Section 4 presents two scans method for multiple lanes
detection. Realtime traffic sign recognition is introduced in Section 5. Experiments and results are
discussed in Section 6. Conclusions are given in Section 7.

2. Multi-Sensor Layout

The layout of the sensors for IVS should enable a wide view including not only the front view but also
the left and right sides of the vehicle. Compared with the two successful vehicle in DAPRA Challenge,
i.e., BOSS [43] from CMU and Stanley [44] from Stanford University, our system uses lower cost
sensors instead of the high-end laser scanners such as Velodyne and fixes several sensors in the front
part of the vehicle to cover the area close to the vehicle. Our detection system arranges the layout of
lasers and cameras in such a way that guarantees our range of perception should cover not only the front
view of the ego vehicle but also the left and right view. This arrangement can deal with the situation
where the vehicle prepares to drive through a turn with high speed. Figure 2 shows the positions and
coverage areas of the sensors. Three laser scanners are marked by 1, 2 and 3 in the upper figure. Laser 1
is mounted on the roof and Laser 2 and Laser 3 are mounted on the head of the vehicle, tilted downward
to scan the road ahead. We can adjust the pitch angles ρ1, ρ2 and ρ3 in order that the lasers can touch
different distances ahead our vehicle. Three cameras with different pitch angles and heading angles
are used for curb finding. When vehicle is traveling roughly along the straight line, the middle camera
is used for lane detection. When it comes to turning, two aside cameras are chosen in order to cover
the closer area around the vehicle. Data from different sensors will be transformed to the unique vehicle
coordinate. Calibration is performed using OPENCV functions [45] and the Camera Calibration Toolbox
for MATLAB. The algorithm used is taken mainly from [46].
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Figure 2. Lasers and cameras layout.
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3. Road Curb Detection

3.1. Z-Variance Based Road Curb Detection

The laser scanner used for road shoulder detection is slanted down. The proposed method assumes
that the road surface is flat. With this hypothesis, the elevation variance of the points on road surface is
low, while the variance of Z value is high on the road boundary or curb. All the laser points are translated
to the vehicle coordinate. Median filter is applied to filter out some tiny objects on the road such as leaves
and road crack. The Z-variance of the ith point will be calculated by

Di =
1

9

i+4∑
i−4

Zk (1)

The algorithm step is as follows:

1. Calculate the Z-variance of all points.

2. Select the points with Z-variances above the threshold t, and the segment between these two points
with length wider than the vehicle will be selected as candidate road section.

3. Compare the mean value of height H , distance D between head of vehicle and midpoint of one
section, then calculate weights for all candidate road sections by the following equation:

Wi = α · e
−|H−Hmin

Hmin
|
+ (1− α)e−|

D−Dmin
Dmin

| (2)

whereHmin is the minimum height andDmin is the minimum distance, and α is a weighting factor.
Wi ranges from 0 to 1.

4. The candidate road section with highest weight is considered as the real road which is expressed
as pointpair, that is, left point (Xl, Yl) and right point (XR, YR).

3.2. Multi-Laser Based Road Curb Fitting

To obtain the road boundary, only one single scan laser is not enough. Multiple lasers are
combined to settle this problem. Three SICK laser scanners are used with scan range 2 m, 3.5 m
and 6 m respectively. Road curb detection described above will be carried out with each
laser dependently. Consequently, we can get three point-pairs which can be divided into left
points ( (XL

2, YL
2),(XL

3.5, YL
3.5) and (XL

6, YL
6) ) and right points ((XR

2, YR
2),(XR

3.5, YR
3.5) and

(XR
6, YR

6)). Finally, a parabola is used to fit the points on the same side, see Figure 3.

x = a+ by + cy2 (3)
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Figure 3. Road curb fitting.
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4. Lane Detection

For structured roads, this paper proposes a two scans method to detect multiple lanes. Figure 4 is
the proposed flow chart of multiple lanes detection method. Road image from top-middle camera is first
preprocessed by top-hat transform and threshold. In mathematical morphology, top-hat transform is an
operation that extracts small elements and details from given images. The top-hat extracts the objects
that have not been eliminated by the opening. That is, it removes objects larger than the structuring
element.

Figure 4. Flowchart of two scans based lane detection method.
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4.1. Imaging Model

Using the image model, we can rebuild the model of the lane plane in the 3D world space from the
image in the 2D image space based on the inverse perspective mapping (IPM), and finally obtain the
real width of lane markings and distance between two adjacent lane markings. The proposed image
model is shown in Figure 5. W = (X, Y, Z) ∈ E3 denotes the world coordinate system WCS and
I = (u, v) ∈ E2 denotes the image coordinate. Camera is located in C(d, 0, h) ∈ W , h is the height
of the camera from the ground. Optical axis is parallel to the ground, γ is the angle between optical
axis and the lane. α is horizontal view angle of the camera and β is vertical view angle. The mapping
from W to I is given in Equation (4) and the mapping from I to W is given in Equation (5), where HI
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and WI respectively represents horizontal resolution and vertical resolution of the camera, which can be
acquired by calibration. The width of the lane marking decreases with increasing distance to the camera
in perspective view. Based on imaging model, we can get the real distance4X in the WCS coordinate
when the distance is4u in the line v in the image coordinate. The relationship is given in Equation (7).

v =
HI

2
(1− h

Y × tanβ
2
× cosγ

)

u =
WI

2
(1− X

Y tanα
2

)

(4)

X =
Y tanα

2

cotγ
(1− 2u

WI

)

Y =
h×HI

(HI − 2v)× tanβ
2
× cosγ

(5)

4u =
4X ×WI(2v −HI)cotγcosγtan

β
2

2× h×HI × tanα2
(6)

Figure 5. Imaging Model. (a) The W space. (b) The xy plane in the W space. (c) The yz
plane in the W space.
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4.2. Two Scans Based Method for Multi-Lane Detection

After preprocessing, the gradient of each pixel will be calculated as follows:

∇I(x, y) = (
∂I

∂x
,
∂I

∂y

T

) ≈ (Dx, Dy)
T (7)

where Dx and Dy denote the gradient in x direction and y direction respectively. First, we want to get
a most obvious lane, called the surest lane, based on the edge distribution function(EDF). EDF is the
histogram of the gradient magnitude with respect to the orientation. We can estimate the magnitude and
orientation by Equation (8). To compute this histogram, the angle θ(x, y) with the range [−90◦, 90◦]
were quantized in 90 subintervals at a step of 2◦. The surest lane is defined as the maximum value of
the histogram. Figure 6(g) shows the RANSAC line fitting of the surest lane after the first scan. Starting
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from the surest lane, we can do the second scan. Other lanes could be fitted with the same method.
Figure 6(j) shows the results of multiple lane detection. Figure 6(i,k) presents the global maxima and
local maxima.

| ∇I(x, y) |=| Dx | + | Dy |

θ(x, y) = tan−1
Dy

Dx

(8)

Figure 6. Step by step results by proposed lane detection. (a) Original Image. (b) Image
after open operation. (c) Image after dilate operation. (d) Image after top-hat transform.
(e) Threshold. (f) First scan. (g) RANSAC. (h) Second scan. (i) Gradient contribution
function after first scan. (j) RANSAC. (k) Gradient contribution function after second scan.

(a) (b) (c) (d)

(e) (f) (g) (h)

 
Gradient level

A
m

p
li

tu
d

e 
o

f 

G
ra

d
ie

n
t

(i) (j)

Gradient level
 

A
m

p
li

tu
d
e 

o
f 

G
ra

d
ie

n
t

(k)

5. Traffic Sign Detection and Classification

The proposed sign detection and recognition method includes two parts. The detection part is based
on color segmentation, Haar-like wavelet features and AdaBoost classifier. The recognition part is based
on feature matching method with the Speeded Up Robust Features (SURF). Figure 7 is the flow chart of
the traffic sign recognition system. Because Haar-like features are features of gray images, the detection
method we proposed here is mainly based on the gray information. Since the shape information can
mainly affect the Haar-like features, the main traffic signs that this paper copes with can be divided into
six classes based on the shape, as shown in Figure 8.
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Figure 7. Flow chart of traffic signs recognition system.

Road Scene

Image

Color-based

Segmentation
AdaBoost

SURF

features

ANN

matching
Signs

Traffic Sign DetetionInput outputTraffic sign database

Haar 

features

Figure 8. Traffic Signs Classes.

 

5.1. Color-Based Segmentation

The color-based segmentation includes two steps: (1) color quantization, (2) ROI locking. In the
first step, we extract the target color pixels. In the next step, we get the ROI from the pixels based on
constraints on bounding box of the connected-components of the pixels. The main color includes: red,
blue, yellow, white and black. In our detection method, we focus on the three colors: red, blue and
yellow. The RGB color model is highly related to the light intensity. HSV color model is applied in
this paper.

Table 1. Color quantization.

Red Blue Yellow

Saturation S > 0.2 S > 0.2 S > 0.2

Hue 0 < H < 10320 < H < 360 200 < H < 270 20 < H < 100

According to Table 1, we can get the red, blue and yellow pixels from the original image. After the
color segmentation, the detected pixels can form some connected regions, then we can get the enclosing
rectangles (ER) of them. Based on some constraints on ER, we can wipe off many noise regions. First,
the ER smaller than 20× 20 pixels are considered as noise and not processed further. Second, the aspect
ratio of ER is limited to 2. Third, the saturation of ER is no less than 0.5. The rest of ERs will be ignored.
Figure 9 shows the results of three color segmentation and ROI locking.
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Figure 9. Color quantization and ROI locking. (a) original image, (b) ROI locking, (c) red
segmentation, (d) blue segmentation, (e) yellow segmentation.

5.2. AdaBoost for Traffic Sign Detection

The AdaBoost algorithm is a classifier learning method which combines a set of weak classifiers to
construct a strong classifier and then assembles some strong classifiers to a cascade classifier. Feature
selection is crucial for classifier. Motivated by the work of Tieu and Viola [47], we use extended
Haar-like features to train AdaBoost classifier for traffic signs detection.

featurei =
∑
i∈(i,n)

ωi ×RectSum(ri) (9)

where ωi denotes the weight of rectangle, RectSum(ri) is the integral of image by surrounded by
rectangle ri, featurej is the jth feature, n is arbitrarily chosen that represents the number of rectangles
consisting of featurej .

5.3. SURF Matching for Classification

The proposed recognition method includes three steps: image scaling, SURF features extraction,
features matching. The detected targets found in detection stage will be normalized to be of the same
size (100×100) as the template which will be matched. Though SURF is a scale invariant feature, in this
step we will make sure that the true sign contains enough features to be matched with the template sign.
If the number of matched points is lower than a certain value, the candidate will be discarded as a noise.
In order to make sure the certain value is adequate for all candidates, the image scaling is necessary.
In this paper, we use bilinear interpolation for image scaling. Once the image is normalized, the SURF
descriptor can be used for exacting the scale and rotation invariant features.
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SURF [48,49] detector is chosen instead of the often used SIFT detector. SURF is developed to run
substantially faster but possess comparable performance than SIFT. The resulting descriptor vector for
all 4× 4 sub-regions is of length 64. More details about SURF can be found in [48] and [49].

Because we have many template signs to be matched, in order to reduce the matching time, all
the template signs are divided into six groups based on the color and the trained Adaboost classifiers.
We used Approximate Nearest Neighbor (ANN) [50] algorithm for matching. SURF features are first
extracted from all the template signs which will be divided into eight groups and stored in a database.
Then a candidate image is matched by individually comparing each feature of the candidate with the
special database; the selection is made based on the classifier used and color information and the features
are matched based on ANN. The image in the template database that gives the maximum number of
matches with the candidate image is the target class. Figure 10 shows some match results between the
candidate signs and template signs. See [51] for more details about the algorithm.

Figure 10. SURF feature matching. The number of match points is 16, 11, 24, 7, 12, 7
according to priority.

 

6. Results and Discussion

6.1. Road Curb Detection

In order to test the curb detection algorithm, we collected the synchronous laser data and the image
data of the whole route in the Future Challenge 2010. The data set contains 9,230 frames as a
combination of three laser scanners. If the road curb detected from the laser data is close to the scene in
image, we consider it as true position. The final accuracy can reach 82%. Figure 11 shows some results
of the proposed road curb detection. The point in red denotes the road segment point obtained from our
curb detection method. The red dashed line represents the fitting boundary based on the curb points.
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Figure 11. Some results of the road curb detection.
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6.2. Lane Detection

The algorithm takes the mobile laboratory SmartV-II (Figure 1(b)) Wuhan University as the platform.
The test image data is acquired by the analog Video Camera, which is mounted on the top of the Chery
SUV with a fixed strut. The size of the recorded images is 640 × 480. For some special reason, we
transform the video to 388 × 332. We tested the system under a variety of different road conditions,
including structured road and unstructured road. The test data contains 15 videos and 4,319 frames
in total, among which unstructured road (without lanes) consisting 2,891 frames and unstructured road
(without lanes) consisting 1,428 frames. All the videos are taken on urban roads in Wuhan and Xi’an
City, China. The average error rate under different conditions is lower than 9%. The average processing
time is 20 ms per frame on a Pentium E5200 2.5 GHz computer. For comparison, we implemented
the Canny/Hough Estimation of Vanishing Points (CHEVP) algorithm [13]. Wang et al. proposes the
CHEVP algorithm to initialize their B-Spline SNAKE tracking algorithm. Here, we just compare the
detection algorithm instead of tracking. For all the 4,319 frames, the correct detection of CHEVP is
lower than 30%, and for the 1,428 structured road frames, the correct detection is no more than 50%.
The main reason is the Hough failed to grab many unobvious lines.

Figure 12 shows some results from the front camera under different road conditions. Figure 12(a)
shows the roads with vehicle or shadow. Figure 12(b) shows the highway with orientation arrows
markings. Figure 12(c) shows the highway with crosswalk warning markings. Figure 12(d) is the road
with crosswalk markings. Figure 12(e) shows the road with pavement lettering markings.
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Figure 12. Some examples of lane detection results.
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6.3. Traffic Sign Detection and Recognition

The test image data is acquired by the CCD Video Camera which is mounted on the top of the Chery
SUV with a fixed strut. The size of the recorded images is of 640 × 480. We tested the system under a
variety of different conditions. To evaluate the performance of the proposed method, 200 images were
taken as test images, in which there are 281 traffic signs.

In this paper, six classifiers were trained for the six classes of signs listed in Figure 8. For all the
classifiers, the number of position samples (PS) and negative samples (NS) are listed in Table 2. Our
method can detect road signs in 50 ms. In the 281 signs, there are 265 signs being correctly detected,
14 signs being missed, and 2 signs being false alarm. Thus the detection rate is 94.3%, demonstrating that
the proposed detection method is effective and efficient. Some detection results are shown in Figure 13
to demonstrate that our method is insensitive to many complex conditions.

Table 2. The number of PS and NS for the six trained classifiers.

C1 C2 C3 C4 C5 C6

PS 3,125 1,276 794 648 963 346
NS 5,200 2,300 16,00 1,600 1,600 1,000

Figure 13. Detection of traffic signs under various conditions.

The 265 detected traffic signs are used to evaluate the performance of the proposed method.
Among the 265 signs, 244 signs are correctly classified and 14 signs are falsely classified. The
recognition accuracy is 92.7%.

7. Conclusions

In this paper, we propose a real-time traveling environment perception system for autonomous vehicle
navigation. Our system makes use of the good aspects of laser and camera respectively. At the same time,
the combination of multiple lasers and multiple cameras can cover all the front view of ego vehicle, and
their information fusion can deal with tough situations. The functions of our perception system include
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road shoulder detection, lane detection and traffic sign recognition. Many experiment results show that
our system is reliable in synthetic urban environment. Our future work will also introduce the Velodyne
laser scanner to deal with more complex road conditions and make use of SLAM to develop our IVS.
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