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Abstract: We present a technique for the multi-sensor registration of featureless datasets
based on the photogrammetric tracking of the acquisition systems in use. This method
is developed for the in situ study of cultural heritage objects and is tested by digitizing a
small canvas successively with a 3D digitization system and a multispectral camera while
simultaneously tracking the acquisition systems with four cameras and using a cubic target
frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm
spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions
and to project the multispectral acquisitions on the 3D model.

Keywords: 2D-3D registration; close range photogrammetry; optical calibration; 3D
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1. Introduction

3D digitization and multispectral analysis are both increasingly used for the study of cultural heritage.
3D models provide an accurate representation of the shape of the object under study. It is easy for
conservators and non-specialists to share these models and interact with them without damaging the
object. Such models are also used for education and communication in virtual reality applications.
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Multispectral images, on the other hand, provide precise information about the surface reflectance
properties of an object. With accurate photometric calibration procedures it is possible to extract data that
are independent from both the acquisition system in use and the illumination conditions. This contactless
analysis technique can be a step in non-invasive pigment identification [1].

Because of the complementary nature of the data acquired by these two techniques, conservators
benefit from augmented 3D models with multispectral texture. The annotation of 3D models and
the integration of complementary techniques is widely used for the study of cultural heritage [2–5].
There have been some attempts at creating integrated 3D/multispectral acquisition systems [6–10] for
the study of cultural heritage objects. However, such integrated systems lack the flexibility necessary
to study a variety of cultural heritage objects. Using separate systems for the 3D and multispectral
(2D) acquisitions enables us to independently choose the most suitable for the given application.
The drawback is that we then have to register these multiple datasets.

The traditional approach is to use homologous points in the 2D and 3D data to retrieve the unknown
intrinsic and extrinsic camera parameters, for example using the Tsai camera calibration method [11–13].
The main defect of this technique resides in the difficulty to identify corresponding points between the
2D and 3D data, be it manually or automatically. Color discrepancies do not necessarily correspond to
structural discrepancies and vice versa. Targets may be used to guide the registration process, but they
are usually not adapted to cultural heritage applications where we want to minimize the disturbance to
the object. Depending on the target resolution and the aimed registration accuracy, many targets may be
necessary, partially occluding the object.

The need to find corresponding points is altogether eliminated when the registration of 2D on 3D is
based on fully automated maximization of mutual information methods [14–18]. Mutual information
is a statistical measure of similarity between two images, which is used to compare the 2D data to
be mapped with a rendering of the 3D model. Many rendering methods have been used, including
depth maps [16], gradient maps [17], silhouette maps, reflection maps and other illumination-based
renderings [18]. The camera parameters are iteratively optimized and a new rendering is created until
the registration is achieved. The precision of the ensuing registration is of the order of a few pixels,
which is sufficient for visualization purposes.

There is no need to estimate the camera parameters from the data if they are known through calibration
and tracking. In theory, magnetic tracking can be used to derive the position and orientation of the
sensor in use [19,20]. However, even recent sensors [21] are not sufficiently precise to be the sole
registration input. Furthermore, surrounding metals in the acquisition space increase this error to the
point of rendering the measures useless [22]. For digitizations performed in a laboratory, a robot can be
used to calculate the next best view and to perform the registration based on those known positions and
orientations of the acquisition system [23].

Optical tracking is increasingly used for 3D mesh registration. A new generation of handheld
laser scanners registers the flow of acquisitions by relying on either a laser tracker [24] or a
photogrammetric setup [25–27] to determine the position and orientation of the sensor at each moment.
An example of optical tracking for 3D registration in the context of cultural heritage study is given
by Blais et al. [28]. A painting was scanned with both a high resolution color laser scanner and a
lower-resolution laser scanner. The lower-resolution scanner acquired the full painting in a single scan
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and was also used to project optical markers on the surface of the painting, defining the sub-areas to scan
with the high-resolution scanner. White spheres were mounted on the high resolution scanner and the
third task of the low resolution scanner was to track the position and orientation of this second scanner
while in use.

We extend this type of setup for the multisensor registration of featureless datasets. Our technique
relies on close range photogrammetry to track 3D and multispectral acquisition systems.
Photogrammetry is the science of measuring the position and shape of objects using photography.
In stable and well calibrated setups off-line photogrammetry systems can potentially achieve a
measurement precision of up to 1:500,000 with respect to the largest object dimension [29]. To achieve
such precision, the intrinsic camera parameters must be determined with great accuracy. These intrinsic
parameters are also called the camera interior orientation (I.O.) and include sensor resolution, focal
length, lens distortion, principle point offset, pixel ratio, pixel skew, etc. The exterior orientation (E.O.)
of a sensor is its position and orientation in a given system. These parameters, as well as the object
coordinates, are estimated by recognizing corresponding points in the images.

Our goal is to develop a method that permits the registration of featureless 3D models and
multispectral acquisitions, for the study of cultural heritage objects. Simulations have shown that it
is possible to track our acquisition systems with an accuracy of 0.014mm spatially and 0.100mrad

angularly [30]. This paper presents the experimental results performed in a laboratory environment to test
the feasibility and the accuracy of the technique. We first describe the method and present the materials
used. We then describe the acquisition configuration. The results are presented in several subsections:
first the accuracy of the individual calibrations is given. We then look into the tracking accuracy. This is
followed by an evaluation of the 3D registration accuracy. We then examine the registration of 3D and
multispectral data. The article ends with a conclusion, which presents the limitations and advantages of
the technique, as well as a few perspectives.

2. Materials and Methods

2.1. Method Description

Figure 1 represents the in situ acquisition setup: a group of cameras observe the acquisition systems
as they successively digitize the surface under study from various positions. We refer to these as the
“tracking cameras” to distinguish them from the multispectral cameras used throughout. The acquisition
system is fixed to a target frame that enlarges it and increases the tracking accuracy. The acquisitions are
performed simultaneously from the acquisition system in use and the tracking cameras. The registration
is performed by projecting the acquired datasets in a single system. To ensure a precise tracking and
subsequent registration, all optics and objects in play must be carefully calibrated. We introduce the
following coordinate systems, linked to the materials in use:

• CSi, (OSi, ~xSi, ~ySi, ~zSi) is the coordinate system linked to acquisition system i.

• CF , (OF , ~xF , ~yF , ~zF ) is the coordinate system linked to the target frame.

• CCj, (OCj, ~xCj, ~yCj, ~zCj) is the coordinate system linked to each tracking camera j. OCj is the
optical center of the camera, (~xCj, ~yCj) define the image plane, ~zCj is collinear to the optical axis.
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• C0, (O0, ~x0, ~y0, ~z0) is the world coordinate system.

Additionally, we use the following notations: A|CU
are the homogeneous coordinates (xA, yA, zA, 1)

of point A in coordinate system CU and TCV ,CU
is the transformation matrix between two coordinate

systems CU and CV such that A|CV
= TCV ,CU

· A|CU
.

Calibration of the target frame We evaluate the position of each target in CF using close range
photogrammetry by taking many pictures of the target frame surrounded by a few scale bars and
additional targets.

Calibration of the tracking cameras It is necessary to know the interior orientation of the tracking
cameras. This calibration can be done once the focus of the cameras has been fixed by taking a series of
images of a calibration plate in various positions and orientations. The camera calibration is quite stable
and can be performed up to a week in advance if we ensure the camera focus is fixed.

Calibration of the acquisition system A similar procedure or a material-specific calibration must be
performed to measure the intrinsic parameters of the acquisition systems.

Calibration between the target frame and the acquisition system It is necessary to know the
position and orientation of the acquisition system in the coordinate system defined by the target frame.
This is also done using photogrammetric techniques. The acquisition system is placed inside the target
frame and acquires another target-covered object. Several acquisitions of the target frame and object
from various points of view are used to measure the respective position and orientation of the previously
calibrated coordinate systems. This provides us with TCF ,CSi

, the transformation between the acquisition
system coordinate system and the frame coordinate system.

Orientation of the tracking cameras To know the relative orientation of the tracking cameras, these
cameras simultaneously acquire images of a calibration plate or a scale bar in several positions and
orientations. For every camera j, we thus know TC0,CCj

.

The data processing is then performed in two steps:

(1) The interior and exterior orientation of the tracking cameras and the images of the target
frame from the tracking cameras are used to compute the position and orientation of the target frame
for each acquisition. This provides us with TC0,CF

. We refer to this as tracking; this is what the
simulations describe.

(2) Using the tracking results, the calibration between the tracking frame and the acquisition system,
and the acquisition system calibration, we project the acquired data in a single coordinate system. We
can thus calculate A|C0

, the coordinates of the surface points in the world system using:

A|C0
= TC0,CF

· TCF ,CSi
· A|CSi

(1)

This is what we call the registration.
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Figure 1. Acquisition overview. An edge detection was performed to improve
image readability.
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2.2. Materials Used

In this section we describe the materials used during the experiments. We differentiate the acquisition
systems that we used because they correspond to our acquisition problem, the additional material
necessary to perform the optical tracking and the software used to process the data and perform
the registration.

2.2.1. Acquisition Systems

The multispectral acquisitions are performed with a commercial camera from FluxData
(the FD-1665-MS [31]). This camera is based on a 3 CCD system that provides simultaneous data
for each spectral band. A few characteristics of this camera are given in Table 1. It can acquire 7 spectral
bands, six in the visible spectrum and one in the near infrared. This number of channels has been shown
to be sufficient for pigment characterization [32]. Accurate spectral calibration and a neural network
algorithm are able to provide us with a reflectance spectra for each pixel [33]. The big sensor and pixel
size will allow us to precisely register the acquired data. This is a light and compact multispectral camera
that is adapted for the in situ study of cultural heritage. For these acquisitions the camera was used with
a LED ring light.

The 3D surface digitization is carried out by a commercial fringe projection system, the Atos III,
manufactured by Gom [34]. The Atos is composed of two 4Mpx cameras and a projector. Different
acquisition configurations can be built by varying the position, orientation and lens of the cameras and
projector. The output resolution is proportional to the dimensions of the field of view.
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Table 1. FluxData multispectral camera characteristics.

Characteristic Value Unit

Filtering technology 3 CCD
Number of spectral bands 7

Sensor size (W × H)
8.9 × 6.7 mm×mm

694 × 494 pixels× pixels

Cell size 9.9 µm
Focal length 25 mm

Acquisition range 400–950 nm

External dimensions 92 × 112 × 187 mm×mm×mm

Weight 1.25 kg

2.2.2. Tracking Material

Material characteristics such as the tracking cameras’ resolution and focal length as well as the
target frame characteristics (dimensions and number of targets) were chosen through several rounds
of simulations.

The tracking cameras are 5Mpx grayscale cameras AVT Stingray F-504B. They are used with 8mm

lens from Pentax. Short focal lengths are necessary to provide a wide field of view for the tracking.
The target frame is a cube of side 500mm, covered with 80 targets (see Figure 2). It is made of aluminum
profiles, which allow an easy and rapid prototyping. A hexagonal plate is fixed to the bottom of the frame
to securely fix it to a tripod. A plate holder inside the cube is used to fix the acquisition systems to the
frame. Additional materials used for the calibrations include an extra digital camera (we use a Nikon
D300 camera with an external flash), scale bars and calibrated target plates.

Figure 2. Gom Atos III in the target frame acquiring the cross-stitch canvas.
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2.2.3. Processing Software

The processing of the calibration and acquisition photogrammetric bundles relies on two pieces of
software. We use Gom’s photogrammetric bundle adjustment software TriTop [35] to recognize the
targets and perform an initial bundle adjustment. We thus estimate the cameras’ internal and external
orientation, the coordinates of the targets in a world system and the coordinates of the targets in
the images.

The output is then processed by a lab-developed software based on the AxOri library [36],
i3mainzAxOri. We now perform the bundle adjustment with greater flexibility in differentiating the
unknowns from the input parameters. For example, we can estimate the target coordinates or the object
position by assuming the tracking cameras’ interior and exterior orientation are known. It is also possible
to assess the exterior orientation of the tracking cameras assuming the interior orientation and the object
coordinates are accurate. If we assume the tracking camera exterior orientation and the object coordinates
are known, then we can determine the tracking cameras interior orientation. The bundle adjustment
results also provide us with an internal accuracy measure of the parameters calculated. These are the
accuracy values presented further on in this article, given at 2σ.

2.3. Configuration Overview

In addition to helping us select the tracking material, simulations enabled us to evaluate the achievable
tracking accuracy in three configurations, chosen to represent a variety of cultural heritage objects.
When the acquisition systems are fixed to this target frame and survey an area of 400 mm × 700 mm,
the simulations [30] show that we can achieve a spatial tracking accuracy of 0.020 mm and an angular
accuracy of 0.100 mrad using four tracking cameras. Equivalent tracking accuracy can be obtained
using six cameras when the acquisition systems digitize an area of 2,000 mm × 1,500 mm, such as a
wall-painting. If the object under study is a 1,000 mm high statue with a 300 mm radius then the target
frame can be tracked with comparable spatial accuracy and an angular accuracy of 0.122 mrad. This,
however, requires eight tracking cameras and would be harder to achieve in practice.

Simulations were run in a configuration that corresponds to a real case study: the digitization of the
surface of a polychrome sarcophagus from the 3rd century. In this case study the area of interest measures
400 mm × 700 mm. The first experimental results presented here correspond to a reduced version of
the initial configuration in which we digitize a framed cross-stitch canvas. The frame measures 450
mm × 360 mm while the cross-stitch covers an area of 320 mm × 230 mm. This is a good test object
since it contains both spatial surface variations in the surface of the frame and in the stitches, as well
as reflectance variations in the color of the thread. The frame sits on a small metallic shelf, and the
four tracking cameras are positioned to observe the acquisition systems while they digitize the surface,
as shown Figure 1.

Our goal is to register the data with an accuracy twice as good as the acquisition system resolution.
This corresponds to a different target accuracy depending on the acquisition distance. We use the Gom
Atos III in the configuration that provides a 500 mm × 500 mm field of view. This entails a 0.24 mm
resolution and a fixed distance of 760 mm between the acquisition system and the object under study.
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In the case of the FluxData camera, we assume this distance to be 500 mm. This corresponds to an image
of approximately 180 mm × 130 mm.

The resulting accuracy goal is given in Table 2. Spatially, the most restrictive target value is0.099 mm
and angularly 0.158 mrad. The simulations have taught us that it is this angular accuracy that will be the
hardest to reach.

Table 2. Tracking accuracy goal for each acquisition system. Most restrictive values are
shown in boldface.

Acquisition system
Acquisition Accuracy goal

distance spatial angular
(mm) (mm) (mrad)

FluxData multispectral camera 500 0.099 0.198

Gom Atos III digitization system 760 0.120 0.158

3. Results and Discussion

The bulk of the calibrations were performed on the same day as the acquisitions. Only the camera
calibrations were done at different moments: the tracking cameras were calibrated a few days earlier,
while the multispectral camera was calibrated on the following day. The performed acquisitions and
calibrations are listed in Table 3. This section first presents the results of the individual calibrations. We
then evaluate the accuracy with which we track the target frame. Finally, we present the 3D registration
results, followed by the integration of the 3D and multispectral datasets.

Table 3. List of calibrations and acquisitions performed.

Tracking cameras calibration
Multispectral camera calibration
Gom Atos III calibration

Target frame calibration
Tracking cameras orientation

Multispectral camera to target frame orientation
Multispectral acquisitions with simultaneous tracking

Gom Atos III to target frame orientation
Gom acquisitions with simultaneous tracking

3.1. Individual Calibrations

The accuracy of the individual calibrations is given in Table 4. When available, the equivalent values
from the simulations [30] are given for comparison.
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Table 4. Accuracy of the individual calibrations compared with the simulation values.

Calibration Measures Simulations Unit

realistic best

Tracking cameras calibration 0.029 0.1 0.033 pixel

Multispectral camera calibration 0.035 — pixel

Target frame calibration 0.011 0.050 mm

Tracking cameras orientation
0.011 0.03 0.01 mm

0.014 0.04 0.02 mrad

Target frame to multispectral 0.924 — mm

camera orientation 3.156 — mrad

Target frame to Gom 0.029 — mm

Atos III orientation 0.072 — mrad

Sensor calibrations To determine the interior orientation of the tracking cameras, we acquire a
calibration plate in approximately eighty positions. The resulting calibration is more accurate that the
values used for the simulations. It would thus be theoretically possible to calibrate the cameras with
fewer acquisitions; however we welcome this improved calibration.

A smaller calibration plate is used to independently calibrate each of the three CCDs of the
multispectral camera. The calibration is not as accurate as the one performed with the tracking cameras.
This is partially due to the reduced depth of focus of the multispectral camera, which limits the volume
in which we can clearly identify the targets from the calibration plate.

The Gom Atos III has a specific calibration procedure similar to that described above.

Calibration of the target frame The target frame is calibrated with over a hundred images. Each
target is present in an average of over a third of the total images and the resulting accuracy beats the
accuracy expected from the simulations.

Orientation of the tracking cameras We use one camera coordinate system as the world coordinate
system (C0 = CC1). The position and orientation of the other three tracking cameras are calculated in
this system. Using approximately ninety images the spatial accuracy obtained is only slightly worse than
the best expected results and better than the expected results angularly.

Orientation between the target frame and the acquisition systems This orientation is calculated
using three different relative positions of the target frame and calibration object. The discrepancy
between the small field of view of the multispectral camera and the large tracking frame are the cause
of the disappointing accuracy of the orientation of the tracking frame in the system defined by the
multispectral camera. This orientation can be improved if the multispectral camera observes a greater
number of targets: here each image could only see four or five targets of the calibration object. In a
posterior measure we were able to attain an accuracy of 0.13mm spatially and 0.43mrad angularly
when the multispectral camera observed seven to twelve targets.
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3.2. Tracking

The target frame is tracked in 23 positions: 5 when the Gom Atos III digitizes the scene (G1 to G5)
and 17 for the FluxData multispectral acquisitions (positions FD1 to FD17). The relative position of the
target frame and the cameras is illustrated in Figure 3.

Figure 3. Relative position of the tracking cameras (dark gray) and target frame for all the
acquisition positions.
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The spatial and angular tracking accuracy of the frame tracking for each position is given in Figure 4.
The achieved tracking accuracy is compared with the simulation results in the best-case scenario and to
the accuracy goal.

Figure 4. Spatial (blue squares) and angular (green circles) tracking accuracy compared with
the best-case scenario simulation results (a) and to the tracking goal (b).
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We only reach the simulation results for the angular accuracy when the Gom is in the target frame.
The spatial accuracy is also much better for these five positions, rarely exceeding 10% more than the
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spatial accuracy reached during the simulations. As shown in Figure 3, the target frame is closer to the
cameras during the Gom acquisitions. These positions closely resemble those used for the simulations.
It is thus not surprising that the tracking accuracy better corresponds to the simulation results.

If we compare the achieved accuracy to the tracking goal we notice that the tracking accuracy is
always better than our goal. As expected from the simulations, we have no difficulty reaching our target
spatial accuracy. Our worst spatial value (0.026mm for FD3) is more than three times better than the
spatial accuracy goal of 0.099mm.

The least well tracked positions are 3, 4, 9, 10, and 15 of the FluxData multispectral cameras. These
first four positions are those of the third column from the left. For these positions we have a perspective
view of all targets on the left and right side of the frame. Even though there are a comparable number
of targets detected by each camera compared with the other positions, since these targets are not well
defined, the ensuing tracking is less accurate.

The tracking results could be improved by re-designing the tracking frame: If this frame were
spherical instead of cubic, the tracking accuracy would not depend on its orientation with respect to
the tracking cameras. Also, the current cube design is such that the targets hide one another from certain
points of view. This could be solved if the targets did not stick out of the tracking frame. Finally,
aluminum is convenient for rapid prototyping but a carbon tracking frame would be more stable and less
sensitive to temperature changes that can occur over the course of a day.

3.3. 3D Registration

The frame of the cross-stitch canvas is difficult to digitize with the Gom Atos III, due to the shiny
paint that covers it. The intricate decorations of the interior of the frame are particularly challenging to
digitize and were only partially acquired.

Figure 5 shows the registration of the five meshes as well as the final model. There are some holes
remaining in this final model, particularly in the area representing the frame, but the cross-stitch canvas
is almost fully acquired. There are no visible discontinuities in the 3D model, although these would be
easily visible on the exterior and interior edges of the frame.

The theoretical accuracy of the final registration is the sum of the tracking accuracy and the target
frame to acquisition system orientation. In the case of the 3D data, the theoretical spatial accuracy is
thus the sum of the spatial accuracy of the least well tracked position of the Gom Atos III, position G2,
(0.016mm) and of the spatial accuracy of the target frame to Gom Atos III orientation (0.029mm). This
theoretical spatial accuracy of 0.045mm is well below our target accuracy of 0.09mm. The theoretical
angular accuracy is 0.158mrad (0.0860mrad, angular accuracy of G2, plus 0.072mrad, spatial accuracy
of the target frame to Gom Atos III orientation). This is exactly our target angular accuracy. We reach
our target 3D registration accuracy somewhat narrowly and based on the assumption that the calibration
of the 3D digitization system introduces negligible errors.

The advantage of this method is that the registration inaccuracy is independent of the content of the
data: if the acquired data represented a smooth plane, it would be registered with the same accuracy.
This is not the case with the Iterative Closest Point algorithm (ICP) [37,38], which generally fares badly
with smooth and planar data. Furthermore, the deviation errors produced using ICP would accumulate
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across the views. Also, ICP requires a 30% to 40% overlap between adjacent meshes. Though we have
such overlap in this data, it does not influence the success of the registration.

Figure 5. 3D registration. First row: successive projection of each mesh. Bottom image:
all meshes.

3.4. 3D / Multispectral Registration

Figure 6 shows the full registration of multispectral acquisitions on the 3D model. For these
acquisitions we only used the six channels in the visible range from the FluxData multispectral camera.
For visualization purposes, we combine the channels two by two to create a color image. The seventeen
images are successively projected on the 3D model in the order they were acquired. Areas captured
several times are simply hidden by the following acquisitions.

Visual examination of the 3D model presents a horizontal inaccuracy. Manually selecting two points,
the mesh shows this inaccuracy to be of approximately 0.8mm between the multispectral and 3D data,
highlighted in Figure 7. There is no noticeable registration inaccuracy in the vertical direction. The 3D
model and the images are well aligned both along the edge of the cross-stitch and along the edge of the
engraving.
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Figure 6. Multispectral/3D registration.

Figure 7. Closeup of the multispectral / 3D registration. (a) shows the inaccuracy of the 3D
to multispectral registration while (b) highlights the seamless multispectral registration.
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The theoretical spatial accuracy is only 0.950mm: 0.026mm, the accuracy of the least well tracked
position of the multispectral camera, position FD4, plus 0.924mm, the spatial accuracy of the target
frame to multispectral camera orientation. This inaccuracy is thus mostly due to the inaccuracy of
the target frame to multispectral camera orientation. We observe the same problem on the theoretical
angular accuracy; of the total 3.306mrad, 3.156mrad are due to the orientation of the target frame
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to the multispectral camera, while only 0.150mrad come from the tracking accuracy (position FD3).
This explains why we have a good multi-view registration of the multispectral data, even though the
multimodal registration could be improved. The accuracy of the multispectral registration on the 3D
model could be greatly improved with a better calibration between the multispectral camera and the
target frame.

Another important factor for the accurate registration of the multispectral data on the 3D model is the
accuracy of the camera interior orientation. The accuracy of the focal length ensures that the image is
correctly scaled, it is also most important to compensate the distortion of the lens, though this is not a
visible problem here. An inaccurate calibration of the principle point offset, however, could introduce
the type of error visible here.

4. Conclusions and Perspectives

Using a photogrammetric setup based on four tracking cameras and a cubic target frame with a side
length of 500mm, we were able to successively track the position and orientation of a fringe projection
digitization system and a multispectral camera with an accuracy better than 0.03mm spatially and
0.150mrad angularly. The tracking results are used to register five 3D meshes together and to project
seventeen multispectral acquisitions. These first experimental results show that our tracking method is
adapted not only for the registration of 3D datasets, but also for the integration of multispectral texture
on 3D models.

The accuracy of the final registration relies on the success of a series of optical and geometrical
calibrations. It is essential that the calibrated parameters are stable for the duration of the full acquisition
process, typically from four to eight hours. The global setup of this technique is cumbersome and the
registration of 3D and multispectral data requires up to seven calibrations. Though they are not difficult
to perform, these photogrammetric calibrations are time consuming. Nevertheless, a well organized team
of two can perform all the necessary calibrations and acquisitions in a single day (including the camera
calibrations, though this was not the case here).

The use of photogrammetry offers a high flexibility: the setup can easily be adapted to the dimensions
of the objects under study. For example, simulations have shown that an equivalent tracking accuracy
can be obtained when using six cameras to survey an area of 2,000 mm × 1,500 mm.

All the necessary materials are transportable. The weight of the prototype target cube (currently
9.6 kg) and camera supports (30 kg) can be reduced by using lighter materials. In the current
configuration, the weight of this material is comparable to that of a laser tracker (the Leica Absolute
Tracker, for example, weighs 39 kg).

A big advantage of this technique is that it can be used with any optical acquisition system that the user
may already possess. The additional cost is thus only that of the tracking frame, tracking cameras and
lens, which in our case is under 15,000 e. This is much less than the cost of a laser tracker, though this
amount does not include software costs. A broader use of the technique would require the development
of an independent and integrated software tool for data processing and display.

The method is particularly cumbersome when digitizing highly three dimensional objects: eight
tracking cameras may be necessary for a 1m high statue. As the number of cameras increase, so does
the number of calibrations necessary and the difficulty of maintaining a stable setup.
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Compared with automatic alignment method, our system offers clear advantages when dealing with
object with low spatial variability. Our system offers a solution to the multi-view and multimodal
registration of smooth and featureless datasets. The registration accuracy is independent of the content
of the acquired data, which means that the errors do not accumulate during the 3D registration of open
surfaces, as would be the case using ICP, for example. These characteristics, including the fact that it is
transportable, make our technique particularly suitable for the in situ study of cultural heritage objects.

This registration method can also be used in industrial settings. In such a fixed setup, the tracking
accuracy can be increased. Also, the calibrations will only have to be performed from time to time, rather
than once per object under study as in the case of the in situ study of cultural heritage. Furthermore, the
technique works independently from the acquisition systems used, as long as they are based on optical
sensors that can be characterized and calibrated. Data from thermal sensors or other optical sensors can
provide complementary texture for the 3D model.
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