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Abstract: Due to insufficient biomarker validation and poor performances in diagnostic 

assays, the candidate biomarker verification process has to be improved. Multi-analyte 

immunoassays are the tool of choice for the identification and detailed validation of protein 

biomarkers in serum. The process of identification and validation of serum biomarkers, as 

well as their implementation in diagnostic routine requires an application of independent 

immunoassay platforms with the possibility of high-throughput. This review will focus on 

three main multi-analyte immunoassay platforms: planar microarrays, multiplex bead 

systems and, array-based surface plasmon resonance (SPR) chips. Recent developments of 

each platform will be discussed for application in clinical proteomics, principles, detection 

methods, and performance strength. The requirements for specific surface functionalization 

of assay platforms are continuously increasing. The reasons for this increase is the demand 

for highly sensitive assays, as well as the reduction of non-specific adsorption from 

complex samples, and with it high signal-to-noise-ratios. To achieve this, different support 

materials were adapted to the immobilized biomarker/ligand, allowing a high binding 

capacity and immobilization efficiency. In the case of immunoassays, the immobilized 

ligands are proteins, antibodies or peptides, which exhibit a diversity of chemical 

properties (acidic/alkaline; hydrophobic/hydrophilic; secondary or tertiary structure/linear). 

Consequently it is more challenging to develop immobilization strategies necessary to 

ensure a homogenous covered surface and reliable assay in comparison to DNA 

immobilization. New developments concerning material support for each platform are 

discussed especially with regard to increase the immobilization efficiency and reducing the 

non-specific adsorption from complex samples like serum and cell lysates. 
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1. Why Is Candidate Biomarker Validation Important? 

Validation of candidate biomarkers has a single goal: to determine, if there is sufficient evidence for 

a potential clinical utility of a given biomarker candidate to ensure further investment in that candidate 

for clinical trials. A validation is therefore essential before moving forward with this potential 

biomarker candidate. Thus, a clinical study is expensive, time-consuming, and has a high demand for 

clinical samples. Recently, a profound biomarker evaluation ensured the quality and clinical validity of 

a diagnostic assay [1]. Paulovich et al. dubbed biomarker validation as the tar pit, since the majority  

of biomarker candidates failed the clinical phase. Hence, the success rate of implementing a new 

biomarker candidate into clinical use is extremely low. However, plenty of publications about new 

biomarkers and diagnostic test platforms have been released within recent years. But, as the study of 

Fontela et al. revealed, published diagnostic tests for infection diseases often miss methodological 

quality and accurate reporting [2]. They used Quality Assessment of Diagnostic Accuracy Studies 

(QUADAS) and Standards for the Reporting of Diagnostic accuracy studies (STARD) tools for 

improving the reporting of diagnostic accuracy assays, regarding the quality of diagnostic studies in 

tuberculosis, malaria and HIV. Through systematic search of literature using PubMed and EMBASE 

(2004–2006), the sensitivity and specificity of various commercially available tests was compiled. 

Based on different quality items, they concluded that all studies had design deficiencies. For instance, 

merely 10% of the studies had an adequate description of the reference standard, less than 25% of the 

studies included a description of withdrawal, and none of these studies reported methods for the 

calculation and estimation of reproducibility. 

Insufficient diagnostic test accuracy is just the tip of the iceberg. It is the consequence of poorly 

designed biomarker candidate discovery and validation phases without clear understanding of the 

nuances of interpreting high dimensional data sets which often leads to biases and high false discovery 

rates [3]. Many of these large list candidate biomarkers may discriminate between two classes of 

interest, but do not conform to the high standards of clinical trials. Moreover, candidate biomarkers 

that display the most significant differences between the cases and control group in the discovery 

dataset are often preferred without being tested, whether or not these are the most beneficial analytes 

for clinical decision making. Strategies which allow a high number of candidate biomarkers to be 

analyzed with the highest throughput and the lowest possible costs are required for an impartial 

validation. Based on the circulatory nature of blood through almost every parts of the human body, the 

measurements of blood components are particularly valuable for monitoring the health state of a 

person [4]. Certainly, proteomic-based biomarker discovery and validation directly in serum is 

challenging due to the complexity and the dynamic range of the analytes in plasma. The concentration 

range of serum proteins extends through eleven orders of magnitude, from albumin through cytokines [5]. 

Matters are complicated by the fact that potential candidate biomarkers are often present in low 

concentrations and are often bound to carrier molecules. Consequently, predominant high-abundance 



Sensors 2012, 12 12712 

 

 

serum proteins may interfere and considerably influence the assay performance, as well as the quality 

of the result. This so called serum matrix effect, broadly defined as interference with the analytical 

technique by one or more components of the sample, can lead to loss of assay robustness, sensitivity 

and high levels of false positive and negative results [6].  

The matrix effect is exceedingly relevant for mass spectrometry (MS) analysis, one of the principal 

enabling technologies for unbiased identification of novel target antigens. The milestone paper, that 

cemented the role of MS in clinical proteomics, was published by Petricoin et al. They identified 

components of the serum proteome by MS that allow a differentiation between patients with ovarian 

cancer from healthy individuals [7]. Numerous papers have been published that aimed to completely 

discover novel target antigens for diagnostic application by the help of MS [8–10]. However, 

insufficient analytical sensitivity of MS complicates the detection of low-concentration biomarkers 

within a complex mixture of high-abundance proteins [11]. Overcoming these detection limits is the 

biggest hurdle in MS analysis. Hence, the depletion of abundant protein fraction and the enrichment of 

biomarker are imperative to increase the sensitivity of the subsequent MS analysis [12]. Apart from the 

highly-abundant serum proteome, the discovery efforts alternatively focus on tissue or body fluids and 

moving to plasma once candidate biomarkers have been identified. Indeed, the protein composition of 

serum differs from that of tissue or body fluids. Serum protein depletion is a very time-consuming 

process, but the most critical issue is the accuracy and reproducibility of the analytical process caused 

by software problems. To increase the analytical reproducibility, MS labs typically run their samples 

10 or more times, which implies a consumption of precious patient sample [13]. MS data helps to 

identify novel target antigens, but neither contains information about the applicability of the candidate 

in an immunoassay, nor the clinical validity.  

A further strategy to identify novel antigens is via phage, bacterial, or mammalian cell-based cDNA 

libraries [14]. An important limitation of this approach is the lack of post-translational modifications, 

including glycosylation and phosphorylation. However, post-translational modified target antigens 

often contribute to diagnosis of autoimmune diseases like rheumatoid arthritis and systemic lupus 

erythematosus [15,16]. Post-translational glycosylation of antigens also represents an important target 

of anti-viral responses against HIV and influenza [17]. 

The current gold standard for biomarker validation and clinical diagnostics is the classical ELISA. 

Since this technique allows a relatively high-throughput and is a versatile and robust tool, ELISA is 

constantly employed for confirmatory studies. Thus, microarray analysis is often matched against the 

quantitative data of ELISA assays [18]. However, the ELISA is limited by the fact that the classic 

approach allows only a single antigen detection and often requires relatively large volumes of sample 

material compared with state-of-the-art methods. This concern becomes especially acute when  

clinical studies require access to limited amounts of biological material. Unfortunately, the ELISA 

performance strongly depends on the antibody quality as well as on the operator’s skills and 

experiences. The solid nature of ELISA results in altering the immobilization of antigen to the solid 

matrix, which causes problems associated with accuracy and reproducibility. In comparison to other 

multiplexed immunoassays, ELISA has a relatively narrow dynamic range. This becomes particularly 

relevant when the biomarker of interest is detected in serum. Differences between samples are biased 

by comparison of serum that has biomarker levels within the dynamic range (does not require dilution 

in the assay) to serum above the dynamic range (does require dilution). The development of an ELISA 
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assay is costly (typically, US$100,000–US$2 million per biomarker candidate) and is associated with a 

long development lead time (>1 year) and a high failure rate [19]. Compared with MS and traditional 

ELISA, multiplex arrays have several advantages, including their high-throughput nature, requirement 

for smaller sample volume, efficiency in terms of time and cost, the ability to evaluate one antigen in 

the context of multiple others, and the ability to reliably detect different proteins across a broad 

dynamic range [20]. Multi-analyte immunoassays might be the tool of choice for the identification and 

detailed validation of protein biomarkers in serum. 

2. Multi-Analyte Immunoassays 

Today, immunoassays are the fundamental method of protein analysis and have gained importance 

as powerful tools in basic and applied proteomic research. Immunoassays have their origin in the 

1950s, when Berson and Yalow developed the first immunoassay for insulin, using radioactive labeled 

antibodies for detection [21]. To avoid radioactivity, in 1971 Engvall and Perlmann introduced an 

alkaline phosphatase conjugated antibody for detection that displays the classical detection principle  

of an ELISA (Enzyme-linked immunosorbent assay) [22]. In the late 1980s, Ekins, the founder of  

multi-analyte immunoassays, conceived the ―Ambient-Analyte-Theory‖ and discussed the application 

of a parallelized microspot immunoassay in immune diagnostics [23,24]. His theoretical examinations 

and his experimental work demonstrated that simultaneous microspot immunoassays can be carried out 

with classical ELISA. Through miniaturization, a greater sensitivity and selectivity, as well as a higher 

throughput can be achieved. However, Ekins’ theory gained even more importance after the 

development of DNA chip technology in the 90’s, which coincided with the worldwide breakthrough 

of biochip technology [25]. The innovation of advanced equipment such as pipette robots, spotters and 

fluorescence readers allowed the production of microarrays with thousands of microspots, as well as 

the sensitive and high-resolution detection of bound target molecules. Since DNA microarrays are a 

well established tool in molecular biology, several groups have used this technology in order to 

immobilize proteins instead of DNA on the arrays [26,27]. Those arrays are miniaturized 

immunoassays used for protein or antibody detection from complex media. The rapid rise of 

immunoassays in protein analytics, combined with the development of protein arrays, and later peptide 

arrays as multiparametric immunoassay, illustrates the enormous potential of this technique in 

diagnostics. Within the last decade, multi-analyte immunoassays have led to the identification of a 

huge number of biomarkers from serum, particularly new antigens, and to the elucidation of disease 

progress. However, the current limitation is the validation of biomarker candidates. One of the major 

challenges in biomarker validation and diagnostic assay development is the availability of high-quality 

capture molecules, e.g., antibodies. Several efforts have been seek for the assortment of  

well-characterized affinity-based molecules, not limited to antibodies, in one database [28,29]. But 

also different other aspects of the entire validation process need to be improved. Technologies like MS 

and ELISA currently used for biomarker discovery and validation are not able to achieve the 

combination of high throughput with high measurement accuracy and precision. Compared with 

traditional ELISA, multiplex arrays have several advantages, including their high-throughput nature, 

requirement for smaller sample volume, efficiency in terms of time and cost, the ability to evaluate one 

antigen in the context of multiple others and the ability to reliably detect different proteins across a 
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broad dynamic range. Multi-analyte immunoassays are excellently suited for the entire biomarker 

discovery process. During the validation procedure biomarkers must be identified and the disease 

association must be explained as well as the assay conditions must be defined before moving with that 

candidate in clinical trial (Figure 1). Hence, a clinical study is expensive, time-consuming, and a 

consumption of rare patient samples should be prevented. The group of Peter Nilsson pointed out the 

potential of staged proteomic profiling of serum by using a combination of different affinity-based 

methods. They had also considered the primary problem of biomarker analysis: the establishment of 

efficient throughput methods for validation of large generated datasets. Larger studies are needed to 

investigate the protein expression with the help of independent microarray platforms, and to finally 

overcome the inherent throughput limitations of Western Blot and ELISA. This dual confirmatory 

approach allows large-scale cross platform analysis and validation of antibody performance under 

assay conditions [30]. 

The evaluation of clinical validity and utility is imperatively needed. The process of identification 

and validation of serological markers as well as their application in diagnostic routine requires a 

combination of independent immunoassay platforms with the possibility of high-throughput 

measurements. This paper focuses on microarrays, bead assays and array-based surface plasmon 

resonance (SPR) assays and discusses their application in serum biomarker discovery. 

Figure 1. The process of candidate biomarker identification and validation. 
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The process of candidate biomarker validation has to be improved by using an approach comprising 

different affinity-based methods with the possibility for high-throughput. Rapid screening of 

interactions and biomarker disease association is carried out with microarrays. Label-free methods like 

surface plasmon resonance (SPR) are strongly recommended for the in-depth validation of these 

interactions. This analysis provides data about association and dissociation phases, as well as affinity 

constants. With the help of an affinity ranking, the interactions are classified according to their 

properties. Kinetic parameters and the kinetic classification allow the development of fine-tuned 

diagnostic assays concerning incubation time and washing stringency. Both strongly contribute to the 

implementation of candidate biomarkers into a new diagnostic assay. The defined assay conditions and 

performance of the candidate biomarkers can be tested in a bead assay. 

3. A Cross Platform Comparison 

Microarrays are miniaturized biological devices within which capture probes are fixed in defined 

positions on a supporting material, normally a standard sized glass slide. The analyte bound to the 

capture probe is detected by fluorescence. Microarrays made Ekin’s concept of a miniaturized 

bioanalytical assays a reality. They allow many parameters to be tested at the same time under 

different condition. With parallelization in mind, the microarray can be divided into several subarrays. 

This makes the parallel screening of thousands of capture probes in one experiment possible. Such 

microarrays are ideally suited for an unbiased and rapid identification of a host of antibody-antigen 

interactions. However, problems including immobilization efficiency, fluorescence detection, data 

analysis, and signal-to-noise ratio (S/N ratio) must be critically addressed to improve the assay 

performance [31]. 

Glass slides often function as solid supports on which thousands of different capture molecules can 

be immobilized. Since tiny amounts of sample volume (reaching up to several nanoliters) per 

microspot are deposited, special liquid handling robots are required. Those are often constructed for 

the purpose of the DNA microarray development. Nevertheless, the spotting of purified proteins or 

peptides is much more challenging. They are more chemically diverse than DNA and their stability 

and functional nature on the array have to be ensured. An alternate approach to spotted proteins is the 

Nucleic Acid Programmable Protein Array (NAPPA) that circumvents the technical limitations of 

protein spotting. It is constructed by spotting protein-encoding plasmid DNA on an array surface and 

the proteins are subsequently generated using cell-free expression systems. Thus, the NAPPA platform 

allows functional protein studies including protein-small molecule, protein-protein, protein-nucleic 

acid, and also antigen-antibody interactions [32]. NAPPA microarrays were used to detect 

autoantibodies in human sera of breast cancer patients to p53 antigen and to GAD65 antigen in type 1 

diabetes patients [33]. Dependent on the microarray application, several covalent or non-covalent 

immobilization strategies for capture probe binding are established (Table 1). These microarray 

substrates have to fulfill two major requirements to achieve maximal immobilization efficiency: It is 

important that the substrates provide high binding capacity and preserve the capture probe in an active 

state [34]. 
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Table 1. Surface coatings for antigen microarrays. Adopted from [35]. 

Surface 

coating 

Immobilization 

mechanism 
Chemical bounding Advantages/Disadvatages 

Nitrocellulose 
Hydrophobic 

adsorption 
Non-covalent 

No requirement for addit. 

coupling reagents nor antigen 

modification/weak binding, 

loss of activity, high S/N ratios 
Poly-Lysine 

Electrostatic Forces on 

charged surface 
Non-covalent 

NHS ester 

Lysine residues react 

with active ester to 

form amid bounds 

Covalent 

Stable interaction/unstable in 

aqueous solution, not 

orientated 

Aldehyde 

Primary amino-groups 

react with the 

aldehyde surface  

Covalent 
Stable interaction/ 

not orientated 

Epoxy 

Nucleophilic residues 

(NH, SH) react with 

epoxy 

Covalent 
Stable to hydrolysis at neutral 

pH/not orientated 

Streptavidin 
Biotinylated residues 

bind to streptavidin 

Strongest non-covalent 

bounding in nature 10−14 M 

Site-specific immobilization, 

strong interaction/antigen 

modification 

On aldehyde, epoxy or amine coated substrates every functional group of the protein can react with 

the reactive group on the surface, therefore proteins and peptides are immobilized randomly. Thus, 

chemically or biologically active domains are sometimes not accessible for the analyte. For directional 

immobilization, the capture probe has to be chemically functionalized to differentiate the domain 

available for immobilization from those of chemical/biological activity. This leads to higher signal 

intensities and improved S/N ratios [36]. Schulze et al. demonstrated that special amino acids such as 

histidine and tyrosine at the N-terminus of the capture probes resulted in an improved immobilization 

efficiency on epoxysilane surfaces and higher signal intensities [37]. Ethanolamine that reacts with the 

epoxy group and does not preferably cover the capture probe has been used as blocking solution for 

epoxy surfaces. Thus, the S/N ration is additionally increased. Epoxy and other functional group 

substrates constitute two-dimensional coatings since the capture probe is in direct contact with the 

activated glass surface. Alternatively to epoxy, the capture probe can also be a part of simple 

monolayer architecture. Andresen et al. prepared a monolayer mixture of streptavidin and biotinylated 

peptides for site-specific immobilization on aldehyde coated glass slides in a two-step procedure 

(Figure 2B) [38]. This robust peptide microarray platform allows serological diagnosis of infection 

diseases. Beside these two-dimensional surfaces, three-dimensional coatings were developed as well 

(Figure 2D). The three-dimensional space of these polymer-based hydrogels leads to a higher capacity 

for capture probes. More molecules can be immobilized onto a limited space [39]. Higher amounts of 

immobilized capture probes results in increased total signal intensities and assay sensitivity. Since 

polymers self-adsorb onto the glass surface when simply immersed in aqueous solution, the coating 

procedure is fast and inexpensive. To improve the microarray robustness and reproducibility,  

Schröder et al. focused on the implementation of dual-color read-out for antibody microarrays [40]. 

Protein samples such as plasma, serum, urine, tissue, or cell culture can be analyzed without prior 
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expensive and elaborate protein depletion steps. Depending on the study, there are two different 

experimental design options. For a direct comparison, two different sample types are labeled with 

different fluorescent dyes and competitively incubated on the same array. As an alternative a 

reference-based design is possible. Thereby, all protein samples are labeled with the same fluorescent 

dye and competitively incubated with a common reference, which is labeled with the second 

fluorescent dye. The evaluation of signal intensities is carried out by using the ratio of the two color 

channels for identification of differences between the samples. Technical variation effects are 

abolished by considering the ratio of the signal intensities. This leads to higher reproducible data, 

sensitivity, and consequently improved assay robustness. Overcoming the practical hurdles, 

microarrays represent a sensitive screening tool for serum biomarker discovery and have the capacity 

for an unbiased approach. Analyzing the IgE reactivity in patient sera, Hiller et al. used a microarray 

composed of 94 immobilized purified allergen molecules that represent the most common allergen 

sources [41]. This allergen microarray allowed the determination and monitoring of patients’ IgE 

reactivity profiles and the identification of allergy eliciting molecules. In order to characterize the 

antibody response of distinct human autoimmune disorders including systemic lupus erythematosus 

and rheumatoid arthritis, Robinson et al. screened different patient sera by the help of peptide 

microarrays [42]. Thereby, the specificity and pathogeneses of autoantibodies was elucidated and new 

autoantigens were identified. In serum diagnostics, peptide arrays are well-established tools for 

antibody response screening. Peptides are only present as continuous epitopes. Nevertheless, peptides 

have many advantages compared to native protein antigens [43]. The synthesis of peptides is 

chemically established and completely automated. Based on their short length (10–15 amino acids), 

peptides hardly build up a secondary or tertiary structure which makes them chemically and physically 

more robust than proteins. Furthermore, diverse covalent and non-covalent immobilization strategies 

of peptides, up to the direct synthesis on solid support, are known and established [44]. In addition to 

their application as screening tools of autoimmune disorders, peptide microarrays have been successfully 

used for the detection of microbial infection diseases. Andresen et al. developed a peptide microarray 

consisting of viral peptides to demonstrate the specific binding of monoclonal antibodies [45]. In this 

regard, they were able to detect the binding of commercial available antibodies up to picomolar 

concentrations. That demonstrates the potential of microarrays, screening for antibody subtypes which 

are usually present in low concentrations like IgE. Similarly, bacterial infections like tuberculosis 

caused by Mycobacterium tuberculosis can be diagnosed. Using peptide microarrays, Nahtman et al. 

identified novel antibody epitopes and characterized the antibody reactivity profile on bacterial 

antigens [46]. However, if there is a lack of known antigens, random sequence peptide libraries can be 

used for serum screening [47]. In this manner, the antibody repertoire binding pattern of two different 

mice strain sera—healthy and infected with Heligmosomoides polygyrus, an intestinal helminthic 

parasite—were analyzed. Due to the library design and sophisticated microarray data analysis, a 

classification between healthy and infected mice could be predicted with a small number of peptides. 

Besides planar microarrays, robust and flexible bead assay systems have been developed over the last 

decade. The design of a bead-based immunoassay is comparable to that of a microarray: the capture 

probes are likewise immobilized on a solid support—beads. In this case, the capture probe is bound to 

microspheres and incubated with the analyte in suspension, which allows an improved mixing 

procedure and automation (Figure 2C). 
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Figure 2. Schematic overview of the common surface molecular architectures. 

 
Functional groups such as epoxy (A) or a simple streptavidin layer (B) represent a 2-dimensional 

surface architecture. In comparison 3-dimensional surfaces including fluorescent microspheres (C) 

and polymer hydrogel layers (D) exhibit a higher capacity for capture probes. 

These microspheres can consist of a variety of different materials, like color-coded beads or 

magnetic particles with different diameters. In comparison to location coded microarrays, whose 

capture probes are printed in picoliter volume pointwise onto the supporting material, a liquid handling 

robot is not imperatively needed for bead assays. Since bead assays are usually performed by using 

standard laboratory equipment, i.e., using microtiter plates and a flow cytometer. The individual 

capture probes on the microarrays are detected as illuminated spots, depending on their location on the 

array surface. In the case of bead-based systems, the differentiation of capture molecules occurs with a 

color-coding of the beads. The color coding of the beads offers the potential of multiplexing. 

Depending on the number of different colors, each bead population can be coated with another capture 

probe that allows the binding and detection of specific analytes from a serum sample. A mixture of 

color-coded beads that have bound the antigen are incubated with a serum sample in a cavity of a 

microtiter plate (Figure 3). Serum antibodies with the corresponding paratope recognize and bind  

to the antigen. The higher the concentration of corresponding antibodies in the sample the more 

antibodies can bind to the beads. The detection of the bead-bound antibody-antigen-complex occurs 

with help of secondary fluorescent-conjugated antibodies. The spectral range of the antibody 

fluorescent dye differs from this of the internal microsphere dye. Thus, the classification of the beads 

(red, green) and the quantification of the signal intensities caused by the detection of antibody-antigen 

complex (blue) can be simultaneously read out by a flow cytometer. The outcome of the multiplex 

antibody-antigen reactions are displayed fully automated in the analysis software. The Luminex xMAP 

technology has become the most popular bead assay platform and belongs to one of five assay 

platforms available to serologically diagnose the West Nile Virus infection [48]. This bead assay 

consists of 100 different bead populations, each of them with two fluorescence dyes in 100 different 
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coding ratios which are used for multiplexing. Via the fluorescence coding of the bead populations, a 

specific labeling is assigned for every immobilized molecule species.  

Figure 3. Schematic description of the bead assay. 

 

Another platform, the BD FACSArray Bioanalyzer, is based on flow cytometry measurements. The 

differentiation between different bead populations occurs over a range of bead sizes and two 

fluorophores, which increases the degree of assay complexity. Bead assays enable the analysis of 

different capture probes within one reaction tube such as the cavity of a microtiter plate. In clinical 

diagnostics, these plates have become a usual lab standard and allow an automated high-throughput 

treatment of patient samples. Due to the easy handling and flexibility of the assay conditions, many 

commercially available immunoassays for the detection of allergies, autoimmune diseases, and 

infections are bead based. Earle et al. developed a fluorescent multiplex array for detecting six 

common indoor allergens in house dust samples [49]. This assay consisted of monoclonal antibodies 

that were covalently coupled to fluorescent microspheres of the Luminex xMAP platform. These 

antibodies have been well-defined and have a high specificity for their epitopes, a fundamental 

requirement for developing a reliable assay. The same group also studied intensely the crystal 

structures of allergens, as well as the interaction between these allergens with their antibodies [50–53]. 

The assay performance, including sensitivity, detection limit, and reproducibility was compared with 

an ELISA method, the gold standard for environmental exposure assessment. The determined  

intra-assay reproducibility resulted in a CV of less than 10% and in most cases the inter-assay CVs of 

the multiplex bead assay (>15%) were found to be slightly better than that of a normal ELISA. By 

doing a multiplex bead assay the dynamic range of the measurement was increased and allowed each 

sample to be tested at only two dilutions (1:100 and 1:10,000) to cover the full range of allergens. 

Compared to normal ELISA the detection limit was an order of magnitude lower for the bead assay 

and decreased to less than 1 ng/mL for each of the allergens. In this regard, a greater assay efficiency 

and reproducibility was achieved by measuring six or more allergens simultaneously in a single 

microtiter well. This has led to several technical improvements compared to normal ELISA. Currently, 

the presented multiplex array is commercially produced and sold by the company Indoor 

Biotechnology Inc. The number of measured antigens has been increased allowing the simultaneous 

detection and quantification of eight common indoor allergens in house dust samples. This technology 

represents the state-of-the-art technology in allergen detection. 
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Abreu et al. used the FIDIS™ technology by Biomedical Diagnostics for simultaneously detection 

of autoantibodies to diagnose the chronic autoimmune disease rheumatoid arthritis [54]. The FIDIS™ 

technology combines the Luminex xMAP
®

 platform with a flow cytometer, and includes a software 

for data analysis. This offers technological opportunity in laboratory bench top integration and 

automation. The antigens, human and animal IgG Fc fragments, were covalently bound to different 

sets of microspheres and incubated with patient serum samples. The autoantibody levels, measured 

with FIDIS™, were compared with routine laboratory tests regarding the clinical sensitivity and 

specificity. The results demonstrated the efficiency of FIDIS™ with an analytical performance 

equivalent to conventional methods such as ELISA and latex agglutination test. Nevertheless, the 

important benefits of FIDIS™ are the time and cost-saving measurements and the use of minimal 

sample volumes.  

Bead assays are also used for the detection of arising infections. Binnicker et al. applied the 

BioPlex 2200 system that was developed by Bio-Rad Laboratories in cooperation with Luminex for 

the serological diagnosis of primary acute Epstein-Barr virus (EBV) disease [55]. The EBV diagnosis 

requires a combination of several antibodies for a reliable prediction. Thus, multiplex immunoassays 

represent an appropriate technology for identification of multiple antibody populations in a single 

reaction and thereby expediting detection of EBV. The serological assay was based on the 

simultaneous detection of five different IgG and IgM class antigens. The EBV viral capsid antigen 

(VCA), nuclear antigen-1 (NA), and early antigen-diffuse (EA-D) represent IgG epitopes, whereas 

heterophile antibodies and IgM-VCA were IgM derived. The serological response to EBV, obtained with 

the BioPlex 2200 system, was comparable with the results of conventional methods used to detect EBV 

specific antibodies. Thus, the assay yielded the same sensitivity and specificity as routine tests such as 

indirect immunofluorescence assay and enzyme immunoassay. However, the interpretation of data, 

and a confidential diagnosis appears to be crucial, and several groups have dealt with this issue. In 

conclusion, BioPlex 2200 EBV assay represents a valid evidence-based tool but, should be used in 

association with other laboratory and clinical parameters for classification of EBV disease state [56,57]. 

Similar to microarrays, the surface coating of the beads and appropriate blocking is important for 

assay performance. A major drawback of bead assays is that human serum components can directly 

bind to the beads and cause unspecific background. Serum pre-incubation with polyvinylalcohol, 

polyvinylpyrrolidone, and other proprietary reagents like Super ChemiBlock and Chemicon could 

reduce unspecific binding and resulted in increased S/N ratios [58]. Compared to planar microarrays, 

bead assays are not suited for the identification process of novel serum biomarkers due to the  

limited capture probe capacity. In a single microarray experiment up to 10,000 interactions can be 

simultaneously analyzed compared to bead assay with up to 500. However, bead assays are a versatile 

tool for routine application due to their easy automation and flexibility in experimental conditions. 

Novel serum biomarkers and predefined assay conditions can be easily implemented in a bead assay 

platform to determine the fine tuning of assay development. 

The presented immunoassay platforms-microarrays and bead assays-enable a high throughput 

analysis with tiny amounts of patient sample. These endpoint measurements allow a yes/no answer in 

terms of analyte binding to the capture probe. However, the interplay between molecules in vivo is 

dynamic and does not follow a steady-state-equilibrium or adhere to a binding model. Therefore, a 

kinetic analysis that provides parameters like association and dissociation rates, as well as equilibrium 
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constants, is sorely needed. These studies are of profound importance regarding the development of a 

diagnostic assay. Especially useful for optimizing the assay conditions, kinetic parameters are an 

indication helpful in defining the duration of incubation time and the washing stringency. Both 

parameters contribute to an improved assay performance while minimizing background noise, as well 

as non-specific binding to the target molecules. The kinetic measurement of antigen binding to 

antibody microspots on an array has been discussed by several reports. The conclusion of these reports 

is that mass transport dependency of the antibody-antigen microspot kinetic has been one of the main 

restrictions of array technology [31]. Although, the effects of microarray design parameters on 

microspot kinetics were theoretically and experimentally analyzed, the mass transport limitation still 

remains a serious problem. The optimization of parameters such as incubation vessel geometry, 

incubation time, stirring, capture probe density, spotting pattern, analyte concentration, etc. led to an 

improved sensitivity of kinetic microarrays. Nevertheless, mass transport limitations could not be 

entirely prevented to generate confidential kinetic parameters of the interaction process [59].  

SPR is a powerful technology to study label-free antibody-antigen interactions in real time. 

Particularly, high-content microarray-based biosensors are well suited for diagnostic screening of 

serum samples, epitope mapping and protein expression profiling [60]. The SPR phenomenon occurs 

when polarized light passes the interface of a high-refractive-index material (prism or grating) and a 

low-refractive-index medium (analyte). The light beam is completely reflected by a thin gold film. 

Another component, called the evanescence wave, passes into the gold film, where plasmons are 

excited. Thus, a resonant wave is transmitted and the intensity of the reflected light is decreased. Mass 

absorption by analyte binding to the capture probes on the gold surface leads to local refractive index 

changes. This causes a change in the SPR angle which is visualized as Response Units (RU). The 

progress of interaction is displayed in a sensorgram, a plot of response units against time (Figure 4). 

Conventional SPR systems have a few flow chambers, a maximum of four to six. As a result, only a 

limited number of analytes can be simultaneously measured. Serum screening is only possible if a 

small set of antigens is used. Nagel et al. restricted their SPR studies for serological detection of Lyme 

borrelioses to two widely used antigens. The whole proteins as well as two peptides, representing 

immunodominant domains, were used as capture probes [61]. But in general, different flow chambers 

have different antigens, and a direct comparison of kinetics and affinity ranking of more than four 

interactions is not practicable. De Boer et al. used a SPR platform that combines the microarray 

principle with SPR detection in one flow chamber. Thus, all SPR analyses were performed on a single 

array. The microarray contained 144 different glycans derived from the human parasite Shistosoma 

mansoni and was used for the simultaneous detection of glycan-specific serum antibodies [62]. 

Differences in the anti-glycan antibody repertoire from sera of S. mansoni infected patients, as well as 

uninfected controls were monitored. Moreover, differences between the antibody classes that 

responded to the infection were also revealed. A SPR biosensor was used to detect antibodies directly 

from human blood serum against the immunoreactive peptide epitope of EBV nuclear antigen. The 

results, yielded with this biosensor, were characterized in terms of reproducibility, detection limit and 

regeneration and compared with a conventionally used ELISA [63]. The reproducibility of the SPR 

sensor was obtained by using the standard deviation of the sensor response of different sensor chips 

and was determined in the range of 8 and 18% dependent on the serum antibody concentration. For the 

corresponding ELISA the inter-assay standard deviation was found to be between 5 and 20%. Thus, 
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the reproducibility of the SPR sensor is comparable to that of an ELISA. The detection limit was 

estimated to be 0.1 ng/mL, which is lower by an order of magnitude than the detection limit of ELISA. 

The regeneration procedure was optimized and a minor loss of sensitivity was observed after  

10 measurement cycles. This demonstrated the clinical relevance and the potential of the SPR sensor 

for usage in EBV diagnostics. 

Figure 4. Detection system of SPR based Biacore Flexchip (left) and a sensorgram of a 

typical antibody-peptide interaction (right).  

 
The SPR effect and the expansion of plasmons along the sensor surface are caused by total 

reflection of light on the gold chip grating. Once the serum antibodies pass the surface and are 

bound to the immobilized probes the angle of reflection changes. These changes of SPR angle, that 

are proportional to mass absorption of the bound antibody, are visualized in real-time as Response 

Units (RU) in a sensorgram. The classical interaction process consists of baseline, association, 

equilibrium, dissociation, and regeneration. 

Non-specific adsorption of proteins from complex media such as serum or cell lysate to the sensor 

surface causes a signal that masks the signal from the analyte of interest (Figure 5). This becomes 

detrimental for serum components like IgE or cytokines that are present in low concentrations. 

However, the study of Battaglia et al. demonstrated the detection of biologically relevant levels of the 

cytokine IL6 in cell culture media using a SPR sensor. For reducing the non-specific protein 

adsorption, the sensor surface was modified by a layer of NHS ester and 16-mercaptohexadecanoic [64]. 

Weinhart et al. suggested SAMs of linear polyglycerol derivates for gold surfaces. The study that 

focused on the protein adsorption to modified gold surfaces revealed that linear polyglycerol can be 

alternatively used for PEG as a protein resistant coating material [65]. 

Compared to microarrays and bead assays, label-free methods have the key advantage that additive 

detection antibodies or fluorescently labeled samples are not needed. Fluorescence detection requires 

the labeling of antibodies which is cost-intensive and may influence the bioactivity of the target 

molecules. The use of fluorescent dyes, either in patient samples or conjugated to detection antibodies, 

requires adapting the optimal S/N ratio to ensure a sensitive analysis with low background noise. 

Furthermore, an inefficient sample labeling interferes with the interaction of the target molecule and 

consequently leads to a loss of sensitivity. Another bottleneck is that the application of multiplex 
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immunoassays assumes the use of high affinity antibodies, i.e., approximately 10
11

–10
12

 M
−1

. All 

antibodies used in an assay should have closely comparable affinity constants to ensure the sensitivity 

of the test [23]. 

Figure 5. SPR study with Biacore Flexchip: Influence of complex media on binding 

behavior of CB4-1 antibody to its peptide epitopes.  

 
Biotinylated peptides (P1–P3), each in five replicates, were immobilized on a streptavidin coated 

gold chip. The binding of the monoclonal antibody CB4-1, either diluted in serum or PBS buffer, to 

the three different peptides is shown. Higher response units are achieved when CB4-1 is diluted in 

PBS buffer. Compared to that, the binding of CB4-1 diluted in serum is reduced by half. Based on 

the serum components the binding of CB4-1 to its peptides is affected and the signal of interest is 

masked by non-specific protein adsorption to the sensor surface. 

4. Conclusions 

Nowadays, the awareness of the complexity of miscellaneous diseases is continuously increasing. 

Infection- or autoimmune diseases are influenced by various factors. Not an individual marker, but 

rather a panel of well-characterized marker molecules, defines the clinical picture, allowing a 

stratification of patients. When utilized for prognostics, the amount of molecules increases 

exponentially in order to study different disease states. Living up to the expectations of modern 

medicine makes the necessity of multi-parametric assays apparent. Multi-analyte immunoassays have 

the potential to be employed as the state-of-the-art technology for the in-depth serum biomarker 

discovery including validation studies and assay development. The performance strength of each 

immunoassay platform should be considered allowing their appropriate application in the process of 

biomarker discovery. Microarrays have the capacity for an unbiased and rapid serum screening to 

identify novel protein biomarkers from serum [66]. The development of a sensitive and specific 

microarray platform requires the choice of an appropriate surface chemistry, as well as the 

quantification of signal intensities, and the S/N ratio. To ensure the diagnostic significance of a protein 

biomarker a validation process is required. This profound validation process of the preselected 
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biomarkers comprises an analysis concerning their specificity and sensitivity, and the definition of the 

assay conditions. Array-based SPR systems are exceedingly suited for this purpose since they provide 

kinetic data and allow a relatively high-throughput. The kinetics of the preselected interactions  

are analyzed by performing an affinity ranking and the molecules with the favored characteristics  

can be chosen for diagnostic assay. The validated molecules and the defined assay conditions are 

implemented in a laboratory friendly bead assay to reconsider the clinical utility. Biomarker 

candidates, that are inappropriate for clinical diagnostics can be excluded early on, before moving with 

that candidate in clinical trial. 
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