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Abstract: Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a 
processor that generates position and orientation solutions by integrating the specific forces 
and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers 
can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the 
measurements of the magnetic field obtained with low cost sensors are usually corrupted 
by several errors, including manufacturing defects and external electro-magnetic fields. 
Consequently, proper calibration of the magnetometer is required to achieve high 
accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based 
calibration algorithm is presented to estimate the values of the bias and scale factor of low 
cost magnetometers. The main advantage of this technique is the use of the artificial 
intelligence which does not need any error modeling or awareness of the nonlinearity. 
Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation 
Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation 
and Location Based Services (LBS) applications. 
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1. Introduction

In the recent years, inertial sensors are becoming more popular for navigation in cluttered indoor 
environments that are challenging for Global Navigation Satellite Systems (GNSS). These Inertial 
Navigation Systems (INS), consisting of accelerometers, gyroscopes, and a microprocessor, provide 
position and orientation by integrating the specific forces and rotation rates. Due to the integration 
process, any errors in the inertial sensor data are accumulated rapidly with time, even with high 
accuracy sensors. Consequently, regular updates are necessary to provide a drift free position and 
orientation solution. For updating the position, GNSS signals are utilized, and for heading updates 
magnetometers may be employed.

For navigation as well as machine control applications, heading information of moving platforms is 
of paramount importance. Magnetometers based on Anisotropic Magneto-Resistive (AMR) technology 
depend upon the Earth’s Magnetic Field (EMF) from which the heading information can be derived. 
The ubiquitous nature of EMF makes these sensors available in airplanes, vehicles, ships, and they are 
now being explored in hand-held devices. In order to improve the robustness of the heading solution, 
an optimal fusion of these sensors is justifiable [1]. This depends upon the cost, accuracy, and type of 
application at hand.

In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user 
heading, by sensing the Earth’s magnetic field. The magnetometer employed in this research is devoid 
of any drifts as observed from the Allan variance plot of the long-term static data. This, therefore, 
gives us the opportunity to compensate any drift from the gyroscope. Hence, we can use the 
magnetometer over extended periods of time, especially in magnetically stable environments. The 
stability of an environment is characterized by low ferrous objects, or power-line nearby the 
magnetometer. In dense indoor areas, the problem of navigating a user becomes even more 
challenging, due to the proximity to metallic objects and walls, supported by ferrous pillars.

In most of the early research, the calibration of magnetometers either accomplished in the heading 
domain [2] or in, the magnetic field domain [3,4]. The advantage of applying the calibration algorithm 
in the magnetic field domain is convincing, as we do not have to depend on the heading of the sensor 
prior to calibration. For a given region, the Earth’s total magnetic field is constant and its value can be 
obtained from the International Geomagnetic Reference Field (IGRF) model. This becomes a basis for 
developing a mathematical model for sensor calibration [5]. Magnetic field sensors are classified on 
the basis of the technology adopted in their manufacturing into the following types [6]:

- Anisotropic Magneto-Resistive (AMR)
- Hall Effect Sensors
- Magneto-elastic Sensors
- Fluxgate Sensors
- Mechanical Magnetic Sensors 

The sensor used in this research is based on the AMR technology and will be discussed briefly. The 
discussion of all other technologies is beyond the scope of this research. The magnetometer adopted in 
this research is a tri-axial sensor which converts any external magnetic field sensed by the sensitive 
axis directions to a differential voltage output. The AMR sensors are made up of thin-film Perm-alloy 
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(nickel-iron) material, patterned as a resistive strip. When a magnetic field is applied, the element 
being sensitive to such fields undergoes a resistivity change, leading to a change in resistance. This 
disturbs the balance of the Wheatstone bridge configuration leading to a differential change in voltage 
output, which is proportional to the differential change in incident magnetic field. Because the output 
is proportional to the one-dimensional axis (principle of anisotropy) and its magnitude, additional 
sensor placed at orthogonal directions permit measurement of arbitrary field directions (HMC5843 
data sheet).

Apart from having directionality and high sensitivity, these sensors also have a unique property 
called “flipping” action, associated with dipole switching due to internal magnetization in the presence 
of oscillating external fields. This behaviour may be exploited in eliminating undesirable DC-offsets in 
the presence of weak magnetic fields [6]. Different reasons are listed to use the PSO based technique 
over well-known estimators, such as Extended Kalman Filter (EKF) where the drawbacks of such 
techniques can be summarized as below [5]:

- A priori knowledge of initial states.
- Inaccurate knowledge of noise statistics (Process Noise/state Covariance).
- Matrix implementation, especially, inversion operation which may lead increased computation 

time and leads to singularity.
- Higher heading initialization uncertainty.

Artificial Intelligence (AI)-based algorithms are considered as practical tools for nonlinear 
optimization problems [7], as these algorithms do not require that the objective function be 
differentiable and continuous. Different approaches are implemented based on AI such as Artificial 
Neural Network (ANN), Genetic Algorithms (GA), and Swarm Intelligence (SI). SI is the property of a 
system whereby the collective behaviors of (unsophisticated) agents interacting locally with their 
environment cause coherent functional global patterns to emerge. SI provides a basis with which it is 
possible to explore distributed problem solving without centralized control or the provision of a global 
model [8,9]. Anti-Colony Optimization (ACO), Bees Algorithm, and Particle Swarm Optimization are 
different approaches or versions of SI, which are implemented and explained in detail in the literature. 
PSO is one of the modern heuristic algorithms [10] and can be applied to nonlinear optimization 
problems [11]. It has been developed through simulation of simplified social models. PSO has gained 
wide recognition due to its ability to provide solutions efficiently, requiring only minimal 
implementation effort. 

In this paper we introduce a PSO-based technique for calibration of magnetometers by estimating 
the values of the low cost magnetometer bias and scale factor. We introduce a robust parameter 
estimation technique, which has its origin in AI. The method referred to here as PSO is best suited for 
problems of non-linear and non-Gaussian nature. This consideration also becomes important since we 
don’t know the nature of external fields corrupting the magnetometer’s signal. PSO is a better choice 
to circumvent all these difficulties, and is extensively employed to solve complicated design 
optimization problems as it can handle both discrete and continuous variables as well as nonlinear 
objective and constrained functions without the computation of a gradient [12]. Three bias and three 
scale factor terms corresponding to each axis of the tri-axial magnetometer are estimated, which 
constitute the six elements of the state vector.
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Section 2 of the paper provides the mathematical background for calibration, while Section 3 has a
brief discussion of particle swarm optimization technique. Section 4 describes the proposed estimator 
algorithm adopted in magnetometer calibration. The calibration test results with real magnetometer 
data are given in Section 5. The paper ends with a conclusion in Section 6.

2. Constrained Calibration Approach 

Based on the Earth’s magnetic field, the formulation can be stated by the following mathematical 
model [5]:

� = �� + � +  � (1) 

Equation (1) can be rewritten in the form:

� = ���(� 	 � 	  �) (2) 

where:

- H is 3 × 1 estimated EMF vector,
- B is 3 × 1 measured magnetic field vector, magnetometer readings, 
 = [�� �� �] �,
- A is 3 × 3 scale factor matrix where, � = ����(��,  ��, �),
- b is 3 × 1 bias vector, where � = [�� �� �] � and
- � is 3 × 1 noise vector,  � = [�� �� �] �

To simplify the mathematical formulation we can ignore the white noise which is not part of the 
model used for calibration parameters in the estimation process, in this case, Equation (2) can be 
rewritten as:

� = ���(� 	 �) (3) 

The bias and scale factor are estimated subject to the following objective function:

��� 	 ���� = ��� 	 ��� =  0 (4) 

where H� is the true, reference, magnitude of the Earth’s magnetic field in a given geographical 
location (can be obtained from the IGRF model). Every five years, a group called the International 
Association Geomagnetism and Aeronomy (IAGA) revise the IGRF parameters. The user is required 
to input the latitude, longitude and height of the place where the Earth’s magnetic field intensity is 
sought. The 11th generation IGRF accepts the years in between 1900–2020. The accuracy of the 
estimated Earth’s magnetic field is claimed by the IAGA to be 1 nT (0.01 mGauss).

3. Particle Swarm Optimization

Bird flocks, fish schools, and animal herds are examples of natural systems where an organized 
behaviour is successful in producing impressive, collision-free, and synchronized movements [10]. In 
these natural systems, the behaviour of each group member is based on simple inherent responses. SI is 
mainly inspired by such kinds of animal and natural systems. Although SI is still in its infancy 
compared to other paradigms in artificial intelligence, it offers an attractive new research field. 



Sensors 2012, 12 12459

A promising performance is shown by swarm-based algorithms, being efficient, robust and very 
simple to implement [13]. One of the most interesting research areas within computational swarm 
intelligence is the PSO which was developed based on the concepts and rules of socially organized 
populations in Nature, such as bird flocks, fish schools, and animal herds. The swarm consists of a 
group of individual agents called particles. Each particle follows a simple behaviour to achieve best 
performance by following the best of the group. PSO is a population based stochastic optimization 
technique, developed by Eberhart and Kennedy in 1995 [14]. They claimed that searching for a food 
source is similar to finding a solution for a common research goal [15]. In comparison with other AI 
optimization techniques, the power of PSO lies in its simplicity of implementation. The performance 
of different optimization techniques used in industry today, along with their computational efficiency, 
clearly indicates that PSO performed better than other algorithms in terms of success rate, solution 
quality, and convergence speed [16]. It can be applied to solve various functional optimization 
problems. Moreover, PSO can work in cases of non-differentiable transfer functions where no error 
information is available [17]. 

Figure 1. (a) Particle local and global best. (b) Particle vector components.

(a) (b)

The PSO technique employs a set of feasible solutions called a “swarm of particles” that are 
populated in the search space with initial random positions and velocities as shown in Figure 1(a). At 
any particular instant, each particle has its own position and velocity [18]. Each particle is trying to get 
its own solution for the problem in the search space to target the optimal “solution”. All particles have 
fitness values which are evaluated by the cost or fitness function to be optimized, and have update 
values, velocities, which control the movement of the particles. PSO is initialized with a group of 
random particles (solutions) and then searches for optima by updating generations. The algorithm is 
iterative and the locations will change at each time step. In addition, each particle will record the 
location of its ‘best position’. In every iteration, the particle (P) is updated by two best values. The first 
one is the best solution (fitness) it has achieved so far, where the fitness values are stored, during the 
process up to current iteration and it is local best “particle” and called pbest (pi). The other best value is 
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the global best and called gbest (pg) which is the position that has been found to be the fittest so far from 
among all the particles in the population [19–23]. After finding the two best values, the algorithm then 
updates the position of each particle iteratively by following Equations (5) and (6) until the process is 
terminated. Figure 1(b) shows the visualization of the PSO vector components during the update 
process. The updated position is resulted from the summation of the basic vectors of the current 
position, local best vector, and global best vector [24].

For a swarm of N particles and search space of dimension D, define the ith position and velocity of 
the particle as xi = (xi1, xi2, ..., xiD) and vi = (vi1, vi2, ..., viD) respectively. The PSO algorithm can be 
performed by the following Equations:

��� =  �. ����� + �������������� 	 !����" + ����������#��� 	 !����" (5) 

!�� =  !���� + ��� (6) 

where:

- k is the index of the current, new, iteration and k-1 refers to the previous, old, iteration.
- i = 1, 2, …,N where N is the size of the population, number of particles.
- c1 and c2 are acceleration coefficients, usually c1 = c2 = 2.
- ri1 and ri2 are random numbers uniformly distributed within the range [0, 1]. 
- w is inertial weight factor, and the bigger the value of w, the wider is the search range.

Equation (5) is used to to estimate the update of change in position, velocity, of the ith particle while 
Equation 6 provides the new position. During the process we used fixed values for w, c1, and c2 to be 
1, 2, and 2 respectively:

$� = ��� 	 ��� (7) 

%�&_'�*-/ =  12($�)� (8) 

where $� is the error magnitude of total magnetic field. The performance of each particle is measured
according to a fitness function, which is problem-dependent. In optimization problems, the fitness 
function is usually identical with the objective function under consideration. Equation (7) shows the 
used fitness function which it is the difference (error) between the estimated total magnetic field and 
the reference value. The reference value is 170 mGauss in the case of 2-D calibration and 560 mGauss
for the 3-D calibration case. The fitness value is computed in Equation (8) as the square root of the 
summation of the squared error.

The algorithm re-evaluates all particles’ locations after every iteration and gets the new best values. 
To find the optimum value, a recurring searching process is done until the maximum iteration number 
is reached or the minimum error condition is achieved. The PSO general computational steps are 
shown as in Figure 2. 
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Figure 2. The basic PSO algorithm.

4. PSO Based Calibration Technique

4.1. Basic PSO Based Calibration Algorithm

The proposed algorithm is used to estimate the bias (b) and scale factor (SF) of the magnetometer 
by minimizing the difference between the measured magnetic field and true one. It improves the 
heading results because it exploits the fact that the incorrect heading estimates due to the
magnetometer biases, scale factors and declination angles have a relationship with the true heading. 
The PSO algorithm is used to estimate the required parameters for calibration.

As mentioned in Section 2 and by substituting from Equation (3) in Equation (4), the difference 
between the true Earth magnetic field and the measured one can be rewritten as: (���(� 	 �))�����(� 	 �)" =  ���   (9)

(���(� 	 �))�����(� 	 �)" 	  ��� = 0
(� 	 �)�(���)����(� 	 �) 	 ��� = 0 

(� 	 �)�3(� 	 �) 	  ��� = 0 
��3� + -� 	 4 = 0 

(10)

where 3 =  (���)����, - =  	2��3, 4 =  ��3� 	 ��� . 

 Initialize all particles with 
random positions and velocities

Evaluate the fitness for each Particle (p)

Get the particle best (pbest)

Obtain the Global best (gbest)

Calculate particle velocity

Is the stopping 
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stop
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The value of scale factor matrix A is evaluated as the diagonal matrix of the scale factor where 
A = diag(SF):

� =  6�� 0 00 �� 00 0 �
7 

The main objective of proposed technique is to estimate the values of the scale factor and bias 
respectively according to Equation (8) where 8% = [��,  ��, �]� , and � = [��,  ��, �]�.

4.2. The Range of Interest Selection Technique (RIST)

In all previous work on calibration, the selection of a range of interest of the measurements is not 
taken in account. This might lead to inefficient calibration and increased time complexity. In order to 
make the calibration procedure more efficient, the appropriate range of the signal from the entire 
dataset is extracted and processed. The RIST is used to select the most effective part of the raw data 
which will be used during the calibration process. The proposed technique is searching for the 
maximum change in the magnetic field for each axis and gets the interval in between. The algorithm 
receives the overall raw measurements and returns the start and end indices of the nominated interval 
as shown in Figure 3. The selection operation is based on detecting the maximum and the minimum 
signal amplitude in the raw measurements. Based on the selected indices, the range of interested 
is extracted and passed to the calibration algorithm to get the estimated values for SF and b. The 
pseudo-code for the RIST algorithm is given in Appendix 1.

Figure 3. The range of interest selection technique principles.

RIST is important for the real time calibration which is a typical process for most of the compass 
calibration in a personal navigation devices or smart phones. In doing so, the calibration algorithm 
becomes fast, and therefore, fits the real time requirements. In order to improve upon this 
methodology, outlier detection may be implemented to improve the results by distinguishing between 
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signal max/min arising out of rotation and external disturbance or noise. The trust in selecting the peak 
values may further be enhanced by observing the signal pattern of other sensors. These sensors might 
be found in the same device (e.g., gyroscopes and accelerometers), which attains a specific pattern 
during rotation motion as the calibration of the magnetometer requires a full rotation of the sensor on a 
(horizontal/vertical) plane.

Figure 4 shows the first stage of the proposed calibration scheme. The magnetometers and 
gyroscopes measurements are entered to the RIST to be trimmed. The output of the auto-selection 
algorithm is the start and the end of the selected range of the magnetometer measurement.

Figure 4. RIST algorithm.

The embedding of RIST into the scheme leads to less samples needing to be processed during the 
calibration step. As a result, the total time of the calibration process is decreased which leads to power 
savings for consumer devices. 

4.3. Modified PSO Technique (MPSOT)

The PSO algorithm is based on an iterative process to reach the optimum solution. Through this 
algorithm, an iterative process is conducted to estimate SF and b. Over the iterations these values 
converge to the best values and the process is terminated. The purpose of MPSOT is to create new 
criteria to stop the estimation process. The pseudo-code for the MPSOT is given in Appendix 2. As 
shown in Figure 5, the basic PSO algorithm is modified by creating termination criteria for the 
calibration process to reduce the processing time. The stop criteria take three different levels:

- Maximum number of iterations.
- Hit a minimum error value.
- Change in bias and scale factor values becomes less than a threshold of 0.01 for consecutive 

iterations.
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Figure 5. MPSO based calibration algorithm.

5. Results

To assess the overall performance for the proposed new calibration technique, a group of field tests 
were conducted at the University of Calgary campus. The tests include collecting data in static, 
walking, indoors and outdoors mode of operations. The collected data are the raw sensor readings from 
the Honeywell 3-axis magnetometer (HMC5843). The data rate of the magnetometer readings is 40 Hz 
with 25 ms between two consecutive epochs. For the 2-D calibration, the magnetometer was rotated 
360° in the horizontal plane and then the heading was computed using the estimated SF and b. The 3-D
test was conducted by rotating the device about the vertical axis followed by the horizontal axis 
rotation. In all tests, the algorithm successfully converges to a good estimate of the SF and b values 
and showed improvement in terms of heading results after the calibration.

The results are described below where the basic PSO algorithm is first applied using the entire 
dataset of the magnetometer measurements in the parameters estimation process. With the basic PSO 
there is no modification in the core of the PSO algorithm. Secondly, the effect of applying the RIST is 
illustrated where a range of interest of the dataset is selected to be used instead of the entire dataset as 
described in Section 4.2. Finally, the MPSOT is used where a significant change is applied to the core 
of the basic PSO algorithm. 

5.1. 2-D Calibration

2-D calibration tests are done by holding the PNS in the horizontal plane. The total magnetic field 
is calculated in the horizontal frame, x and y. The reference value of the total Earth’s magnetic is 
170 mGauss. We used the measurements for magnetometers x and y. Tests were performed in the 
multi-sensors lab at the University of Calgary. Tests include two 360 degree turns about the z-axis
using a rotation table to be sure that the device is held in the horizontal plane. SF and b values are 
estimated by passing the magnetometer readings to the basic PSO algorithm.
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5.1.1. Basic PSO Results

Figure 6 shows the results for the basic PSO where “Raw” and “PSO” terms refer to the calculated 
magnetic field based on the raw measurements and the calibrated one respectively. Figure 6(a) shows 
the raw magnetic field in the x and y directions while the total horizontal magnetic field is shown in 
Figure 6(b). The calibrated readings show the constancy of the estimated magnetic field, which closer 
to the true EMF. Figure 6(c) shows the resulted track after calibration where the two 360 degrees turns 
about z-axis are calibrated and adjusted around the origin with the shape of circles based on the values 
estimated by the PSO algorithm.

Figure 6. Basic PSO calibration. (a) Raw magnetic field. (b) Horizontal raw and PSO
calibrated magnetic field. (c) 2-D calibration for adjusted magnetic field.

(a) (b)

(c)

5.1.2. RIST Results

In this section, the impact of applying RIST in reducing the time required to estimate SF and b
values is observed. The number of samples is compared in the cases of using the entire dataset and the 
range of interest. The result is Figure 7 where the total number of samples is decreased for all tests. For 
example; the number of measurement samples which used in Test1 is 1,240 whoever applying the 
RIST reduces the number to 279 samples. As a result, this decrease leads to decrease the required time 
to perform the calibration process. Although less information is fed to the PSO algorithm, the accuracy 
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of the results hasn’t been affected as indicated in Table 1(a,b) where the values of SF and b are close 
for all tests at both cases. This indicates that the results from the PSO with the entire dataset and with 
range of interest almost have the same behaviour.

Figure 7. A comparison between the numbers of samples applied for magnetometer 
calibration in case of using the entire dataset and RIST in 2-D calibration.

Table 1. Magnetometer parameters values resulted from using the entire dataset and 
applying RIST in 2-D calibration. (a) Scale factor. (b) Bias.

X Scale Factor Y Scale Factor X Bias Y Bias
All RIST All RIST All RIST All RIST

Test1 0.873 0.866 0.998 0.973 Test1 87.279 87.419 54.190 50.008
Test2 0.601 0.598 0.655 0.649 Test2 33.490 32.674 42.887 42.193
Test3 0.925 0.913 1.018 1.050 Test3 66.016 63.461 61.332 58.556
Test4 2.498 2.535 2.720 2.773 Test4 36.912 50.207 42.229 51.725
Test5 0.791 0.793 0.872 0.869 Test5 19.483 19.986 42.121 43.142

(a) (b)

5.1.3. MPSOT Results

To show the final impact of the proposed algorithm, both RIST and MPSOT are fused and applied.
In such scenario, the entire dataset is applied to RIST to produce the range of interest of the dataset. 
Thereafter, the MPSOT is applied to reduce the number of iterations required by the algorithm to 
converge. Figure 8 shows a comparison between the number of iteration, which the algorithm 
consumes to converge in the case of using basic PSO, and its modified version—MPSOT. The 
comparison shows that the number of iterations is decreased to third in most cases when MPSOT is 
applied. Without doubt, the values of SF and b haven’t been affected as illustrated in Table 2(a,b). 
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Figure 8. A comparison between the numbers of iterations in case of using the basic PSO 
and MPSOT in 2-D calibration.

Table 2. Magnetometers parameters resulted from using the basic PSO and MPSOT in 2-D
calibration. (a) Scale factor. (b) Bias.

X Scale Factor Y Scale Factor X Bias Y Bias
PSO MPSOT PSO MPSOT PSO MPSOT PSO MPSOT

Test1 0.858 0.863 0.982 1.027 Test1 85.615 86.025 50.381 46.695
Test2 0.597 0.602 0.649 0.629 Test2 32.659 29.96 42.003 43.227
Test3 0.913 0.911 1.05 1.049 Test3 63.563 62.955 58.489 58.503
Test4 2.534 2.535 2.773 2.773 Test4 50.356 50.162 51.822 51.59
Test5 0.787 0.775 0.856 0.859 Test5 18.75 16.295 40.415 47.76

(a) (b)

5.2. 3-D Calibration

To examine the performance of the proposed technique in the 3-D calibration, six different tests are 
conducted. During the 3-D tests, the device is moved freely in the space. Actually, the 3-D calibration 
is more convenient for the user where the device shouldn’t be held in the horizontal plane. The total 
magnetic field is calculated where the reference of the total Earth’s magnetic is 560 mGauss. The 
algorithm receives data from the 3-axis magnetometer. The results are discussed below where it 
conforms to the previous discussion on the performance of the 2-D calibration.

5.2.1. RIST Results

Again, Figure 9 shows the comparison between the number of samples in both cases of using the 
entire dataset and the region of interest. Obviously, Table 3(a,b) shows there is no big change in the 
values of the SF and b. These results show the validity of the proposed calibration technique even at a 
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lower number of observations. Like the previous case in 2-D calibration, comparing the results of the 
RIST shows the bene������������	�
�����������������	��������
���������
���������

Figure 9. A comparison between the numbers of samples applied for magnetometer 
calibration in case of using the entire dataset and RIST in 3-D calibration.

Table 3. Magnetometers parameters resulted from using the entire dataset and RIST in 3-D
calibration. (a) Scale factor. (b) Bias.

X Scale Factor Y Scale Factor Z Scale Factor
All RIST All RIST All RIST

Test1 1.0371 1.0325 1.1141 1.0985 0.9394 0.9317
Test2 1.0479 1.0465 1.1003 1.1014 0.9364 0.9384
Test3 1.0153 1.0158 1.0895 1.0860 0.9318 0.9324
Test4 0.9136 0.9249 0.9761 0.9718 0.8453 0.8541
Test5 0.9286 0.9248 0.9817 0.9859 0.8368 0.8460
Test6 0.9454 0.9311 1.0169 1.0167 0.8733 0.8674

(a)

X Bias Y Bias Z Bias
All RIST All RIST All RIST

Test1 38.1795 40.0139 30.8485 38.8051 135.8694 128.0139
Test2 36.3021 35.7039 34.2721 33.6313 135.5421 134.6297
Test3 40.3624 38.9419 37.8209 36.4251 134.4415 134.2701
Test4 28.4165 16.2188 46.2673 53.2383 121.8317 114.8561
Test5 34.5628 34.1847 58.8522 58.1043 129.9453 126.9294
Test6 46.1353 40.1545 33.8024 37.6382 126.3606 128.5436

(b)
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5.2.2. MPSOT Results

Figure 10 shows the comparison between the number of iterations for the basic PSO and the 
MPSOT. Table 4(a,b) shows the different values of SF and b for both algorithms where the values are 
close. These results show that the MPSOT reduces the time required for the calibration process like the 
previous case in 2-D calibration.

Figure 10. A comparison between the numbers of iterations in case of using the basic PSO 
and MPSOT in 3-D calibration.

Table 4. Magnetometers parameters resulted from using the basic PSO and MPSOT in 3-D
calibration. (a) Scale factor. (b) Bias.

X Scale Factor Y Scale Factor Z Scale Factor
PSO MPSOT PSO MPSOT PSO MPSOT

Test1 1.0267 1.0228 1.1643 1.1334 0.9385 0.9515
Test2 1.0485 1.0449 1.0994 1.0998 0.9385 0.9325
Test3 1.0079 1.0082 1.0807 1.0903 0.928 0.9371
Test4 0.9249 0.9152 0.9717 0.9868 0.8539 0.8452
Test5 0.9235 0.9008 0.9812 0.9916 0.8504 0.8608
Test6 0.9227 0.9276 1.0191 1.0281 0.8703 0.8644

(a)

X Bias Y Bias Z Bias
PSO MPSOT PSO MPSOT PSO MPSOT

Test1 40.0418 35.2361 8.1353 23.3182 133.0826 150.0231
Test2 36.1018 25.7854 33.8402 42.4474 134.9986 130.0379
Test3 33.6985 32.2681 32.9084 20.48 135.5549 139.0494
Test4 18.5793 8.9173 51.7038 49.8835 115.2107 128.7535
Test5 32.2353 33.1784 59.1892 49.9255 127.8947 126.5982
Test6 38.1294 36.6339 31.4223 28.0506 130.0527 119.8037

(b)
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6. Conclusions

In this paper, a PSO based calibration algorithm to estimate the values of the bias and scale factor 
for a low cost magnetometer is presented. In our approach, the selection of the effective range from the 
entire dataset is made automatic. In addition, a significant change in the core of the basic PSO 
algorithm is proposed to reduce the required time for the calibration process. The proposed technique 
has many advantages over any other conventional method such as the use of the artificial intelligence,
which does not need any error modeling or awareness of the nonlinearity. The use of the RIST reduces 
the processing time to 40% of the time for the entire dataset while MPSOT improves the overall 
processing time to 35% of the time consumed by the basic PSO. The estimated bias and scale factor 
values from the proposed algorithm improve the overall performance of the calibration process with 
regard to the accuracy and time complexity. This technique would help decrease the heading errors of 
the users in pedestrian navigation. It can also help in the development of Pedestrian Navigation 
Devices (PNDs) when combined with the INS and the available RF signals, especially in indoors 
environments. Clearly, the fusion of the RIST and MPSOT techniques decreased the required time for the 
calibration process, extending the opportunity to apply the proposed algorithm in real-time applications.
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Appendix 1. RIST pseudo-code.

Appendix 2. MPSOT pseudo-code.
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