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Abstract: Wine quality is related to its intrinsic visual, taste, or aroma characteristics and 
is reflected in the price paid for that wine. One of the most important wine faults is the 
excessive concentration of acetic acid which can cause a wine to take on vinegar aromas 
and reduce its varietal character. Thereby it is very important for the wine industry to have 
methods, like electronic noses, for real-time monitoring the excessive concentration of 
acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor 
array electronic noses is a difficult challenge due to the masking effect of ethanol. In this 
work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous 
ethanol solution at 10% v/v) we use a detection unit which consists of a commercial 
electronic nose and a HSS32 auto sampler, in combination with a neural network classifier 
(MLP). To find the characteristic vector representative of the sample that we want to 
classify, first we select the sensors, and the section of the sensors response curves, where 
the probability of detecting the presence of acetic acid will be higher, and then we apply 
Principal Component Analysis (PCA) such that each sensor response curve is represented 
by the coefficients of its first principal components. Results show that the PEN3 electronic 
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nose is able to detect and discriminate wine samples doped with acetic acid in concentrations 
equal or greater than 2 g/L. 

Keywords: electronic nose; neural network; principal component analysis 
 

1. Introduction 

Poor winemaking practices and bad storage conditions usually lead to wine spoilage, which can 
result in an unpleasant characteristic of a wine, known as a wine fault or wine defect. Among the 
causes of this wine defects we could cite, for instance, excessive or insufficient exposure of the wine to 
oxygen or to sulphur, bad hygiene conditions at the winery, overextended maceration of the wine, 
faulty fining, filtering and stabilization of the wine, the use of dirty oak barrels, over extended barrel 
aging or the use of poor quality corks. Besides, there are other factors outside the winery that can 
contribute to the wine spoilage, for example bad storage conditions, or exposure to excessive 
temperature fluctuations [1]. 

There are a lot of compounds that can cause wine defects, most of which are naturally present  
in the wine itself, but at insufficient concentrations to be considered as an unpleasant characteristic.  
In fact, these concentrations may be responsible for the positive characters of a wine. However, the 
excessive concentration of these compounds can obscure the flavours and aromas that the wine should 
be expressing, reducing the quality of the wine and making it less appealing, even sometimes 
undrinkable [2]. 

One of the most common wine faults is the excessive volatile acidity (VA), typically acetic acid. 
Acetic acid in wine can be contributed by many wine spoilage yeasts and bacteria and can cause a 
wine to take on aromas of vinegar, salad dressing, ketchup and barbeque sauce while reducing varietal 
character. VA is detectable at the 0.6–0.9 g/L level and concentrations greater than 1.2–1.3 g/L can 
result unpleasant. Therefore, it is very important for the wine industry to find a fast analytical method, 
like an electronic nose, for real-time monitoring of the concentration of acetic acid in wines. However, 
the analysis of foodstuffs with semiconductor-based electronic noses is known to be a difficult 
challenge due to the non specificity of the sensor arrays and principally to the presence of high ethanol 
and water concentrations in the samples. Indeed, in a wine sample, the aroma compounds amount only 
to about 1 g/L, while water and ethanol amount to about 900 and 100 g/L, respectively [3]. Water 
contributes to the shortening of the sensor span life and increases the signal drift with time, while 
ethanol masks the presence of other volatile compounds [4]. 

Although alcoholic beverage discrimination using electronic noses has been already reported in the 
scientific literature, it is believed that this discrimination most often reflects mere variations in the 
sample alcohol content and not true differences in the aroma profiles [5–8]. For this reason, in this 
work we use synthetic matrices with fixed alcohol content. Specifically, we intend to study the acetic 
acid detection threshold of the PEN3 electronic nose in synthetic wine samples [aqueous ethanol 
solution at 10% (v/v)]. 

In other works, authors have argued that electronic noses in many real applications may encounter 
bulk compounds that, only owing to their high concentrations, interfere with the detection of target 
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solutes, as is the case for water (humidity) and ethanol in foodstuffs, and propose ingenious solutions 
for the requirements of each specific application. Examples of these techniques can be found in [9] 
where the authors used Solid Phase Micro Extraction in combination with an electronic nose, in [10] 
where the volatiles were desorbed from a Tenax TA, and in [11] where a heated preconcentration tube 
was used as a dispersive element for a QCM array. In [12], back-flush gas chromatography was used to 
remove water and ethanol from the other volatiles, while pervoration was suggested as a sample 
pretreatment in [13], and finally a chromatograph with an SAW sensor as the detector was used in the 
zNose “Electronic nose” [14]. 

These arrangements make fuzzier the border between classical analytical systems, electronic nose 
technology, and detectors for specific substance classes, or even single compounds. Though sensor-based 
improvements of the selectivity are obtained with those systems, they all have the disadvantage of an 
increase in setup complexity, in analysis time and in cost, which are the real motivations of the 
electronic noses. 

The main goal of this work is to test the viability of the use of a basic electronic nose (a sensor array 
without special arrangements) to detect excessive concentrations of acetic acid in synthetic wine 
samples. In Section 2 we describe the methodology, the electronic nose, and the characteristics of the 
autosampler used to take the measurements. Besides, a brief description of how principal component 
analysis and neural networks are used has been included. In Section 3 we present the results produced 
by our system when tested using aqueous ethanol solutions without acetic acid and with acetic acid in 
different concentrations. Finally, in Section 4 the conclusions of the present work are shown. 

2. Methodology 

In this work we have used a Portable electronic nose (PEN3) in combination with a Headspace 
Autosampler HSS32 (Figure 1), both made by Win Muster Airsense (WMA) Analytics Inc. (Schwerin, 
Germany). This system has been used for different tasks, for example to characterize peach cultivars 
and to monitor their ripening stage [15], to analyze volatile emissions from wastewater [16] and to 
monitor storage shelf life of tomatoes [17]. 

Figure 1. Airsense HSS32 autosampler connected to the portable electronic nose PEN3. 
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The portable electronic nose (PEN) consists of a sampling apparatus, a detector unit containing the 
array of sensors, and a pattern recognition software (Win Muster v.1.6) for data recording and 
elaboration. The sensor array is composed of 10 metal oxide semiconductor (MOS) type chemical 
sensors whose characteristics can be observed in Table 1. The sensor response is expressed as 
resistivity (Ohm) and relies on changes in conductivity induced by the adsorption of molecules in the 
gas phase, and on subsequent surface reactions. 

Table 1. Description of the sensors installed in the portable electronic nose PEN3 [15].  

Number Sensor name General description Reference 
1 W1S Aromatic compounds Toluene, 10 mg·kg−1 

2 W5S Very sensitive, broad range sensitivity, react on nitrogen 
oxides, very sensitive with negative signal 

NO2, 1 mg·kg−1 

3 W3C Ammonia, used as sensor for aromatic compounds Benzene, 10 mg·kg−1 
4 W6S Mainly hidrogen, selectively H2, 100 µg·kg−1 
5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 mg·kg−1 
6 W1S Sensitive to methane (environment) ca. 10 mg·kg−1. Broad 

range, similar to n. 8 
CH3, 100 mg·kg−1 

7 W1W Reacts on sulphur compounds, H2S 0.1 mg·kg−1. Otherwise 
sensitive to many terpenes and sulphur organic compounds, 
which are important for smell, limonene, pyrazine 

H2S, 1 mg·kg−1 

8 W2S Detect alcohols, partially aromatic compounds, broad range CO, 100 mg·kg−1 
9 W2W Aromatic compounds, sulphur organic compounds H2S, 1 mg·kg−1 
10 W3S Reacts on high concentration >100 mg·kg−1, sometime very 

selective (methane) 
CH3, 10 CH3,  
100 mg·kg−1 

Measurements are taken using the dynamic headspace technique [18]. In dynamic headspace 
sampling, the headspace of the vials is continuously swept into the detector by a clean purge flow for 
analysis. This way, the gaseous analyte concentration immediately above the liquid phase is kept as 
low as possible to increase the evaporation rate. This evaporation rate depends on the surface area, the 
analyte surface concentration, the analyte volatility and the sample temperature. 

The measurement phase of the electronic nose is divided into two stages, injection and cleaning. In 
the injection phase the volatiles of the sample are transported to the sensor chamber to be analyzed by 
the array of sensors, and in the cleaning phase all traces of volatiles must be removed of the electronic 
nose to avoid interference with the next measurement. In Figure 2, we can observe the gas flow in each 
stage. In the injection phase, pump 1 sucks the sample gas compounds through the sensor array and 
pump 2 transfers filtered reference air into the sensor array. This arrangement allows dilution and 
avoids saturation of the sensors due to, for example, high concentrations of ethanol. In the cleaning 
phase, the cleaning air flow of pump 2 is used to rinse the system. Due to the higher flow rate of  
pump 2, the original gas flow direction at the inlet is inverted. 



Sensors 2013, 13 212 
 

 

Figure 2. Schematic diagrams of the gas flow of PEN3 during the electronic nose measurements. 

 

The Airsense HSS32 headspace sampler is a dedicated sampling unit specially modified by 
Airsense in order to be used with the dynamic headspace technique. The sampler provides automatic 
analysis of up to 32 samples within the temperature range of ambient to T = 180 °C. Samples are 
conditioned inside sealed 10 mL glass vials. After that, the vials are thermostated, the injection needles 
are driven through the septum into the vial and, using the e-nose as detector, take a sample from the 
headspace into the sensor array. The whole system is controlled by the WinMuster software. 

There are a lot of parameters that have to be adjusted in order to find a suitable response of the 
electronic nose. The most important ones are the injection time, the flush or cleaning time, the 
injection flows of the sampled gas, the zerogas and the waste gas for the PEN3, and the temperature of 
the vials for the autosampler.  

After numerous tests, measurements were taken with the following values of the adjustable 
parameters of the PEN electronic nose and the auto sampler: 

 Injection sampled gas: 20 mL/min. 
 Zerogas flow: 380 mL/min. 
 Waste flow: 400 mL/min. 
 Injection time: 3 s. 
 Cleaning time: 20 min. 
 Vials temperature: 40 °C. 

As we showed above the electronic nose contains 10 sensors, but due to “the curse of the 
dimensionality”, a 10-dimensional characteristic vector representative of the samples can be very large 
for the dimensions of our prototype set. Therefore, we need to reduce the dimensionality of the initial 
characteristic vector. One possible way could be to apply techniques of feature selection or extraction, 
such as principal component analysis, independent component analysis or genetic algorithms. 
However, in this work, we decided to use a priori knowledge of the problem at issue by previously 
determining the sensors that better responded to the presence of acetic acid. For this task, we used 
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synthetic wine samples doped with a very high concentration of acetic acid, and analyzed the response 
curve of the sensors, particularly the sections where the response to acetic acid was more significant. 

In Figures 3 and 4 we can observe the response curves of the PEN3 sensors for the synthetic wine 
samples, with and without acetic acid. In the acetic acid case the concentration is 30 g/L, much higher 
than the actual concentrations (around 1 g/L). In this way, we intend to check by visual inspection of 
the sensors response curves which ones are the best to detect the presence of acetic acid in the solutions. 

Figure 3. Sensor 1–6 response curves of the PEN3 electronic nose. Black: 10% aqueous 
ethanol solution. Red: 10% aqueous ethanol solution doped with acetic acid 30 g/L. 
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Figure 4. Sensor 7–10 response curves of the PEN3 electronic nose. Black: 10% aqueous 
ethanol solution. Red: 10% aqueous ethanol solution doped with acetic acid 30 g/L. 

 

As can be observed in Figures 3 and 4, the probability of detecting the presence of acetic acid will 
be higher by using sensors 1 and 2. Furthermore, from Figure 5 we conclude that the more significant 
differences in the sensors responses happen between 6 and 24 s. 

Figure 5. Response curves of the sensors 1 and 2 in the interval of 6 to 24 s. 
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With this information, now the objective is to detect the presence of acetic in much lower 
concentrations (actual cases) where the differences of the sensor responses are no so clear. To achieve 
that, we firstly characterized the sensor curve using principal component analysis (PCA) [19], and later 
we used a multilayer perceptron (MLP) neural network to classify the responses of the sensor, trying to 
determine the presence and the concentration of acetic acid. 

2.1. Principal Component Analysis 

During the measurement time of the electronic nose, the sampling period is 0.4 s, so each response 
curve at the interval of interest (6–24 s) is composed of 44 points. A lot of features have been proposed 
for the characterization of response curves of sensors: maximum, minimum, slope, average, etc. In this 
work, we propose the use of principal component analysis to reduce the dimensionality of the  
44-dimensional vector that initially characterizes the sensor response. 

The original purpose of PCA was to reduce a large number of variables to a much smaller number 
of principal components (PCs), whilst retaining as much as possible the variation in the original 
variables. To do PCA of the response curves of Figure 5, we took 50 measurements, 25 for the 
synthetic wine samples doped with 30 g/L of acetic acid and 25 for the synthetic wine samples without 
acetic acid. If we only consider the sensor 1 and sensor 2 response curves at the interval of 6 to 24 s, 
we have a data matrix of 100 rows, (corresponding to 50 measurements of the sensor 1 and sensor 2), 
and 44 columns. Doing PCA of the data matrix we obtained the principal components (the autovectors 
of the covariance matrix). The first four principal components can be observed in Figure 6, and 
according to PCA, each initial response curve of Figure 5 can be decomposed as a linear combination 
of these autovectors or basis functions. The coefficients of the linear combination form the 
characteristic vector representative of each response curve. 

Figure 6. First four principal components of the PCA. 

 

In Table 2, we can observe the proportion of the variance of the first four principal components. In 
this case, only the first PC accumulates 96.5% of the initial variance, and therefore we only used this 
component to characterize each response curve. This allows us, hereinafter, to represent each 
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electronic nose measure by a two-dimensional characteristic vector that is composed of the projections 
of sensor1 and sensor2 response curves onto the first principal component. 

Table 2. Importance of the first four components. 

 Standard deviation Proportion of Variance 
PC1 1.34 0.965 
PC2 0.253 0.034 
PC3 0.018 0.00018 
PC4 0.010 5.47 e-5 

2.2. Neural Network Usage 

To resolve the classification problem we used a classical one hidden layer perceptron trained with 
the package Amore of the free software environment for statistical computing and graphics R (The R 
Project for Statistical Computing) [20]. 

In order to assess the performance of our neural networks models in practice, we used k-fold  
cross-validation method [21]. One round of k-fold cross-validation involves partitioning our sample of 
data into k complementary subsets, from which k-1 subsamples are used to fit our predictive model, 
and the other subsample (the test set) is used to test its performance. Besides, to achieve a good 
generalization capability, the set used for adjusting the neural networks is divided into a training set 
and a validation set. The training set is used to train the neural networks models and the validation set 
is used to stop training when a minimum of the error over this set is reached. For each experiment we 
used one and two hidden layers perceptrons where the number of neurons of the hidden layer varied 
from 20 to 50 neurons in steps of 5 in the one-hidden-layer case and from 5 to 20 in steps of 5 in the 
two-hidden-layers case. To avoid local minimum each training process was repeated 10 times 
randomizing the initial weights. Finally, from all this experiments, the neural network model with the 
minimum error over the validation set was returned and its performance was measured calculating the 
error over the test set. 

Finally, to reduce variability, multiple rounds of cross-validation were performed using different 
partitions, and the test results were averaged over the rounds. 

3. Results 

To find the acetic acid detection threshold, we prepared five synthetic wine samples and we doped 
four of them with acetic acid in different concentrations: 1, 2, 3 and 4 g/L respectively. Then we took 
ten measurements for each solution with our auto sampler and PEN3 electronic nose.  

Moreover, given that the big problems working with electronic noses are reproducibility and 
repeatability, measures were taken in different days and, especially, prototypes of the different  
classes were taken alternatively. If we don’t take the measurements in this way, the separability of 
classes could be due to sensors drift or instability or other causes, different from the concentration of 
acetic acid. 

Finally, we had 50 prototypes and five classes and, as we concluded in the previous sections, each 
prototype is characterized by a two dimensional vector composed of the projections of sensors 1 and 2 
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responses onto the first PC. So, in this case, we used one and two hidden layers neural networks with 
two input neurons and five output neurons. 

In Figure 7, a two-dimensional plot of the 50 prototypes can be observed. From this figure we must 
expect some misclassifications between the classes “acetic-0 g/L” and “acetic-1 g/L” and good 
classification results for the other classes. 

Figure 7. Two dimensional representation of the classification problem. 

 

To estimate classification results, 5-fold cross validation method was used, and 10 rounds of  
cross-validation were performed, so we tested 50 neural network models. The box plot of the error 
over the test set of the 50 simulations can be summarized in Figure 8. The best results were obtained 
with networks with one hidden layer, and the mean of the number of neurons in the hidden layer, 
considering the 50 best networks (5 k-fold and 10 rounds of cross validation), were 29 neurons. 

Figure 8. Boxplot of the error calculated over the test sets, considering the 50 simulations 
generated applying 10 rounds of 5-fold cross-validation over the 50 prototypes. 
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In Table 3, the confusion matrix of the 50 neural networks generated applying 10 rounds of 5-fold 
cross-validation is shown. Each network was tested over one test set of 10 prototypes, so we made  
500 individual classifications. As might be expected, observing Figure 8, almost all misclassifications 
happen between the classes “acetic-0 g/L” and “acetic-1 g/L”. On the other hand, correct 
classifications for the other classes are over 96%. 

Table 3. Confusion matrix, calculated with the 50 simulations generated applying 10 rounds 
of 5-fold cross-validation over the 50 prototypes. 

 Acet0 Acet1 Acet2 Acet3 Acet4 
Acet0 69 31 0 0 0 
Acet1 17 81 2 0 0 
Acet2 2 0 98 0 0 
Acet3 0 0 0 96 4 
Acet4 0 0 0 0 100 

In Table 4 and Figure 9 we can observe the classification results and box plot when removing the 
prototypes of acetic-1 g/L class from the prototypes set. In this case, networks had two input and four 
output neurons, and we made 50 simulations applying 10 rounds of 5-fold cross-validation over the  
40 prototypes. Each network was tested with one test set of 8 prototypes, so we made 400 individual 
classifications. As can be observed, correct classification results are over 98%.  

Table 4. Confusion matrix, calculated with the 50 simulations generated applying 10 rounds 
of 5-fold cross-validation over the 40 prototypes. 

 Acet0 Acet2 Acet3 Acet4 
Acet0 99 1 0 0 
Acet2 0 100 0 0 
Acet3 0 2 98 0 
Acet4 0 0 0 100 

Figure 9. Boxplot of the error calculated over the test sets, considering the 50 simulations 
generated applying 10 rounds of 5-fold cross-validation over the 40 prototypes. Class 
Prototypes of acetic-1 g/L class were not used. 
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4. Conclusions 

In this paper we have proved that gas sensors, in particular sensors W1S and W5S installed in the 
PEN3 electronic nose, are able to detect the presence of acetic acid in 10% aqueous ethanol solutions 
when the concentration is equal or greater than 2 g/L. As has been shown, the acetic acid presence 
mainly affects the sensors response curves during the cleaning stage, in a period of time between 6 and 
24 s for an injection time of 3 s. However, the maximum points in the sensors response curves, reached 
approximately at 5 s, are similar for solutions with and without acetic acid, so we can conclude that 
these maximum values only depend on the ethanol concentration in the aqueous solution. 

Though different experiments have been carried out using other sensors’ response curves (for 
instance, sensor 3–sensor 10), and also using the second PC (which accumulates 3.4% of the initial 
variance, as shown in Table 2), the classification results did not improve. 

On the other hand, taking into account that our objective is to detect concentrations of VA 
considered as unpleasant (i.e., greater than 1.2–1.3 g/L), and considering also that the probability of 
success for that concentrations (over 69%) is low for a real time monitoring application, our current 
work is focused on finding better values for the adjustable parameters of the PEN3 electronic nose and 
the autosampler, in order to improve classification results. 
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