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Abstract: Planetary gearboxes exhibit complicated dynamic responses which are more 
difficult to detect in vibration signals than fixed-axis gear trains because of the special gear 
transmission structures. Diverse advanced methods have been developed for this 
challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents.  
It is feasible to make fault features distinct by using multiwavelet denoising which depends 
on the feature separation and the threshold denoising. However, standard and fixed 
multiwavelets are not suitable for accurate fault feature detections because they are usually 
independent of the measured signals. To overcome this drawback, a method to construct 
customized multiwavelets based on the redundant symmetric lifting scheme is proposed in 
this paper. A novel indicator which combines kurtosis and entropy is applied to select the 
optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is 
effective for periodic impulses. The improved neighboring coefficients method is 
introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from 
a satellite communication antenna on a measurement ship are captured under various motor 
speeds. The results show the proposed method could accurately detect the incipient pitting 
faults on two neighboring teeth in the planetary gearbox. 
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1. Introduction 

Accurate fault detection of planetary gearboxes is important to reduce unscheduled machine 
downtime and avoid catastrophic accidents [1]. As key components, planetary gearboxes have been 
widely used in automotive, aerospace and heavy industry applications such as helicopters, wind 
turbines and mining machines because they have the advantages of large transmission ratios, strong 
load-bearing capacity and high transmission efficiency [2]. However, planetary gearboxes inevitably 
generate various faults because of long term running under complex and severe conditions such as 
heavy load, fatigue, corrosion and elevated temperature. As shown in Figure 1, an elementary 
planetary gear set [3] is composed of a sun gear, an internal or ring gear and several identical planet 
gears located around the sun gear. The planet gears are held by a common rigid structure, called planet 
carrier through planet bearings. In Figure 1, the ring gear is fixed, the sun gear rotates around its own 
center, the planet gears rotate around their own centers and revolve around the center of the sun gear. 

Figure 1. Schematic of an elementary planetary gear set having three planet gears. 

 

With a special gear transmission structure, planetary gearboxes exhibit complicated dynamic 
responses which are more difficult to detect than fixed-axis gear trains [4]. It is because multiple planet 
gears produce similar vibrations and these similar vibrations with different meshing phases couple with 
each other [5,6]. Researchers have found that compound vibration transmission paths from the gear 
mesh points to the acceleration sensors may deteriorate or attenuate vibration responses of gear faults 
through dissipation, interference and resonance effects [7]. Besides, abundant work indicates that most 
of the vibration energy occurs at various sidebands of the gear meshing frequency and its harmonics [8] 
and nonlinear transmission path effects caused by the torques or loads would weaken the fault features 

Ring gear 
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hidden in vibration signals [5]. These complicated dynamic responses increase the difficulty of 
planetary gearbox fault detection and reduce the effectiveness of fault diagnosis methods for fixed-axis 
gearboxes when applied to planetary gearboxes.  

Up to now, researchers have proposed a few interesting methods based on advanced signal 
processing techniques for detecting planetary gearbox faults. Blunt and Keller [5] developed the planet 
carrier method and planet separation method to detect a fatigue crack in a planet carrier of an epicyclic 
transmission, which was a component of the main transmission gears in the US Army’s UH-60 A 
Black Hawk helicopters. Barszcz and Randall [9] applied the spectral kurtosis (SK) technique to detect 
a tooth crack in the planetary gear of a wind turbine. Bartelmus and Zimroz [10,11] introduced the load 
susceptibility concept for the condition monitoring of planetary gearboxes under time-variable 
operating conditions. It was stated that the acceleration signal envelopes showed deeper amplitude 
modulation for the gearbox in bad condition than that in good condition. Hameed and Hong [12] 
profoundly reviewed different techniques, methods and algorithms developed to monitor the 
performances of wind turbines to keep them away from catastrophic conditions caused by sudden 
breakdowns. Lei and Kong [4] proposed two diagnostic parameters specially designed for fault detection 
and diagnosis of planetary gearboxes. The two parameters are the root mean square of the filtered 
signal (FRMS) and the normalized summation of positive amplitudes of the difference spectrum 
between the unknown signal and the healthy signal (NSDS). Lei and Lin [13] introduced a method 
based on multisensor information fusion to classify the pitting damages with different levels in a 
planetary gearbox.  

In summary, researches on planetary gearbox fault diagnosis have only focused on the condition 
monitoring and fault classifications. Studies on weak feature detections of incipient faults are rare and 
these weak features are always immersed in noises generated by the equipment and the surrounding 
environment. It is significant to detect weak fault features as early as possible, which is a complicated 
and challenging task that requests advanced analytical methods with high reliability, high accuracy and 
high efficiency.  

The emerging notion of multiwavelet transform (MWT), which uses vector-valued scaling and wavelet 
functions, is an important development of the wavelet theory. Multiwavelets possess excellent properties of 
orthogonality, symmetry, compact support and high vanishing moments simultaneously [14,15].  
Since 1994, Geronimo-Hardin-Massopust (GHM) multiwavelet [16,17], Chui-Lian (CL) multiwavelet [18] 
and Hermite multiwavelet [19] have been proposed successively and received considerable attention from 
wavelet research communities both in theory and in applications. Khadem and Rezaee [20] applied GHM 
multiwavelet to detect the gearing system faults. Yuan and He [21] proposed multiwavelet sliding 
window denoising to detect the gearbox fault features of the hot strip finishing mills. Although these 
methods showed their advantages over scalar wavelets, prior researches always selected mother 
multiwavelets from a library of previously designed multiwavelets. However, the chosen standard and 
fixed multiwavelets were usually not the suitable ones for specified applications [22]. 

To overcome the limitations of standard or fixed MWTs, integrating multiwavelets with lifting 
schemes (LS) is an exciting motivation to construct customized multiwavelets with desired properties. 
LS, introduced by Sweldens [23,24], is a powerful tool to construct biorthogonal wavelets. It provides 
a great deal of flexibility and freedom to construct adaptive wavelets by the design of prediction 
operators and update operators. Wang and Zi [25] proposed the customized multiwavelets originated 
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from Hermite splines via symmetric lifting schemes. Yuan and He [26] proposed a method 
incorporating customized multiwavelet with sliding window denoising, which was an effective and 
promising tool for gear fault detection.  

It is a challenging task to detect weak features of incipient faults, which are always immersed in 
heavy noises generated by the surrounding environment or the equipment. Multiwavelet denoising 
plays an important role in eliminating noise as much as possible. Its effect mainly depends on the 
feature separation by using multiwavelets and the threshold denoising. A redundant multiwavelet 
possesses the time invariant property [27] and provides abundant information for feature detection of 
periodical impulses. Symmetry is another important property which avoids the phase error in MWT. 
To ensure the time invariant and symmetry property of multiwavelets, a method integrating the 
symmetric lifting scheme and redundant multiwavelet is proposed to construct customized 
multiwavelets. Then a critical problem is how to evaluate the obtained multiwavelets and to select the 
optimal ones for specific applications. The quotient of kurtosis and entropy is proposed to select the 
optimal multiwavelets because kurtosis is sensitive to sharp impulses of incipient faults and entropy is 
effective for periodic impulses of moderate or severe faults. Furthermore, based on the correlation of 
neighboring coefficients, the improved neighboring coefficients (INC) [28] is adopted to eliminate 
noises from the decomposed signals.  

In this paper, a method which incorporates the customized multiwavelets and INC is proposed for 
fault detections of planetary gearboxes. The experimental results show that the proposed method is 
effective and promising to detect these weak impulse features. The rest of the paper is organized as 
follows: The theory of multiwavelets and the symmetric lifting schemes are briefly introduced in 
Section 2. In Section 3, the redundant symmetric lifting scheme is proposed to construct customized 
multiwavelets and the improved neighboring coefficients is introduced into multiwavelets denoising. 
In Section 4 experimental results are performed. The conclusions are summarized in Section 5.  

2. The Theory of Multiwavelets and the Symmetric Lifting Schemes 

2.1. Multiwavelet Transform  

Like scalar wavelets, the theory of multiwavelets is based on multiple resolution analysis (MRA) [15]. 
The difference is that multiwavelets are generated by dilations and translations of the vector functions 

, where r N∈  and the space Vj at scale j is:  

 (1)

where i is the translation of Ф. 
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where  are multiwavelet functions, Hk and Gk are lowpass and highpass matrix 
filter banks, respectively, k = 0,1,…, N is the number of filter banks. In this paper, the case 
multiplictity  r = 2 is under study. By the dilations of Equations (2) and (3), the following recursive 
relationship between coefficients (c1,j,k, c2,j,k)T and (d1,j,k, d2,j,k)T can be obtained: 

 (4)

 (5)

Similarly, multiwavelet reconstruction can be obtained by:  

 (6)

where Hk
* and Gk

* are dual matrices of Hk and Gk, respectively. 
Decomposition and reconstruction of MWT can be represented in Figure 2. In view of the matrix 

filter banks, preprocessing is necessary for the one stream input signal . Correspondingly, a 
postprocessing method is the inverse process of preprocessing.  represents a prefilter while  is a 
post-filter.  represent low-pass filter banks, dual low-pass filter banks, high-pass filter 

banks, and dual filter banks of multiwavelets. 2   and 2   represent decimation and zero-padding, 
respectively. { }0 01,0, 1, 1, 1, , 1, ,, , ,k k j k j kc c c d−  are the first branch and of the decomposition result and 

{ }0 02,0, 2, 1, 2, , 2, ,, , ,k k j k j kc c c d−  are the second branch. 

Figure 2. (a) Decomposition (r = 2) of MWT. (b) Reconstruction (r = 2) of MWT. 
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Figure 2. Cont. 

 
(b) 

Different from scalar wavelets, multiwavelets require two or more input streams because of their 
matrix filter banks. Usually, there is only one input stream x[n] and therefore some kind of preprocessing 
method must be performed before multiwavelet decomposition [29]. Then a postprocessing method is 
needed to be performed after multiwavelet reconstruction and it is the inverse process of 
preprocessing. Moreover, different preprocessing methods have significantly different influences on 
performances of MWT. The most obvious way to get the second input row was just to repeat the input 
stream with a factor, namely the repeated row as shown in Equation (7). Here xk is the input signal and 
α is a constant which makes the system hold approximation order higher than zero. Strela [30] claimed 
that the “repeated row” was effective for feature extraction. Therefore, it is adopted in this paper: 

 (7)
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Theorem 2.1 [26] Let the original filter banks of multiwavelets be , new 

multiwavelet filter banks  are as follows:  

 (8)

where the lifting matrices S(z) and T(z) are finite orders and the determinant of T(z) is a monomial. 
Multiwavelet lifting scheme is similar to scalar lifting scheme except that the filter banks of 
multiwavelets are matrices, and Gnew(z) contains an extra lifting matrix T(z2).  

According to the two-scale relations and Equation (8), the following formula is obtained:  

 
(9)

 

Lifting scheme can be used to improve the existing multiwavelets. The obtained multiwavelets are 
considered ideal since they have a desirable vanishing moment. The key of this method is the design of 
the lifting matrices S(z) and T(z) [25]. 
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Supposing that the vanishing moment p of a multiwavelet needs to be lifted to p´, both sides of the 
Equation (11) are performed integral and then a set of linear equations in the matrix form are shown  
as below:  

 (12) 

The integrals can be calculated through Equation (10). The solutions {ci} of this matrix are the 
coefficients of functions to implement the lifting. The Equation (11) is performed z-transform and the 
lifting scheme is obtained successfully.  
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Let ,  and , 

then: 

 (14)

The solutions of Equation (13) are the coefficients that are used to lift . The lifting of  is 
similar to  except adopting  and  only. The lifting coefficients are substituted into the “lifting 
coefficients equation”. Then the equation is performed z-transform and the presentation of the lifting 
scheme is obtained as follows: 

 (15)

New symmetric biorthogonal multiwavelets are constructed with the help of the lifting matrices 
T(z) and S(z). Symmetric condition and vanishing moment condition are supplemented to the equation 
set MBC = Mψ. The solution of the equation set is the lifting coefficients. The lifting matrices T(z) and 
S(z) are obtained through using z-transform. Finally, substituting the T(z) and S(z) into the lifting 
equation, a new multiwavelet is constructed successfully. 

2.4. Redundant Multiwavelet Transform  

Discrete multiwavelet transform (DMWT) is essentially a decimated multiwavelet transform. It is an 
ideal tool for non-stationary signal processing, while there are still several limitations. First, the 
decomposition results of DMWT are time-variant due to down sampling. A forward or backward 
translation of the original signal will generate different decomposition results [31]. Second, the length of 
the approximation signal is reduced by half after each decomposition. As the decomposition level 
increases, the information contained in the approximation signal become more scarce and the time 
resolution is gradually decreasing. Third, wavelet compression or wavelet denoising can exhibit  
pseudo-Gibbs phenomena [32] in the neighborhood of singularities when signals are reconstructed. To 
overcome these limitations, a simple but efficient method is redundant multiwavelet transform (RMWT). 

RMWT is time-invariant, which is beneficial to the feature extraction of periodic impulses. 
Moreover, RMWT supply more abundant features and more precise frequency localizations, which are 
beneficial for mechanical fault detections. The decomposition of RMWT is shown in Figure 3(a). 
Compared with DMWT, there are no down-samplings in redundant multiwavelet decomposition. The 
length of the approximation signal and the detail signal after decomposition is the same with the 
original signals. hj and gj are the matrix filters after padding with zeros. Zero-padding of the matrix 
filter banks is shown in Figure 3(b). hi and gi represent the matrix filter coefficients of h and g, 
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high-pass filters of redundant multiwavelet are computed by padding those filters of the original 
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arbitrary sequence with zeros, then, for all integers:  

    (16)
Then the filters of redundant multiwavelet can be calculated by the following equations: 

BM MB=
1 1 2

T
, ,1 , ,1[ , , , ]

i
C c cψ φ ψ ψ= T[ ( ,0, ), ( ,0, 1), ( ,0, ' 1)]i i iM M p M p M pψ ψ ψ= + −Ψ

BM C M= Ψ

1ψ 2ψ

1ψ 1φ 2φ

2 2( ) ( )( ( ) ( ) ( ))newG z T z G z S z H z= +

( )2i iTx x= ( )2 1iTx + = 0



Sensors 2013, 13 1192 
 

 

 (17)

Figure 3. The decomposition of redundant multiwavelet transform. (a) Decomposition of 
redundant multiwavelet transform. (b) Zero-padding of filter banks. 

(a) 

(b) 

3. Redundant Symmetric Lifting Schemes and the Improved Neighboring Coefficients 

3.1. Improved Neighboring Coefficients Denoising 

Cai and Silverman [33] proposed a threshold rule incorporating neighbouring coefficients (NC). 
Chen [34] introduced this method into multiwavelet denoising, which has achieved a wonderful effect 
in image denoising and mechanical fault diagnosis. The conventional NC procedure chose a constant 
size of neighboring window l = 3 at each level after wavelet decomposition. However, this method is 
not accurate enough because the size of neighboring window is invariant but the dependences of 
coefficients are variant at different levels. Wang presented the improved neighboring coefficients 
denoising after studying the regularity of wavelet coefficients dependency [28], to resolve the problem 
of constant neighborhood. The formula of incorporating neighboring coefficients is as Equation (18): 

 (18)

where j is the level of multiwavelet decomposition, the length of neighboring window is 2N + 1, N0 is a 
constant, it should be selected according to the signal duration of features and the support of wavelet filters. 

The INC algorithm is shown in Figure 4. It is obvious that the presented method incorporates more 
coefficients at a low level while less coefficients at a high level. The threshold of INC is shown in 
Equation (19):  
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where λj = 2lognj, α is an adjusting coefficient of the threshold which is determined by the length of the 
neighbors, n is the length of measured signals. The threshold became term-by-term soft threshold when 
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Figure 4. The algorithm of improved neighboring coefficients. 

3.2. The Proposed Method Using Customized Multiwavelets and the Improved Neighboring Coefficients 

In this paper, redundant symmetric lifting scheme is applied to construct customized multiwavelets 
with specified properties for specific signals. Then the lifting coefficients of Equation (13) must be 
underdetermined to ensure there are free parameters in these equations. Generally for a fixed vanishing 
moment p, the more functions are used for the lifting, the longer support of the obtained multiwavelet 
is. And more functions mean a greater freedom in lifting. However, longer support will reduce the 
localization of multiwavelet. Therefore, a tradeoff has to be chosen between vanishing moment and 
numbers of functions used to do lifting.  

We construct new multiwavelet starting from Hermite splines [19] as the original scaling function. 
In dynamic signals, impulses are always the fault symptoms of defected components and Hermite 
spline multiwavelet is very similar to impulse components. Multiscaling functions and multiwavelet 
functions of Hermite spline multiwavelet are shown in Figure 5. There is more freedom and flexibility 
to construct new multiwavelets with prescribed properties because of the simple waveform of Hermite 
splines. The proposed methods can act as an effective and promising tool for fault detections of 
planetary gears.  
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Figure 5. Hermite spline multiscaling functions and multiwavelet functions. (a) Multiscaling 
functions. (b) Multiwavelet functions. 

There are Nf = (p´ – p) – Rank(MB) free parameters, which are vital for the redundant symmetric 
lifting scheme. The customized multiwavelet construction is performed by the optimization of the  
free parameters.  

Kurtosis is widely used for fault feature detections because it is sensitive to sharp variant structures, 
such as impulses. The bigger the impulses in signals, the larger the kurtosis [35]. Furthermore, it is a 
dimensionless parameter, which is independent of the amplitudes of the signal. The definition of 
kurtosis is shown in Equation (20):  

 

(20)

where xi is the ith point of the signal x, x  is the mean value of x, n is the signal length of x, σ is the 
standard deviation of x. The forth moment of x enables the numerator of Kp increases quickly while the 
denominator increases slowly when incipient faults occurred. Therefore, kurtosis is sensitive for 
incipient faults with less impulses but descending when impulses are more because of the fault 
exacerbation. More impulses mean a distinct periodicity. Therefore, kurtosis cannot accurately depict 
the real signal trend in the detection of periodic shock impulses. 

In dynamic response signals, the mechanical fault often expresses as periodic impact features which 
can be detected through the envelope spectrum of the vibration signal. Hence, the envelope spectrum 
entropy is selected as an evaluation indicator to obtain the customized multiwavelets. 

4

1
4

( )
n

i
i

P

x x
K

nσ
=

−
=
∑

0 1 2 3 4 5 6 7

-0.4

-0.3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6

0.1
0.2 
0.3
0.4
0.5
0.6 
0.7 
0.8
0.9 

1

0 1 2 3 4 5 6

-0.1

-0.05

0

0.05

0.1

1ϕ 2ϕ

1ψ  2ψ

(a) 

(b) 

0 1 2 3 4 5 6 7

-1 

-0.5 

0

0.5 

1



Sensors 2013, 13 1195 
 

 

Assume {ci}i = 1,…,M is the class of the normalized coefficients. When it is divided by 
1

M
ii

c
=∑ ,  

{di}i = 1,…,M is obtained: 

 (21)

The multiwavelet entropy Enmwt is calculated by: 

 (22)

According to the information theory, the most uncertain probability distribution has the maximum 
entropy value, and the entropy value reflects the uniformity of the probability distribution.  
So Enmwt provides the information about the definite degree of the envelope spectrum. The smaller the 
value of the envelope spectrum entropy Enmwt is, the more distinct periodic impact features will be. 
Our objective is to find the optimal multiwavelets by finding the minimum value of envelope spectrum 
entropy Enmwt. 

In order to improve the limitation of kurtosis, the proposed method chooses KE, the quotient of 
kurtosis and entropy, as the performance measurement of the lifting scheme and optimized the lifting 
coefficients with a genetic algorithm to maximize KE of the detail coefficients: 

 (23) 

Genetic algorithms (GAs) are based on the idea of natural selection. The major advantages are their 
flexibility and robustness as an adaptive global search method. GAs can deal with highly nonlinear 
problems and non-differentiable functions, as well as functions with multiple local optima. They are 
parallel implementation in nature. Thus, they are utilized as the tool to optimize free parameters. 
According to our experimental experience, GA parameters are set as follows: arithmetic crossover and 
non-uniform mutation operators are adopted, the range of the parameter is chosen to be [–3,3] except 0, the 
population scale is set to 50, the number of iteration to 30, the probability of crossover to 0.6 and the 
probability of mutation to 0.05. 

Figure 6 shows the flow chart of the proposed method using customized multiwavelets and the 
improved neighboring coefficients (INC). The steps are as follows:  

(1) Preprocessing method is performed to translate the one-stream input signal into multiple streams. 
(2) The multiple streams are decomposed by using the customized multiwavelets. 
(3) Apply INC to shrink the multiwavelet coefficients.  
(4) The thresholded multiwavelet coefficients are reconstructed.  
(5) Post-processing method is performed to translate the multiple streams into one-stream.  

The denoising result is obtained to detect the fault features. 

1

M
j j ii

d c c
=

= ∑

1

ln
M

mwt i i
i

En d d
=

= −∑

P

mwt

KKE
En

=



Sensors 2013, 13 1196 
 

 

Figure 6. The flow chart of the proposed method. 

Figure 7 shows the flow chart of the customized multiwavelets. First, with the given vanishing 
moment p, the translations of Ф and ψ are selected using the “symmetric selection” method. Second, 
assign the values to free parameters and solve the lifting coefficients equations. Third, optimize the free 
parameters using genetic algorithm. Finally, obtain the optimal symmetric biorthogonal multiwavelet.  

In the process of the customized multiwavelet cnostructions, optimization is an important step for 
modifying the coefficients to match the signal. Suppose the free parameters are {f1,f2,…fNf}. The 
process of the optimization using GA is shown as below:  

(1) Initialize the free parameters . 

(2) Substitute  into matrix  and make the matrix satisfy . 

(3) Compute the lifting coefficients and get  and . 
(4) Decompose the signal with new multiwavelet. 
(5) Compute  of the detail coefficients and compare it with the maximum value. 
(6) Generate the more optimal values of the free parameters and return to step 2), otherwise finish 

the computation. 
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Figure 7. The flow chart of the customized multiwavelets. 

 

4. Experimental Results  

4.1. Experimental Setup and Data Acquisition 

Planetary gearboxes play an important role in the transmission train of a satellite communication 
antenna or a telemetry, tracking, and command (TT&C) antenna for the aerospace industry. The 
aerospace measurement ship is mainly responsible for the maritime measurement and control, 
communication, salvage and recovery of spacecrafts. Satellite communication antennas (SCA) are 
critical devices of a measurement ship to support voice, data, fax and video integration services. An 
SCA comprises three axes, which are the azimuth axis, the pitching axis and the crossing axis. 
Searching satellite is that makes an SCA circumrotate the azimuth axis, the pitching axis and the 
crossing axis with controllers to change these axis angles, so the antenna can point itself to different 
satellite in the light of demands. If the SCA direction departs from a satellite or the satellite makes an 
excursion, it can adjust the SCA to track the satellite signal automatically.  

Figure 8 shows the transmission mechanism of the azimuth axis in an SCA. The azimuth axis is 
fixed, a two-stage gearbox rotates around the azimuth axis. A double-motor dispelling clearance 
transmission train is designed to raise the transmission accuracy. Each transmission train consists of a 
tachometer generator, a brake, a motor, a planetary gearbox and a two-stage fixed-shaft gearbox. 
Planetary gearboxes inevitably generate various faults because of chronically running under such 
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complex and severe conditions as heavy load, ocean wave and tide, fatigue and corrosion. As the core 
components in the transmission train of an SCA, the performance of planetary gearboxes directly 
influences the success or failure of these tasks for an SCA.  

Figure 8. The transmission mechanism of the azimuth axis. 

 

The testing framework is shown in Figure 9 when a measurement ship was sailing at sea. The left 
transmission train of the azimuth axis had a slightly abnormal sound when the measurement ship was 
sailing. The operators replace the defective planetary gearbox with a normal one. Vibration signals are 
measured before and after the replacement of the planetary gearboxes. Equipment operators controlled 
the SCA to search and track satellite by using the manual mode. We collected the vibration signals of 
the transmission trains of the azimuth axis, the pitching axis and the crossing axis using internal 
electronics piezoelectric (ICP) acceleration sensors. The parameters of these sensors are shown in 
Table 1. X and Y represented the horizontal and vertical measurement points of the planetary gearbox 
in the left transmission train of the azimuth axis, respectively. The vibration signals were measured 
using Sony EX data acquisition system when the SCA was running. A four-order elliptic filter with an 
anti-aliasing filtering up to 5,500 Hz was adopted. The drive motor was a permanent magnet 
synchronous AC motor, which was running at two different motor speeds, 150 r/m and  
255 r/m. The motor speeds were measured by the tachometer generator at the end of the AC motors.  
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Figure 9. The testing framework of the SCA of a measurement ship. 

 

Table 1. The parameters of acceleration sensors. 

Model 
Sensitivity 

(±10%) 
Measurement 

Range 
Frequency Range 

(±10%) 
Non-Linerity 

Sensing 
Element 

333B32 100 mv/g ±50,g pk 0.5–3,000 Hz ≤1% Caremic 

The planetary gearbox of the azimuth axis transmission train is a two-stage gearbox. The carrier of 
the first stage works as the input shaft of the second stage. The parameters of the planetary gearbox are 
shown in Table 2. The number of planet gears in each stage is three. 

Table 2. The parameters of the planetary gearbox. 

Type The first stage 
Sun gear tooth number 12 

Planet gear tooth number 36 
Ring gear tooth number 84 

PLS142-32 The second stage 
Sun gear tooth number 28 

Planet gear tooth number 28 
Ring gear tooth number 84 

With the special gear transmission structure, the transmission ratio is calculated using the primary 
principle of the conversion mechanism method. The first stage in the planetary gearbox has a 
transmission ratio 8. The meshing frequency of the first stage is calculated by using Equation (24):  

 (24)

where fmesh represents the meshing frequency of the first stage, Nin represents the input speed of the sun 
gear, Nout represents the output speed of the carrier, Zsun is the teeth number of the sun gear. According 
to these parameters, the meshing frequency of the first stage is about 10.5 times of the input speed of fin. 

4.2. The Experimental Results of the Normal Planetary Gearbox 

Vibration signals of a normal planetary gearbox in the left transmission train of the azimuth axis 
were acquired. They are applied to verify the effectiveness of the propose method. The sampling 
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frequency and signal length were 12.8 kHz and 5,760, respectively. The rotating speed of the motor 
was 150 r/m. The signal in time domain is shown in Figure 10(a), the peak to peak value of the signal 
is about 0.15 g. Its FFT spectrum is plotted in Figure 10(b), the frequency components are abundant. 
Evident rotating frequencies, meshing frequencies and sidebands relevant to gearbox faults can hardly 
be identified in the spectrum.  

Figure 10. (a) The vibration signal of the normal planetary gearbox. (b) The FFT spectrum. 

 

The proposed method chose the customized multiwavelet by using redundant symmetric lifting 
scheme and the optimal threshold by using INC and it was applied to the measured signal. The signal 
was decomposed into four levels. As shown in Figure 11(a), the proposed method can depict the 
distinct features with a period of 0.039 s, that is 25.64 Hz. It is about 10.5 times of the rotation speed 
of the sun gear in the first stage, which is 2.5 Hz. Figure 11(b) displays the denoising result using 
customized multiwavelet and conventional neighbouring coefficients with an invariant size of neighbors at 
different decomposition levels. The impulses between 0.16 s and 0.3 s are very weak, and are nearly  
“over-killed” by the chosen threshold. In addition, unrelated features denoted in the ellipses appear in 
the denoising result, and these features may influence the validity of fault feature detections. Figure 12(a,b) 
are the analysis results of GHM multiwavelet denoising using INC and NC, respectively. The denoising 
results of these two methods are similar, only strong impulses can be detected as shown in the triangles and 
several singular points appear during 0.02 s and 0.1 s. The impulses in the denoising results are not 
periodic, which affect the correct fault detections of planetary gearboxes.  
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Figure 11. The denoising results of the normal planetary gearbox signal using the customized 
multiwavelet. (a) The proposed method (b) Conventional neighboring coefficients. 

 

Figure 12. The denoising results of the normal planetary gearbox signal using GHM 
multiwavelet. (a) Improved neighboring coefficients. (b) Conventional neighboring 
coefficients. 
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According to the kinetic principles of planetary gearboxes, both contact conditions by means of rolling 
and sliding exist on the gear tooth when meshing. The force of sliding friction changed its direction at 
the meshing points, which caused the shocking line impacts. Moreover, when each pair of gear tooth 
got in or out of contact, the load and deformation of each gear increased or decreased suddenly, 
causing the meshing shocks. The dynamic load consisted of shocking line impacts and meshing 
shocks, which caused the meshing vibration of gears. Therefore, the meshing vibration in Figure 11(a) 
is the inherent dynamic characteristics of gear meshing, it is not relevant with gear defects.  

Figure 13. The analyzed results of the normal planetary gearbox signal using spectral 
kurtosis. (a) The Kurtogram. (b) The purified signal. (c) The envelope spectrum  
(low-frequency band).  

 
The Kurtogram [36,37] and the resulting signals of spectral kurtosis are illustrated in Figure 13.  

The maximum kurtosis is 2.3 at level 4, the central frequency is 1,000 Hz and the bandwidth is 400 Hz.  
The envelope of the filtered signal and its FFT spectrum are shown in Figure 13(b,c), respectively. 
Figure 13(c) displays a dominant frequency 25.1 Hz, which is close to the meshing frequency of the first 
stage in the planetary gearbox. However, spectral kurtosis only detects strong impulses between 0.1 s 
and 0.35 s in the envelope of the filtered signal, while the weak ones are immersed in strong noises.  
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4.3. The Analysis Results of the Defective Planetary Gearbox 

The left transmission train of the azimuth axis had a slight abnormal sound when the measurement 
ship was sailing in the sea. The vibration signals were measured at a sampling frequency of 12.8 kHz 
from the measuring points on the planetary gearbox by using ICP acceleration sensors. The AC motor 
was running at 255 r/m. The signal in time domain is shown in Figure 14(a), periodic transient 
impulses appear in the signal. The peak-to-peak value is about 0.4 g, which is significantly higher than 
0.15 g of the normal planetary gearbox. Its FFT spectrum is shown in Figure 14(b), its components 
mainly distribute at 500~3,000 Hz. No distinct fault features can be seen in the spectrum. 

Figure 14. (a) The vibration signal of the defective planetary gearbox. (b) The FFT spectrum. 

 

Figure 15. The denoising results of the vibration signal using the proposed method. 
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Figure 16. The denoising results of the planetary gearbox signal. (a) Customized 
multiwavelet and NC. (b) GHM multiwavelet + INC. (c) GHM multiwavelet + NC.  

 

The denoising result of the proposed method is shown in Figure 15. During a course of one 
revolution of the sun gear, three pairs of shock impulses A, B and C occur alternatively. Because there 
are three planet gears in the first stage of the planetary gearbox. These features indicates that there are 
several defects in the sun gear. The average time interval between the two neighboring shock impulses in 
each pair is 0.023 s, corresponding to 43 Hz. It’s about 10.5 times of the rotating frequency of the sun gear 
in the first stage. The frequency 43 Hz is close to the meshing frequency, which suggests that the shock 
impulses may be caused by defects on two neighboring gear tooth of the sun gear in the first stage.  

Figure 16(a,b,c) display the denoising results of customized multiwavelet using NC, GHM 
multiwavelet using INC and NC, respectively. As shown in Figure 16(a), periodic impulses can be 
accurately detected, while the weak impulse at 0.16 s are “over-killed” by the chosen threshold.  
Figure 16(b,c) display similar denoising results. Strong impulses are detected while weak fault features 
are “over-killed”. Moreover, GHM multiwavelet cannot accurately separate fault features and the 
noises are not eliminated completely. The planetary gearbox was disassembled. Figure 17 displays that 
four incipient pittings denoted as the arrows appear in three regions of 2 × 10 mm2. The field inspection 
verifies the fault diagnosis conclusion. 
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Figure 17. The defects in the sun gear of the planetary gearbox. 

Figure 18. The analyzed results of the defective planetary gearbox signal using  
spectral kurtosis. (a) The Kurtogram. (b) The purified signal. (c) The envelop spectrum  
(low-frequency band). 
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The Kurtogram and the resulting signals of spectral kurtosis are illustrated in Figure 18, the 
maximum kurtosis is 11.5 at level 3, the central frequency is 2,000 Hz and the bandwidth is 800 Hz. 
The envelope of the filtering signal and its FFT spectrum are shown in Figure 18(b,c), respectively. 
Only strong impulses could be detected in the envelope of the filtered signal. Figure 18(c) displays a 
dominant frequency 39.14 Hz, which has a significantly difference with 43 Hz, the meshing frequency 
of the first stage in the planetary gearbox.  

4.4. Results and Discussion  

(1) From the planetary gearbox fault detections, it can be seen that multiwavelet denoising methods 
can effectively eliminate noise and improve the signal-to-noise ratio so as to outstand the fault 
features. Besides, the denoising methods using customized multiwavelets [shown in Figures 11(b) and 
16(a)] have a better result than the denoising methods using GHM multiwavelet. However, only the 
proposed method using the customized multiwavelets and the improved neighboring coefficients 
[shown in Figures 11(a) and 15] could effectively enhance the fault features. Thus, the appropriate 
multiwavelet functions for feature separation and the optimal threshold and length of neighbors for 
denoising are both important, neither of them could be dispensed with in planetary gearbox  
fault detections. 

(2) The computing times of these methods in planetary gearbox fault detections are listed in  
Table 3. All the tests of time consumption are carried out and recorded in Matlab software with the 
same computer platform of Intel Pentium Dual CPU E5200 @2.5 GHz and DDR2 memory 2 G. As it 
is known that every coin has two sides, the optimization of the customized multiwavelets has to take 
some time for the effective planetary gearbox fault detections. For example, a signal of length 4096 
has to take about 2 minutes using the proposed method. In practice, the customized multiwavelets are 
suitable for a certain kind of fault. For example, the customized multiwavelets proposed in this paper 
are effective for detecting the pitting faults of other gears in planetary gearboxes, without constructing 
customized multiwavelets again. Therefore, the calculation efficiency of the proposed method is 
similar to other denoising methods using standard multiwavelets after the customized multiwavelets 
have been constructed. 

Table 3. The computing time of the methods in planetary gearbox fault detections. 

Method 
Time in healthy 

planetary gearbox (s) 
(Signal length 5760) 

Time in defective 
planetary gearbox (s) 
(Signal length 5760) 

Customized multiwavelets with INC 156.05 (150.81) 156.05 (150.81) 
Customized multiwavelet with NC 155.18 (150.81) 155.18 (150.81) 

GHM multiwavelet with INC  3.79 3.79 
GHM multiwavelet with NC 3.71 3.71 
The time in italics represents the cost for the optimization of the customized multiwavelets. 

(3) As shown in Figure 14, the denoising result in time domain could accurately represent the shock 
impulses caused by the pittings of the sun gear. Its Fourier spectrum is shown in Figure 19, the 
frequency components mainly distribute at 1,000–3,000 Hz. The rotating frequency or the meshing 
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frequency and their harmonics of the planetary gearbox cannot be detected in the spectrum. The 
spectrum is not so distinct as the denoising result in the time domain of Figure 14. Besides, the 
spectrums of denoising results using other methods are similar to the spectrum in Figure 19. Therefore, 
FFT is not effective to detect the pittings of the sun gear in the planetary gearbox. 

Figure 19. The Fourier spectrum of the denoising result using the proposed method. 

 
5. Conclusions 

As key components of the transmission train, planetary gearboxes play an important role in 
guaranteeing the normal operation of the satellite communication antenna. With their special gear 
transmission structure, planetary gearboxes exhibit complicated dynamic responses, which increase the 
difficulty of fault feature extractions for planetary gearboxes. It is proved that the customized 
multiwavelets which are similar to fault features and have excellent properties can achieve a good 
result in fault feature detections. The redundant symmetric lifting scheme is applied to produce 
customized multiwavelet functions. Moreover, the quotient of kurtosis and entropy is proposed to 
choose the optimal multiwavelets. On the basis of the local concentrated energy, the improved 
neighboring coefficients choose variant thresholds and sizes of neighbors at different decomposition 
levels. The proposed method incorporated customized multiwavelets and INC threshold. It was applied 
to the planetary gearbox fault detections. Experimental results showed that the proposed method could 
detect the pitting fault features on two neighboring teeth of the sun gear in a planetary gearbox.  
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