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Abstract: The performance evaluation of sensors is very important in actual application. In 
this paper, a theory based on multi-variable information fusion is studied to evaluate the 
health level of multifunctional sensors. A novel conception of health reliability degree 
(HRD) is defined to indicate a quantitative health level, which is different from traditional 
so-called qualitative fault diagnosis. To evaluate the health condition from both local and 
global perspectives, the HRD of a single sensitive component at multiple time points and 
the overall multifunctional sensor at a single time point are defined, respectively. The HRD 
methodology is emphasized by using multi-variable data fusion technology coupled with a 
grey comprehensive evaluation method. In this method, to acquire the distinct importance 
of each sensitive unit and the sensitivity of different time points, the information entropy 
and analytic hierarchy process method are used, respectively. In order to verify the 
feasibility of the proposed strategy, a health evaluating experimental system for 
multifunctional self-validating sensors was designed. The five different health level 
situations have been discussed. Successful results show that the proposed method is 
feasible, the HRD could be used to quantitatively indicate the health level and it does have 
a fast response to the performance changes of multifunctional sensors. 

Keywords: health evaluation; data fusion; multifunctional self-validating sensor; health 
reliability degree; grey theory  
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1. Introduction 

Multifunctional sensors have drawn more and more attention in modern production, because they 
can simultaneously detect several different parameters [1–3]. However, a multifunctional sensor will 
lead to a greater possibility of failure because it has more sensitive components [4]. Once faults occur, 
major industrial accidents could happen, so their health evaluation is extremely important.  

Aiming at the above problem, a multifunctional self-validating sensor model was proposed by  
authors [4,5] and its functional architecture is as shown in Figure 1. It not only includes traditional 
fault detection, isolation, and recovery (FDIR), but also provides the uncertainty of each measurement. 
Some previous work has been done [4–9], and this paper will center on the health evaluation to help 
users comprehend the current health level as well as the future performance degradation trend of 
multifunctional sensors. 

Figure 1. Functional architecture of a multifunctional self-validating sensor. 

 

The current approach to evaluate the health level of sensors is to use large numbers of experiments. 
These experimental setups are tested under different environmental parameters, such as temperature, 
humidity, pressure, power supply. The process is done by humans and it is very labor intensive. 
Another shortcoming is that humans may not be able to make out the relationships among the multiple 
variables of the multifunctional sensor. Further, some potential faults could happen too quickly for 
humans to detect them before they become catastrophic [10]. Most of existing automated methods only 
provide two health states (typically, healthy and faulty) [11–13], which is essentially a fault diagnosis. 
However, more detailed health information could not be obtained in this way, and a quantitative health 
evaluation may emerge as it can directly manifest the health level [10,14,15]. The vibration state is 
assessed in large capacity rotary machinery by using fusion information entropy [14], a health level of 
the liquid-propellant rocket engine ground-testing bed is given in [10], and a single sensitive 
component is preliminarily evaluated by using fuzzy set theory in [15]. The notion of quantitative 
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health evaluation was mainly applied to complicated systems. Further, previous work centered on the 
health evaluation of single sensitive components and the method was also relatively complicated. 
Commonly, the correlations of multiple measured parameters are not fully used. From a quantitative 
point of view, the problem will become far more difficult and the quantitative health level analysis of 
multifunctional sensor not only involves the health level of each sensitive unit itself, but relates to their 
distinct weight distribution [16]. 

In this paper, we extend the traditional qualitative fault detection to quantitative health level 
evaluation by using multi-variable data fusion coupled with a grey evaluating algorithm [17,18]. It not 
only can be applied for fault detection, but also for health evaluation of multifunctional sensors. The 
interrelations of multi-variables can also be fully considered and this provides a health evaluation 
method from a “local” and “global” perspective. 

This paper is organized as follows: Section 2 presents the proposed concept of health reliability 
degree; it is used as a quantitative index for the health condition evaluation of multifunctional sensors, 
while Section 3 discusses the novel methodology about how to evaluate the health level from asingle 
sensitive component and the overall multifunctional sensor. Section 4 designs a real experimental 
system of a multifunctional self-validating sensor and the actual samples of different health levels are 
used to verify the proposed methodology. Finally, Section 5 offers some concluding remarks and 
future directions. 

2. Definition of Health Reliability Degree 

The quantitative health levels to reflect sensor performance changes are implemented by using the 
proposed health reliable degree (HRD). Due to the presence of many more sensitive units, the health 
evaluation of multifunctional sensor not only includes each single sensitive unit but the overall sensor 
itself. The research content is shown in Figure 2.  

Figure 2. Health evaluation content of a multifunctional self-validating sensor. 

 

Health levels of a single sensitive unit are different at different time points, so data fusion of 
multiple time points is needed to achieve the HRD of each sensitive unit as shown in Figure 2. The 
HRD of different time points can be treated as a tool for fault detection, and it should have fast 
response to faults. The overall health state of a multifunctional self-validating sensor is related to the 
importance of all sensitive units at certain time point, so its HRD can be obtained by using multiple 
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sensitive unit data fusion as shown in Figure 2. Based on the HRD results, four degradation stages of 
sensor performance are defined and they are health, sub-health, marginal failure and failure. By using 
historical HRD information, health forecasting for multifunctional self-validating sensors can be done 
and this will play a more important role in industrial production. This thesis will emphasize the health 
evaluation aspect, and the health forecasting will be the topic of our next study. 

The HRD is a comprehensive variable as a quantitative index, which indicates the degree of 
reliability of the multifunctional sensor and each sensitive unit. Health is an extent of degradation or 
deviation from an expected state, so the health evaluation is built on the expected health levels. Here, 
the expected sample can be acquired by calibration. Detailed descriptions about HRD are as follows:  

2.1. Inner Meaning 

The range of HRD is defined between 0 and 1. The state 0 indicates that the multifunction sensor or 
certain sensitive unit is in catastrophe failure mode, while state 1 is complete health. The different 
health levels are distributed between these extremes. The greater the value is, the higher the health 
level is. In this way, more detailed health information can be provided by using the proposed HRD, 
which benefits the understanding for users. 

2.2. Extended Meaning 

By using the HRD result, the four performance degradation stages of multifunctional sensor are 
defined as Health State (HS), Sub-Health State (SH), Marginal Failure State (MF), and Failure State 
(FS) respectively. Four classes of health levels are represented correspondingly. Here, the four stages 
can be also taken as the health features of a single sensitive unit. Further, the relationship between 
HRD and health degradation stages is defined in Table 1. 

Table 1. Relationship between HRD and health degradation stages. 

 HRD Health stages 
1 [0.9, 1.0] HS 
2 [0.7,0.9) SH 
3 [0.2,0.7) MF 
4 [0.0, 0.2) FS 

HS: The multifunctional sensor is very healthy. Each sensitive unit is also healthy and their 
measured data are nearly close to the true value.  

SH: The multifunctional sensor is in sub-health and this is a state between HS and MF. The outputs 
of certain sensitive unit may fluctuate around their true values but within the normal ranges, so it is 
reliable to some extent. Commonly, it most situations multifunctional sensors are in HS or SH.  

MF: The multifunctional sensor is nearly a failure. A few sensitive units are faulty, and their 
measured data have deviated from their true values, but none have deviated completely. Therefore, it is 
unreliable unless fault recovery is performed, which is also a topic of our future research. 

FS: The multifunctional sensor is invalid. Most of sensitive units are faulty and the measurements 
have completely deviated from their true values, so it is totally unreliable.  
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2.3. Computation of HRD  

The above four classes of health features are treated as four evaluating criteria of the grey 
evaluating model, and then their corresponding attached parameters are obtained. The computation of 
HRD can be further implemented by using the multi-variable data fusion of these parameters. In order 
to get the local and global HRD, the data fusion of a single sensitive unit among different time points 
and a single time point among multiple sensitive units are both needed, as shown in Figure 2.  

From the above analysis, the four attached parameters are the key to the computation of HRD. From 
Table 1, the attached degree of four evaluating criteria can be represented in a simplified way as shown 
in Figure 3. When the belonging relationship degree (BRD) to a certain criterion is the value 1, the 
current state is at its corresponding degradation stage. When the BRD is the value 0, the current state is 
completely not at its corresponding degradation stage. Other BRDs would decrease with the changes of 
HRD. To simplify the health evaluation problem, the decrease is assumed to be linear.  

Figure 3. Relationship between BRD and HRD. 

 

The computation of HRD involves mapping multiple variables, so acquiring such a clear formula to 
express the complex mapping is difficult. As one of the most promising technologies in computing, the 
back-propagation neural network (BPNN) is suitable to solve the health level problem. The input layer, 
hidden layer and output layer are included in BPNN and the formula of HRD is obtained by using the 
Matlab Neural Network ToolBox. The number of input layer nerve cells is n (n = 4) because we have 
four attached parameters brdHS, brdSH, brdMF, and brdFS, output layer cell m is 1 because of one desired 
HRD, and hidden layer has 10 cells according to experience formula amn ++ (a∈[1,10]), wherein a 
equals 7). The transfer function of the hidden layer is tansig ( 1)1/(2)( 2

1 −+= − xexf ) and the output 
layer is purelin ( xxf =)(2 ), and the Levenberg-Marquardt optimization based trainlm is selected as 
the training function because it is the fastest back-propagation algorithm in the toolbox. The BPNN 
structure is shown in Figure 4, wherein the W1, b1 represents the weight vector and threshold vector 
between input and hidden layer respectively, and corresponding W2, b2 between hidden and output layer. 
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Figure 4. BPNN structure to fuse the HRD computing formula. 
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In Figure 2, if the interval of HRD is defined as 0.01, HRDs between 0.05 and 1 can be divided into 
95 blocks. If HRD is lower than 0.05, the health state is absolutely in FS. To decrease the number of 
training samples, the HRDs in FS are taken as zero. In summary, 96 training sample sets are selected, 
and the computing formula of HRD is then obtained by using the above BPNN. The formula can be 
written as in Equation (1) and the corresponding weight vectors and threshold vectors are also 
acquired:  
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The P represents the degree of attached relationship to the criteria HS, SH, MF, and FS respectively. 
In Equation (1), the key issue of HRD computation is to solve the P and the detailed solution will be 
discussed in Section 3.  

2. 4. Significance Analysis 

The mapping from actual measured data to the grey health level is implemented by using a grey 
algorithm while the de-greying process from grey evaluation to specific HRD is accomplished by using 
the proposed HRD. The definition of HRD has important significance in theory and practice.  

The HRD is a basis of the health forecast. To predict the future health level of a multifunctional  
self-validating sensor, the current and past health states need to be understood. By using HRDs of 
different time points, the historical information could be collected and a time series constructed. The 
health prediction is done by using the time series analysis method, which benefits the understanding of 
the performance degradation in the real world. 
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The health level indicated by the proposed HRD can be directly understood by users and the 
corresponding precautionary measures can be taken to improve the sensor reliability. Taking the above 
four degradation stages as an example, if the sensor is in HS and SH, it works normally; the repair or 
data recovery is needed once it is in MF, and the sensor must be exchanged if it is in FS. 

The computing method itself of HRD is open or extensible. By using the proposed idea, the 
evaluating criteria can be extended from four to more classes if necessary, and HRD results may be 
more concrete. The aim of this study is to present a new thought about health evaluation of 
multifunctional self-validating sensors.  

3. HRD Methodology 

The grey evaluation method coupled with the above HRD computing process is proposed to 
develop a new methodology for sensor health assessment. This novel strategy can provide a 
quantitative health level besides the traditional qualitative results. The corresponding flowchart is 
shown in Figure 5. The correlation among multiple parameters has been fully considered for the 
weight distribution of different sensitive units and time points, which is different from the traditional 
evaluation methods.  

Figure 5. Flowchart of the HRD methodology. 

 

3.1. Establishing the Grey Evaluating Criterions 

To distinguish the health hierarchy of multifunctional self-validating sensor accurately, four 
performance degradation stages (HS, SH, MF, and FS) are treated as the grey evaluating criteria sets.  

3.2. Determining the Whitening Function of the Grey Model 

The actual outputs of each sensitive unit have a mapping to the above four evaluating criteria sets. 
Some statistical researches on the multifunctional self-validating sensor have been done. It is a fact, 
that if a certain sensitive unit is not in FS, the measured outputs are closer to the true values, the grey 
BRD will become higher, and so will be the corresponding health level. The fact can be expressed in a 
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more simplified way as shown in Figure 6. The BRD is 1 if the measurement x is within the allowed 
fluctuation range, while BRD decreases linearly if the x is outside the permitted range.  

Figure 6. Relationship between BRD and measured value x. 

 

In application, the true value is difficult to obtain, its best estimation value μHS can be acquired by 
using modern machine learning technology, for example, the data fusion result of multiple self-validating 
sensors or the mean value under health state can be taken as the best evaluated value. The allowed 
fluctuating interval is [μHS−m1

11Δ, μHS+m1
12Δ] if the BRD belongs to grey set HS. In a similar way, the 

grey intervals of other two grey sets SH and MF are defined as [μHS−m2
11Δ, μHS-m2

12Δ] and 
[μHS+m2

21Δ, μHS+m2
22Δ], [μHS−m3

11Δ,μHS−m3
12Δ] and [μHS+m3

21Δ, μHS+m3
22Δ] respectively. Here, the 

grey interval of grey sets SH and MF is symmetric.  
In Figure 6, there is a premise that the sensitive unit is not faulty and the outputs are not completely 

unbelievable, so the above idea id only suitable for the evaluating criteria HS, SH and MF. The FS is 
under faults, so the continual use of the same idea is improper. The measurement x is completely 
unreliable if it is beyond the baseline μHS−m4

11Δ (or smaller than μHS−m4
11Δ) and μHS+m4

12Δ  
(or greater than μHS+m4

12Δ) as shown in Figure 6. If a certain sensitive unit is faulty, the BRDs under 
FS will undoubtedly become 1. Based on the above failure feature analysis, an upside-down trapezium 
is chosen as the whitening function under FS, as shown in red curve of Figure 6. In summary, the 
whitening function of four grey sets can be written in Equations (2–5) respectively:  
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The matrix form of some parameters in Equations (2–5) can be represented as:  
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The degree of the deviation from the best estimation μHS is assumed to be symmetrically distributed, 
which could avoid more parameter settings. The parameter Δ itself is only a base-level. Taking a 
temperature sensitive unit for example, if the best estimation value is 20 °C, and the base-level 
standard Δ is 0.01, the grey interval of HS would become [0.1, 0.1] when M1 is defined as [10, 10].  

3.3. Computing Grey Sample Evaluating (GSE) Matrix 

By using the above established whitening functions of different evaluating criteria, the GSE matrix can 
be obtained. The computation of HRD includes a single sensitive unit and the overall multifunctional 
self-validating sensor, and their meanings are provided here. 

The GSE matrix of a single sensitive unit at multiple time points is denoted as GSEi = (gseijk)m×n (j = 
1, 2, …, m; k = 1, 2, …, n) as shown in Equation (6):  

1 2

1 11 12 1

2 21 22 2

1 2

n

i i i n

i i i n
i

m im im imn

I I I
T a a a
T a a a

GSE

T a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6)

where i represents the certain sensitive unit, Tj (j = 1, 2, …, m) is the different time point, and  
Ik (k = 1, 2, …, n) is the evaluating criterion, it refers to the HS, SH, MF, FS in this paper. 

The GSE matrix of multiple sensitive unit at single time point can be expressed as GSEj = (gseijk)m×n 
(i = 1, 2, …, m; k = 1, 2, …, n) as shown in Equation (7):  
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where j represents the time point, Si ( i = 1, 2, …, m) indicates all the sensitive units of the 
multifunctional sensor, and Ik (k = 1, 2, …, n) is still the evaluating criterion. 

3.4. Deciding Weights 

The analytic hierarchy process (AHP) [19–22] and objective information entropy [23] are the 
common methods used to decide weights. As for the HRD of a single sensitive unit at multiple time 
points, its outputs will change with the passage of time, such as the drift fault. The arbitrary pair-wise 
comparison among the time points is unavoidable, so the AHP is very suitable to amplify the 
importance of certain time point, for example, the moment when a fault occurs brings larger weight. 
As for HRD of the overall multifunctional self-validating sensor, the health evaluation assignment is 
implemented at a single time point, and the comparison among multiple time points is meaningless. It 
only needs the objective weight of each sensitive unit to indicate its information importance, which can 
be well expressed by using the information entropy method. Detailed application in sensor health 
evaluation is as follows.  

3.4.1. Computing the Weights of Different Time Points by Using AHP  

Before the further computation of HRD, the guideline of computing weights is proposed as follows: 

Guideline: The farther the output of a certain sensitive unit i deviates from its best estimation μHS at 
certain time point j, the greater the measured value x brings importance to this sensitive unit.  

If the measurement at certain time point is closer to FS, its sensitivity will be higher. In this way, 
the sensitivity of different time points is expressed by the weight Wi = (wi1, wi2, …, wij, …, wim) and its 
calculation process is as follows: 

Firstly, based on the proposed guideline, the scaling value dij of sensitive unit i at time point j is 
defined as: 

( )ij ij ijd x HSμ= −  (8)

where xij is the actual output of sensitive unit i at the time point j, μij(HS) is its best estimation. Then 
the scaling values di = ( di1, di2,…, dij,…, dim) of sensitive unit i could be derived and m is the number 
of time points.  

In Equation (8), the dij becomes greater if the difference between the actual value and μij(HS) is 
larger. In other words, if the measured value is closer to the FS, the corresponding time point is of 
greater importance, which conforms to the above guideline. 

Secondly, construct the comparison matrix CMi in which each element is used to compare with 
others as shown in Equation (9). Its physical meaning is a relative importance comparison between two 
arbitrary time points:  
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Thirdly, solve all the eigenvalues λ  and eigenvectors α , and then pick out the largest eigenvalue 
maxλ  as well as its corresponding eigenvector maxα : 

iCM α λ α=  (10)

Fourthly, check its consistency. In order to test the validity of the weights distribution generated by 
using AHP, the consistency index (CI) and the overall consistency ratio (CR) are calculated by using 
Equation (11). If CR is lower than 0.10, the weights distribution will be acceptable: 

max

1

CICR
RI

n
CI

n
λ

=

−
=

−

 (11)

where n is the order of the CMi,, and average random consistency variable (RI) is shown in Table 2 
when n is lower than 15 over 1,000 experiments.  

Table 2. RI values. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59

Lastly, the eigenvector maxα is taken as the weight vector Wi, which represents the relative 
importance of different time points. 

3.4.2. Computing the Weights of Different Sensor Units by Using Information Entropy Method 

The objective weight of each sensitive unit is obtained as follows: 

Firstly, construct the grey evaluating matrix GSE = (gseik)m×n as shown in Equation (7).  
Secondly, compute the kth assessment criterion’s probabilistic proportion Pik of ith sensitive unit by 

using Equation (12):  

1

( 1, 2, , ; 1, 2, , )ik
ik n

ik
k

gse
P i m k n

gse
=

= = =
∑

 
(12)

Thirdly, compute the information entropy Ei of the ith sensitive unit by using Equation (13):  

1

1 ln ( 1,2, , )
ln

ln 0 0

n

i ik ik
k

ik ik ik

E P P i m
n

subject to P P if P
=

= − =

= =

∑  (13)

Fourthly, compute the deviation Gi by using Equation (14). The greater the output Gi is, the more 
important the sensitive unit is: 

1 ( 1, 2, , )i iG E i m= − =  (14)

Lastly, compute the objective weight wij of the ith sensitive unit at the time point j by using  
Equation (15) and then the weight vector Wj = (w1j, w2j, …, wij, …, wmj) is determined correspondingly: 
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(15)

3.5. Calculate the Comprehensive Grey Assessment Values Under Evaluating Criterion Sets 

The weights Wi of a single sensitive unit i at multiple time points and Wj of the multifunctional  
self-validating sensor at single time point j have been obtained, then the comprehensive grey 
assessment values (CGAV) are computed using Equation (16). The CGAV represents the current health 
distribution under the above four grey health evaluating criteria sets, and they are exactly the feature 
attached parameters in Equation (1): 

CGAV W GSE= ×  (16)

In Equation (16), the following introduction should be made: 

(1) When both W and GSE represent multiple sensitive units at certain time point j, the fused 
CGAV indicates the grey assessment values of the overall multifunctional self-validating 
sensor.  

(2) When both W and GSE represent a single sensitive unit i at multiple time points, the 
corresponding CGAV would be fused into the grey assessment values of the certain sensitive 
unit i. 

3.6. Computing HRD 

The proposed health evaluation strategy can provide the qualitative assessment result as usual. The 
health state belongs to the health evaluating criterion which has the maximum of CGAVs. From a local 
and global perspective, the HRD is then calculated to describe the detailed health information by using 
Equation (1). 

4. Experimental Setup and Analytical Discussion  

To verify the effectiveness of the proposed methodology about quantitative health assessment, the 
experimental test system of a multifunctional self-validating sensor was designed, which was sensitive 
to multiple physical parameters including temperature, humidity, and gas concentration. The 
experiment was conducted in a laboratory environment. The samples used to discuss in this section are 
actual sample data.  

4.1. Multifunctional Sensor Experimental System  

The health evaluation software system was developed to read analog signals and store these source 
data in a file for further analysis. The system consisted of four key components: multifunctional 
sensor, data acquisition device, power supply and graphic user interface on PC. More details will be 
explained in the following sections. The block diagram of the health evaluation experimental system 
was shown in Figure 7.  
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Figure 7. Block diagram of health evaluation experimental system. 

 

The experiments were conducted in a sealed organic glass gas chamber (capacity is  
50 cm × 20 cm × 10 cm). The multifunctional sensor was fixed in such a chamber. Hydrogen was 
selected as the gas sample and it was injected into the chamber by a syringe. There was a fan which 
assured the uniform distribution of the test gas in chamber. 

4.1.1. Multifunctional Sensor 

The multifunctional sensor is composed of six sensitive units—four gas sensitive units, one 
temperature unit and one humidity unit, which are listed in Table 3, so it can be sensitive to the gas 
concentration, temperature, and humidity. To ensure valid measurements, the gas sensitive units with 
different sensitivity and working principles are selected.  

Table 3. Lists of sensitive units. 

Sensitive units Description 
MQ-2 Semiconductor  
MQ-8 Semiconductor  

MC112 Catalytic combustible 
MC115 Catalytic combustible 
LM35 Temperature  

CHTM-02 Humidity  

In application of the semiconductor gas sensitive unit, both a heating circuit and a measuring circuit 
are required. A constant DC voltage is taken as heating signal to provide a certain elevated 
temperature; the semiconductor sensitive units are then sensitive to the detectable hydrogen. If 
hydrogen exits, its conductivity will increase. At this time, the conductivity changes will be converted 
into a measured voltage by using the corresponding measuring circuit. Its structure and measuring 
circuit are shown in Figure 8. Two terminal blocks H could be connected to the heating signal while A 
or B are the measured signal. The variable resistor RL is used to reflect the response under the 
detectable hydrogen, and the measured value could be obtained in voltage Vout1.  
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Figure 8. Structure and measuring circuit of semiconductor gas sensitive units. 

 

The catalytic combustible gas sensitive units consist of both catalytic and reference components.  
The corresponding measuring circuit is called a Wheatstone bridge as shown in the red box of Figure 9. 
In the presence of detectable hydrogen, it starts to burn on the surface of the catalytic component and a 
significant temperature rise is caused by the heat of combustion, which in turn leads into the resistance 
changes. The measuring bridge is then unbalanced, the offset Vout_signal is output as the measured 
signal, which rises linearly with the increase of detectable gas concentration. To avoid the negative 
influence of other factors during the combustion process, the reference component maintains a 
constant resistance. In operation, R1 and R2 are the precise resistors to keep the bridge balanced 
(usually R1 = R2). The variable resistor RW is used to adjust the zero position when there is no output.  

Figure 9. Measuring circuit of catalytic combustible gas sensitive units. 

 

To acquire the measured signal Vout_signal, a high common-mode rejection ratio circuit by using 
three amplifiers with high precision and low drift is designed as shown in Figure 9. The circuit could 
adjust the gain by the variable resistor Rp. To avoid the influence of offset current from amplifier, the 
resistances are configured as R3 = R4, R5 = R6, R7 = R8, R9 = R10. In this way, the preprocessed 
signal Vout3 would vary linearly with Vout_signal, i.e., the changes of detectable gas concentration. 
Denote the hydrogen concentration by x, and the undetermined coefficient by a, then:  
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The LM35 and CHTM-02 are selected to detect the environmental parameters, respectively. Their 
outputs are linear with actual temperature and humidity. The former is 0–1V with temperature 0–100 
centigrade while the latter is 1–3V with humidity 0–100%RH. 

4.1.2. Data Acquisition Device  

For continuous acquisition of multiple outputs, the corresponding data acquisition software and 
hardware is necessary. These assignments are implemented on PC with a Windows XP operating 
system. A 16-channel PCI-data acquisition board with 16 bit accuracy (NI PCI-6014 Multifunction 
DAQ) was installed in PC and its sampling rate is up to 200 KHz. The acquisition program is written 
in Labview. A sampling rate of 2Hz for each channel was found to be the most appropriate for the 
experimental setup. The data acquisition software includes 6-channel data acquisition at real time, 
waveform display, data storage in a file and so on, which can provide enough samples to verify the 
HRD methodology.  

4.1.3. Measurement Protocol  

The multifunctional sensor is first exposed to clean air for about 10 minutes to build a baseline 
environment for each sensitive unit. The zero position and amplification of the catalytic combustible 
measuring circuit are adjusted to ensure the data acquisition within its range. The hydrogen would be 
then injected into the chamber. The fan would help spread the gas sample to stability for about  
5 minutes. The gas concentration could vary from 500 to 5,000 ppm. To simulate the broken heater 
strip of a semiconductor gas sensitive unit, the heating signal had been removed at once. The 
multifunctional sensor outputs would tend to be steady once more. After reaching a stable response, all 
the outputs would be sampled. The gas chamber needs to be cleaned again before the next experiment.  

4.2. HRD Analysis of Multifunctional Self-validating Sensor  

The HRD of multifunctional self-validating sensors means that the health evaluation is implemented 
from a global way and it is related to all the sensitive units. In this section, three situations which 
represent different health levels are introduced to interpret the proposed strategy.  

Situation 1: all the sensitive units are fault free 

When the hydrogen concentration is 1,000 ppm, the static outputs of the multifunctional sensor are 
collected as shown in Figure 10. The temperature is about 23.7 °C and humidity is near 34.6%RH. 
Commonly, the health state should be in HS or SH, and the validity of the proposed HRD methodology 
is then evaluated. By using fault free samples in the calibration, the best estimation μHS of the true 
values of all sensitive units as well as their base-level values Δ are shown in Table 4.  
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Figure 10. Static outputs of multifunctional self-validating sensor when it is fault free. 

 

Table 4. Best estimation of true values and base-level values. 

 LM35 CHTM-02 MC112 MC115 MQ2 MQ8 
μHS (V) 0.2370 1.6930 0.3750 0.4620 2.8099 3.6299 

Δ 0.01 °C 0.01%RH 1 ppm 1 ppm 1 ppm 1 ppm 

The grey whitening function parameters are defined in Table 5, which represent the extent of 
deviation from the health values or the best estimation μHS.  

Table 5. Whitening function parameters of the grey model. 

 HS (M1) SH (M2) MF (M3) FS (M4) 
LM35 [8.0,8.0] 100 10

10 100
⎡ ⎤
⎢ ⎥
⎣ ⎦

 500 150
150 500
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [800,800] 

CHTM-02 [5.5,5.5] 100 10
10 100
⎡ ⎤
⎢ ⎥
⎣ ⎦

 500 150
150 500
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [800,800] 

MC112 [20,20] 50 25
25 50
⎡ ⎤
⎢ ⎥
⎣ ⎦

 200 60
60 200
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [500,500] 

MC115 [20,20] 50 25
25 50
⎡ ⎤
⎢ ⎥
⎣ ⎦

 200 60
60 200
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [500,500] 

MQ2 [20,20] 50 25
25 50
⎡ ⎤
⎢ ⎥
⎣ ⎦

 200 60
60 200
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [500,500] 

MQ8 [20,20] 50 25
25 50
⎡ ⎤
⎢ ⎥
⎣ ⎦

 200 60
60 200
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [500,500] 

To illustrate the proposed HRD methodology, the first sample of Figure 10 is taken as an example 
and their outputs are given in Table 6.  

Table 6. First static measurements in Figure 10. 

Sensitive units LM35 CHTM-02 MC112 MC115 MQ2 MQ8 
Output (V) 0.2328 1.6940 0.3799 0.4518 2.7837 3.6430 

By using Equation (7), the grey sample evaluating matrix GSE1 at the first measurement point is 
constructed as:  
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1

0.9577 1.0000 0.2759 0.0000
1.0000 0.5033 0.0336 0.0000
1.0000 0.5241 0.2184 0.0000
0.9964 0.8682 0.3617 0.0000
0.9487 0.9944 0.8874 0.0000
0.9824 1.0000 0.5373 0.0000

GSE

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(18) 

By using Equations (12–15), the weight vector of six sensitive units is also computed based on the 
information entropy method: 

W1 = (w11, w21, …, w61) = [0.1631 0.2647 0.1795 0.1465 0.1162 0.1299] (19)

By using Equations (16), the comprehensive grey assessment values (CGAV1) can be computed: 

1 [0.9843 0.7631 0.3190 0.0000]CGAV =  (20)

From the traditional qualitative health evaluation idea, the maximum of the CGAV1s is picked out 
and then the current health state is determined to be in HS. By using the HRD computing formula as 
shown in Equation (1), the quantitative health level is achieved through the data fusion of the CGAV1:  

1 1( ) 0.9251HRD f CGAV= =  (21)

In a similar way, the HRDs of all the time points are computed as shown in Figure 11. The 
fluctuation of HRD curve is mainly caused by the measurement noise. In Figure 11, all the HRDs are 
greater than 0.90, excluding the 64th time point (its HRD equals to 0.8703), which implies that the 
multifunctional self-validating sensor is either HS or SHS. The experimental results are consistent with 
the normal operational condition, which validates the proposed method. 

Figure 11. HRDs of multifunctional self-validating sensor when it works normally. 

 

The HRD of the 64th time point is lower than 0.9, therefore, further research is needed and the 
measurement outputs are shown in Table 7. The output of temperature sensitive unit LM35 has 
deviated 1.9 °C from the 23.7 °C setpoint, which has exactly caused the health level degradation of the 
whole multifunctional self-validating sensor.  
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Table 7. Static outputs of 64th time point. 

Sensitive units LM35 CHTM-02 MC112 MC115 MQ2 MQ8 
Output (V) 0.2181 1.7158 0.3634 0.4386 2.8164 3.6116 

Situation 2: one sensitive unit is faulty 

This experiment was done in the same gas chamber on the same day, and the heating voltage of 
MQ2 was removed to simulate that a broken heater strip at the 61th time point. After about 7 seconds, 
its output tends towards becoming steady again. The hydrogen concentration is still 1,000 ppm, and the 
outputs of multifunctional self-validating sensor are shown in Figure 12.  

Figure 12. Static outputs when MQ2 is faulty. 

 

The experimental environment is the same as situation 1, therefore, the best estimation of true 
values of all sensitive units and grey whitening function parameters are also the same as those given in 
Tables 4 and 5. By using the proposed HRD strategy, the HRDs of all the time points under single fault 
can be obtained as shown in Figure 13.  

Figure 13. HRDs of multifunctional self-validating sensor when MQ2 is faulty. 
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In Figure 13, all the HRDs are lower than 0.70 starting from the 61th time point, which implies that 
the multifunctional self-validating sensor is in MF. The experimental results are consistent with the 
proposed extended meaning of HRD.  

Situation 3: more sensitive units are faulty 

This experiment has also been done in the same gas chamber on the same day, and the heating 
voltage of MQ2 and MQ8 would be both removed to simulate that both heater strips are broken. The 
moment when faults occur is at about the 51th time point. After about 8.5 seconds, their outputs tend 
towards a steady value again. The hydrogen concentration is still 1,000 ppm, and the static outputs of 
the multifunctional self-validating sensor are shown in Figure 14. To simulate more faults, the power 
supply of temperature and humidity sensitive unit was also removed at the 91th time point and most 
sensitive units are then faulty. 

Figure 14. Static outputs when more sensitive units are faulty. 

 

By using the proposed HRD strategy, the HRDs of all the time points under multiple faults are 
shown in Figure 15. In Figure 15, the HRDs have decreased to nearly 0.3 starting at the 51th time point, 
which is caused by the two faulty sensitive units. According to the definition of HRD, the current 
health state is still in MF, which agrees with the experimental situation. The measured results of MQ2 
and MQ8 are both unbelievable, and the overall health level has become very low and it has degraded 
further than the above situation 2.  

With more faulty sensitive units, the HRD is bound to be lower and the measured output would also 
be more suspect. In the latter part of Figure 14 starting from about the 91th point, the four sensitive 
units have been deemed faulty. The corresponding HRDs have further decreased to nearby 0.1 as 
shown in Figure 15. The current health state is in FS, the multifunctional self-validating sensor should 
be exchanged because most of sensitive units have suffered failures. 
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Figure 15. HRDs of multifunctional self-validating sensor when more sensor units are faulty. 

 

4.3. HRD Analysis of Single Sensitive Unit 

In this section, two situations which imply different health levels are introduced to interpret the 
health evaluation of a single sensitive unit from the local way.  

Situation 1: single sensitive unit is fault free  

The actual experimental sample of MQ2 is still the one from Figure 10, and the best estimation of 
its true value and grey whitening function parameters are the same as Tables 4 and 5. In the process of 
computing HRD of single sensitive unit, the length of time point series will be selected as six points to 
simplify the calculation, because it is equal to the number of sensitive units.  

The sample is updated online by the latest measurement. In other words, the latest output would be 
added to the sample, and the sample at the first time point is removed. Taking the first six 
measurements in Figure 10 as an example to illustrate the HRD of a single sensitive unit in detail, their 
outputs are shown in Table 8. The latest or current measurement is 2.7937V. 

Table 8. Measured outputs of MQ2 at first six points. 

Time point series 1 2 3 4 5 6 
Output (V) 2.7837 2.8079 2.8110 2.8057 2.8081 2.7937 

Firstly, by using the Equations (8–11), the scaling value dij, comparison matrices CMi, largest 
eigenvalue maxλ , the corresponding eigenvector maxα  and the CR are all obtained:   

dMQ2 =[0.0262 0.0020 0.0011 0.0042 0.0017 0.0161] (22)

2

1.0000  13.3341  22.9753    6.2731  15.1051    1.6207
0.0750    1.0000    1.7230    0.4705    1.1328    0.1215
0.0435    0.5804    1.0000    0.2730    0.6575    0.0705

 
0.1594    2.1256    3.6625  MQCM =

 1.0000    2.4079    0.2583
0.0662    0.8828    1.5210    0.4153    1.0000    0.1073
0.6170    8.2276  14.1766    3.8707    9.3204    1.0000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (23)
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maxλ =6.000, maxα = [−0.8388 −0.0630 −0.0366 −0.1339 −0.0556 −0.5182]; (24)

CR = 0 < 0.10 (25)

The above maxα can serve as the weight distribution because CR is less than 0.10. By normalizing the 
eigenvector maxα , the weight WMQ2 is then obtained based on the AHP method: 

WMQ2 = (w51, w52, …, w56) = [0.5099 0.0382 0.0222 0.0813 0.0338 0.3146] (26)

Secondly, by using Equations (6), the grey sample evaluating analysis matrix GSEMQ2 is computed: 

2

0.9487 0.9944 0.8874 0.0000
1.0000 0.1703 0.0697 0.0000
1.0000 0.0858 0.0351 0.0000
1.0000 0.3527 0.1443 0.0000
1.0000 0.1513 0.0619 0.0000
0.9798 1.0000 0.5488 0.0000

MQGSE

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(27)

Then, by using Equation (16), the comprehensive grey assessment values (CGAV) are then obtained: 

2 [0.9675 0.8638 0.6424 0.0000]MQCGAV =  (28)

Lastly, by using Equation (1), the HRD of MQ2 is calculated:  

2 2( ) 0.9067MQ MQHRD f CGAV= =  (29)

In a similar way, the HRDs of MQ2 under a fault free state are calculated as shown in Figure 16. 
The first five time points could not construct the multi-point time series, their HRDs would be replaced 
by the values of HS whitening function. In Figure 16, all the HRDs are greater than 0.9, which verifies 
the proposed HRD methodology under normal operational conditions.  

Figure 16. HRDs of fault free MQ2. 

 

Situation 2: single sensitive unit is faulty 

The actual experimental samples of faulty sensitive unit MQ2 are from Figure 12. The heating 
voltage of MQ2 at the 61th time point is removed and the HRD results are shown in Figure 17.  
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Figure 17. HRDs of faulty MQ2. 

 

The sensitivity of the measured outputs is the key in the proposed AHP based weight distribution, 
and the larger weight will be distributed to the point whose output is close to FS. The guideline rightly 
conforms to the health evaluation of a ingle sensitive unit, because HRD should have a fast response to 
faults. In Figure 17, the HRD has started to decline rapidly starting from the 61th time point, which is 
consistent with the removal of the heating voltage. Once faults occur, the HRD is lower than 0.1 and 
the MQ2 is in FS. The proposed HRD methodology is verified again under faults and it could thus also 
be treated as a tool of fault detection.  

5. Conclusions 

This paper has presented the design of a health evaluation system for multifunctional self-validating 
sensors by using two semiconductor gas sensitive units, two catalytic combustible gas sensitive units, 
one temperature and one humidity sensitive units. The novel concept of HRD is proposed to describe 
the health level in a quantitative way, and its inner and extended meanings are explained in detail. The 
emphasis of this article lies on the HRD methodology itself by using multi-variable data fusion 
technology coupled with a grey evaluation algorithm. To get the valid weights distribution of all 
sensitive units and the sensitivity of different time points, the information entropy and AHP method are 
used, respectively. The HRD takes the correlation of multiple parameters into consideration.  

The experimental system of the multifunctional self-validating sensor was designed in the 
laboratory. From the “local” and “global” viewpoints, the HRD of an overall multifunctional sensor at 
a single time point and a single sensitive unit at multiple time points were analyzed thoroughly. Based 
on actual samples, three situations of the multifunctional sensor and two situations of a single sensitive 
unit have been considered in the HRD application, which represent different health levels. The results 
show that the proposed HRD can be used to indicate the quantitative health level and it rapidly reflects 
the performance changes of a multifunctional sensor.  

As one of the most important self-validating functions, the health evaluation is rather meaningful. 
The following work will include two aspects: one is the health forecasting based on historical HRD 
information; the other is the fault recovery to improve the HRD.  
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