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Abstract: In this study, reduced graphene oxide (rGO) was electrochemically deposited on 

the surface of screen-printed carbon electrodes (SPCE) to prepare a disposable sensor for 

fast detection of Pb
2+

 in foods. The SEM images showed that the rGO was homogeneously 

deposited onto the electrode surface with a wrinkled nanostructure, which provided 2D 

bridges for electron transport and a larger active area for Pb
2+

 adsorption. Results showed 

that rGO modification enhanced the activity of the electrode surface, and significantly 

improved the electrochemical properties of SPCE. The rGO modified SPCE (rGO-SPCE) 

was applied to detect Pb
2+

 in standard aqueous solution, showing a sharp stripping peak and 

a relatively constant peak potential in square wave anodic stripping voltammetry (SWASV). 

The linear range for Pb
2+

 detection was 5~200 ppb (R
2
 = 0.9923) with a low detection limit 

of 1 ppb (S/N = 3). The interference of Cd
2+

 and Cu
2+

 at low concentrations was effectively 

avoided. Finally, the rGO-SPCE was used for determination of lead in real tap water, juice, 

preserved eggs and tea samples. Compared with results from graphite furnace atomic 

absorption spectroscopy (GFAAS), the results based on rGO-SPCE were both accurate and 

reliable, suggesting that the disposable sensor has great potential in application for fast, 

sensitive and low-cost detection of Pb
2+

 in foods. 
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1. Introduction 

Recently, heavy metal contamination in food sources has become a very serious problem, especially 

in the developing countries. The most terrible consequence is that heavy metals cannot be eliminated 

from foodstuffs by soaking, washing, cooking or other methods. According to the stipulation of the 

World Health Organization (WHO), levels of lead, cadmium, chromium, and other heavy metals must 

definitely be controlled in food sources in order to assure the public safety [1]. The US Environmental 

Protection Agency (EPA) has determined that lead is a probable human carcinogen, which can damage 

every organ and system in human body. Exposure to lead (Pb) at high levels can severely damage the 

brain and kidneys, and even cause death to human beings. For pregnant women, high levels of exposure 

to lead may cause miscarriages [2], so it is critical to control and determine the heavy metal 

concentrations in food.  

Due to the demand for monitoring heavy metal ions, a series of techniques have been developed  

in the past, including atomic absorption spectrometry [3–6], inductively coupled plasma mass 

spectrometry [7], inductively coupled plasma atomic emission spectroscopy [8] and X-ray fluorescence 

spectrometry [9]. Conventional methods can detect heavy metal sensitively and accurately, but have 

drawbacks like complicated sample pre-treatment, time-consuming process, expensive cost, large-scale 

analysis for indoor use, and requirement of expert operators. In recent years, electrochemical sensors 

and analysis methods have been developed for heavy metal detection, due to their advantages of small 

size, high sensitivity, low cost and easy operation. Ghanjaoui applied a system based on bismuth film 

electrodes combined with a rotating disk electrode to determine lead in beer samples, which displayed 

excellent linear behavior to 5 to 85 μg/L (5~85 ppb) lead with a detection limit of 0.27 μg/L  

(0.27 ppb) [10]. Ping used an ionic liquid and a bismuth oxide nanoparticle-modified carbon paste 

electrode to determine trace metals in milk, and the linear detection range for Pb
2+

 was from 3.0 to  

30.0 μg/L (3~30 ppb) with a detection limit of 0.21 μg/L (0.21 ppb) [11]. The aforementioned 

electro-analytical methods, especially stripping analysis, have been identified as the most promising 

approaches to meet this analytical need [12]. However, most solid electrodes have some drawbacks, 

such as cross-contamination, electrode surface poisoning and other issues that may affect the analysis 

results, while the disposable screen-printed carbon electrode (SPCE) can efficiently overcome these 

problems. Moreover, the SPCE shows a heterogeneous nature that is similar to that of carbon paste 

electrodes. Recently, a novel hanging galinstan drop electrode (HGDE) based on a composite of liquid 

metal marbles and WO3 nanoparticles has been developed [13]. The as-prepared HGDE with simple 

surface renewal and predictable electrochemical properties, could sensitively and selectively determine 

Pb
2+

 and Cd
2+

 at low concentrations, but it still has some limitations for on-site applications, as 

compared with the SPCE which is characterized by low cost, easy miniaturization and great potential 

for mass production. 

A screen-printed electrode combined with anodic stripping voltammetry (ASV) is a very promising 

method for heavy metal detection. Keawkim determined lead in rice by sequential injection/anodic 
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stripping voltammetry using a bismuth/crown ether/Nafion film-modified SPCE. They found a  

linear detection range of 0.5 to 60 mg/L (0.5~60 ppm) for Pb
2+

, with a detection limit of 0.11 mg/L  

(110 ppb) [14]. Kadara reported a disposable bismuth oxide-modified SPCE for detection of lead in 

water samples, which displayed excellent linear behavior in the concentration range of 20 to 300 μg/L 

(20~300 ppb) with a detection limit of 8 μg/L (8 ppb) [15]. Mandil reported SPCE modified by gold 

films, which displayed excellent linear behavior in the Pb
2+

 concentration range from 2 to  

16 μg/L (2~16 ppb) with a detection limit of 0.5 μg/L (0.5 ppb) [12]. Injang developed screen-printed 

carbon nanotube electrodes with sequential injection analysis-anodic stripping voltammetry. The result 

showed that the linear range was 2~100 μg/L (2~100 ppb) for Pb
2+

, and the limit of detection was  

0.2 μg/L (0.2 ppb) [16].  

This study aims to extend the linear range and improve the sensitivity based on a method combining 

SPCE with stripping voltammetry, which has the advantages of being disposable, convenient and 

accurate. Due to the excellent electrical, mechanical, and thermal properties, graphene attracts popular 

attention as a new 2D nanomaterial, which can significantly improve the electrochemical properties, 

including sensitivity, selectivity and stability of screen-printed electrodes modified by graphene 

derivatives [17,18]. In this study, a disposable sensor based on rGO-SPCE was developed for fast, 

sensitive and low-cost determination of lead in food samples. The rGO was electrochemically deposited 

on the surface of bare SPCE to improve its electrochemical properties. The rGO-SPCE was applied in 

Pb
2+

 detection combined with square wave voltammetry. The modification process, characterization, 

detection performance, interference tests and real samples detection are explored.  

2. Experimental Section 

2.1. Material and Apparatus 

Graphene oxide (GO) was purchased from Nanjing XF Nano Materials Tech Co. Ltd, Nanjing, 

China. The bare screen-printed electrodes (SPEs) were fabricated with a DEK248 printer machine 

(DEK, Weymouth, UK). The disposable sensor consists of a miniaturized three-electrode system 

including an Ag/AgCl pseudo-reference electrode, and two carbon electrodes acting as working and 

counter electrode, respectively. The diameter of the working electrode was 3 mm. K3[Fe(CN)6], KCl, 

Pb(NO3)2, Na2HPO4, NaH2PO4, acetic acid (HAc) and all other chemicals used were of analytical grade. 

Deionized water (18.2 MΩ·cm at 25 °C, Milli-Q) was used throughout the experiments. Tap water was 

obtained from the laboratory. Orange and apple juice, green and black tea bags (1.5 g tea powder per 

bag, produced in Anhui Province, China), and three kinds of preserved eggs were purchased from a 

local supermarket. The electrochemical measurements were achieved by Autolab PGSTAT128N 

(Metrohm, Herisau, Switzerland) at ambient temperature (25 °C). The morphology of modified working 

electrode on the SPCE was observed by a field emission scanning electron microscope (Hitachi SU70, 

Tokyo, Japan). Raman spectra were recorded using a LabRAM HR UV800 Raman Spectroscopy (Jobin, 

Paris, France) with a 632 nm HeNe laser.  
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2.2. Preparation of the rGO-SPCE  

Graphene oxide powder was dispersed in 0.067 M phosphate buffer (PB, pH 9.18) and ultrasonicated 

for 2 h to obtain a uniform suspension containing 1 mg/mL GO. Then the GO suspension (80 μL) was 

dropped on the surface of the SPE, and then scanned from −1.4 V to 0 V for 10 cycles with a scan rate of 

50 mV/s. As a result, the reduced GO was electrochemically deposited onto the working electrode 

surface via cyclic voltammetry (CV) [19,20]. The modified rGO-SPCE was washed carefully with 

double distilled water, and dried in air. Figure 1 shows a schematic of the electrochemical deposition as 

well as the process of GO reduction which occurred on the SPCE surface. The determination of 

electrochemical properties of the SPCE before and after modification of rGO was performed in 5 mM 

K3[Fe(CN)6]/0.1 M KCl solution. The morphologies of the bare and modified working electrode were 

observed by the field emission scanning electron microscope (FE-SEM).  

Figure 1. Schematic of electrochemical deposition of rGO on the surface of working 

electrode in the SPE. 

 

2.3. Pre-Treatments of Real Samples 

Tap water, apple juice, orange juice, preserved eggs, black tea and green tea were selected as real 

food samples. Different samples were pre-treated by different fast pretreatment process for on-site 

real-time field measurement of Pb
2+

 in foods. Tap water was filtered through a 0.22 μm membrane 

(Millipore, Billerica, MA, USA), and the pH was adjusted to 4.2~4.5 using 1 M NaOH/HAc solution.  

For fruit juice, 10 mL of sample was added to 10 mL of 0.1 M HAc solution. After shaking for  

20 min, the mixture was filtered and the pH was adjusted to be 4.2~4.5 with NaOH/HAc solution.  

Standard addition method was applied for tap water, orange juice and apple juice. Briefly, 5 mL of 

Pb
2+

 solution, of which the Pb
2+

 concentration was respectively 10 ppb, 30 ppb and 90 ppb, was fully 

mixed with 5 mL of the pre-treated sample solution.  

For black tea and green tea, 1.0 g of tea powders was added to 25 mL of 0.1 M HAc solution  

and allowed to stand for 30 min. Then the mixture was filtered and the pH was adjusted to 4.2~4.5 by 

NaOH/HAc solution.  

For preserved eggs, 10.0 g of the sample was added to 100 mL of 0.1 M HAc solution.  

After ultrasonication for 30 min, the mixture was filtered and the pH was adjusted to 4.2~4.5 by  

NaOH solution.  
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2.4. Procedure for the SWASV Analysis 

Firstly, the pre-treated sample solution was mixed with 0.1 M acetate buffer solution (pH 4.5) at the 

volume ratio of 1:2. Then 80 µL of the mixture was dropped onto the rGO-SPCE. The heavy metal 

detection was performed by square wave anodic stripping voltammetry (SWASV) with optimized 

parameters. The accumulation potential (−1.2 V) was applied to the rGO-SPCE for 420 s. After the 

pre-concentration step, the voltammograms were recorded by applying a positive-going square-wave 

potential scan (with amplitude of 30 mV, step potential of 2 mV, frequency of 20 Hz). The scanning was 

terminated at 0.3 V. 

3. Results and Discussion  

3.1. Characterization of the rGO-SPCE 

The rGO was electrochemically deposited on SPCE via cyclic voltammetry in the GO suspension. 

Figure 2 shows the cyclic voltammograms of the bare SPCE in phosphate solution (Figure 2a) and GO 

suspension (Figure 2b).  

Figure 2. (a) CVs of bare SPCE in phosphate buffer (i) and phosphate buffer containing GO 

(ii) for the first circle; (b) CVs of bare SPCE in phosphate buffer containing GO (10 cycles). 
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As shown in Figure 2a, a cathodic peak at about −0.9 V appeared in the CV curve of the bare SPCE  

in the GO suspension, which should be attributed to the irreversible chemical reduction of  

several oxygen-containing functional groups on the exfoliated GO sheets. As the scan cycle increased, 

the cathodic peak gradually and positively shifted and the peak current decreased (Figure 2b).  

This result may be related to the deposited layer of GO sheets and the degree of reduction of the GO on 

the SPCE surface.  

The SEM morphologies of the bare SPCE and rGO-SPCE are respectively shown in Figure 3. From 

Figure 3a, it can be seen that there were some impurities on the surface of bare SPCE. Based on  

Figure 3b, it was obvious that the rGO film was homogeneously deposited onto the electrode with a 

typical crumpled and wrinkled sheet structure. The wrinkled nanostructure of rGO sheets could provide 

a larger active area for the deposition of heavy metal ions in the preconcentration step. 
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Figure 3. SEM images of (a) bare SPCE and (b) rGO modified SPCE as working electrode. 

 

Raman spectroscopy was employed to explore the structural changes of GO caused by the 

electrochemical reduction. The Raman spectrum of GO sheets is characterized by two main components, 

the D band (1,330~1,360 cm
−1

) originating from the edges which can be attributed to either defects or to 

the breakdown of translational symmetry [21], and the G band (1,580~1,600 cm
−1

) corresponding to the 

first order scattering of the E2g phonon of sp
2
 carbon atoms (Figure 4). For the produced rGO after 

electrochemical reduction, the intensity ratio (ID/IG) of D band to G band increased (Table 1). It could 

be deduced that the reduction had induced a decrease in the size of in-plane sp2 domains and an 

expansion of the disorder in the rGO [22]. The structural changes of rGO film after the detection of Pb
2+

 

were also studied (Figure 4). It could be found that ID/IG decreased slightly. This should be possibly 

caused by the residual Pb on the rGO film after stripping procedure, which occupy and thus reduce the 

defects on the edges of rGO film. 

Figure 4. The Raman spectrum of GO film, rGO films before and after Pb
2+

 detection.  
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Table 1. A summary of Raman shift and intensity obtained from various films. 

Materials on the Working  

Electrode of SPCE 

D Band G Band 
ID/IG 

Shift/cm
−1

 Intensity/a.u. Shift/cm
−1

 Intensity/a.u. 

GO film 1,333.9 16,723.7 1,597.7 15,870.7 1.05 

rGO film before Pb2+ detection 1,339.9 13,699.5 1,604.7 12,386.7 1.10 

rGO film after Pb2+ detection 1,351.1 1,069.0 1,598.7 993.6 1.07 

(a) (b)
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In order to explore the variation in the surface chemistry of the SPCE before and after modification of 

rGO, the electrochemical properties of the SPCE were evaluated using the Fe(CN)6
3−/4−

 redox probe 

(Figure 5). The peak current and peak-to-peak potential separation both act as important indicators  

to reflect the charge transfer properties at the electrode surface. As shown in Figure 5, a pair of 

well-defined and quasi-reversible redox peaks was observed at the CVs both of bare SPCE and 

rGO-SPCE. The anodic peak current of rGO-SPCE (ca. 3.91 × 10
−5

 A, line ii) is larger than that of the 

bare SPCE (ca. 2.88 × 10
−5

 A, line i), indicating the increased active area of the SPCE after deposition of 

rGO sheets. The peak-peak potential separation of the rGO-SPCE is about 140 mV (line ii) while that of 

the bare SPCE is 260 mV (line i), suggesting the faster electron transfer at the rGO-SPCE surface [23] 

Therefore, the electrochemical deposition of rGO increased the active sites of the electrode surface, 

promoted the electron transfer, and thus improved electrochemical properties of the SPCE. 

Figure 5. CVs of bare SPCE(i) and rGO-SPCE(ii) in 5 mM K3[Fe(CN)6]/0.1 M KCl 

solution. Scan rate: 50 mV/s. 
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3.2. Detection of Pb
2+

 Using rGO-SPCE 

The accumulation potential and accumulation time are the most critical factors for SWASV analysis. 

Here, the deposition potential and deposition time were respectively optimized by testing of the standard 

solution containing 50 ppb Pb
2+

.  

3.2.1. Optimization of Accumulation Potential  

As shown in Figure 6, the peak current gradually increased when the deposition potential increased 

from −1.4 V. When the deposition potential was up to −1.2 V, the maximum peak current was obtained. 

Then after a relatively steady plateau, the peak current quickly decreased as the deposition potential 

increased to −1.0 V. This was the result of the hydrogen evolution background that occurred at more 

negative potentials [24]. Thus, deposition potential at −1.2 V was considered to be the optimal 

accumulation potential for the determination.  
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Figure 6. Effect of deposition potential on the peak current response. The data for 

respective error bar were obtained from four separate experiments. 
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3.2.2. Optimization of Accumulation Time 

The peak current responses of the rGO-SPCE using square wave voltammetry (SWV) were measured 

at different deposition time. As shown in Figure 7, with increasing of deposition time from 180 s to 420 s, 

the stripping peak current gradually increased.  

Figure 7. Effect of deposition time on the peak current response. The data for respective 

error bar were obtained from four separate experiments. 
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When the deposition time range was from 300 s to 480 s, the peak current response was at a plateau of 

high amplitude, and the peak current reached maximum when deposition time was 420 s. The peak 

current decreased quickly after the deposition time was above 500 s. Thus, 420 s was chosen as the 

optimal accumulation time. 

3.2.3. Detection of Pb
2+

 in Standard Solution 

Under the optimal operating conditions, the rGO-SPCE was applied for the detection of Pb
2+

 by using 

SWASV. Figure 8a shows the stripping voltammograms for different concentrations of Pb
2+

 on the 
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rGO-SPCE. A well-defined peak at −0.50 V corresponded to the stripping peak current of Pb
2+

.  

Figure 8b shows the linear fitting result between the response of the rGO-SPCE and Pb
2+

 concentrations. 

The calibration curve (Figure 8b) showed that the linear response range of the rGO-SPCE to Pb
2+

 ranged 

from 5 to 200 ppb. A detection limit of 1 ppb was obtained with the calculation based on signal-noise 

ratio (S/N) equal to 3. Compared to the previously reported results from using different types of modified 

screen-printed electrodes [12,14–16], the rGO modified SPCE displayed a wider linear range for Pb
2+

 

detection while maintaining a high sensitivity, as shown in Table 2.  

Figure 8. (a) SWV of rGO-SPCE in NaOH/HAc solution containing various 

concentrations of Pb
2+

; (b) The calibration curve of the linear dependence of cathodic peak 

current on Pb
2+

 concentrations. The data for respective error bar were calculated from four  

separate experiments. 
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Table 2. The Pb
2+

 detection performance of the as-prepared sensor, compared with  

the literatures.  

Functional Material on SPE Linear Response Range/ppb Limit of Detection/ppb Reference 

Bismuth/crown ether/Nafion 500~60,000  110  [14] 

Bismuth oxide 20~300  8 [15] 

Gold film 2~16  0.5 [12] 

Carbon nanotubes 2~100 0.2 [16] 

Reduced graphene oxide 5~200  1 This work 

3.3. Interference Test 

The influence effect of the heavy metal ions Cd
2+

 and Cu
2+

 in the solution on the detection of Pb
2+ 

was investigated. As shown in Figure 9a, the stripping potential of Cd
2+

 was at −0.65 V, which was 

staggered with respect to that of Pb
2+

. When the concentration of Cd
2+

 was no more than 50 ppb, there 

was no interference on the measurement results of Pb
2+

. As the concentration of Cd
2+

 increased to  

100 ppb, the stripping peak current of Pb
2+

 was reduced obviously, indicating the interference effect of 

the presence of Cd
2+

 at high concentrations. In other words, a competitive adsorption behavior of Cd
2+

 

and Pb
2+

 was found on rGO-SPCE surface when Cd
2+

 was at high concentrations. Figure 9b demonstrates 

the analysis result of interference test data in the presence of different Cd
2+

 concentrations. Similarly, 

examination of possible interferences on Pb
2+

 solutions in the presence of different Cu
2+

 concentrations 
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was tested. Figure 10a shows that no stripping peaks were seen for Cu
2+

 for the concentration range 

examined. A previous report showed that the Cu
2+

 stripping peak was at −0.18 V by utilizing 

screen-printed carbon electrode [25]. The rGO-SPCE displayed no selectivity toward Cu
2+

 in the 

solution. Moreover, the Cu
2+

 at concentrations below 100 ppb had no marked effect on the Pb
2+

 

stripping peak at −0.50 V, and the analysis result of interference test data is shown in Figure 10b. 

Figure 9. (a) SWV of rGO-SPCE for Pb
2+

 solution with the coexistence of the same 

concentration of Cd
2+

; (b) The analysis result of interference test data in the presence of 

Cd
2+

 at different concentrations.  
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Figure 10. (a) SWV of rGO-SPCE for Pb
2+

 solution with the coexistence of the same 

concentration of Cu
2+

; (b) The analysis result of interference test data in the presence of 

Cu
2+

 at different concentrations. 
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3.4. Detection of Pb
2+

 in Real Food Samples  

The pre-treated samples were detected by using the rGO modified SPCE with SWV. In order to verify 

the reliability of electrochemical analysis method, the results were compared with those obtained from 

graphite furnace atomic absorption spectrometry (GFAAS). As shown in Table 3, the experimental 

results showed that the response values of rGO-SPCE sensor were very close to those determined using 

the GFAAS method. The small value of relative standard deviation (R.S.D.) suggests the good stability 

of the as-prepared rGO-SPCE. The amount of Cd
2+

 in real samples, which is considered as the main 

interference for Pb
2+

 detection, was measured by GFAAS. It was found that the Cd
2+

 concentration was 

about 1 ppb in tap water, 0.5 ppb in fruit juice, 8 ppb in preserved eggs, 1 ppb in black tea, and 5 ppb 
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in green tea. The acceptable recovery indicated the Cd
2+

 of low concentrations in the real sample had 

negligible effects on the electrode performance, and the as-prepared electrode shows the promising 

possibilities for practical applications.  

Table 3. Comparison of the results of electrochemical analysis method and GFAAS. 

Real Sample 
GFAAS Electrochemical method 

Found/ppb Found/ppb R.S.D. (n = 4)/% Recovery/% 

Tap water 0.98 1.09 1.93 / 

Tap water added 5 ppb 6.04 6.22 1.71 102.13 

Tap water added 15 ppb 16.75 17.95 2.30 111.56 

 Tap water added 45 ppb 46.89 43.67 2.54 94.75 

Orange juice Undetected Undetected / / 

Orange juice added 5 ppb 5.28 5.71 1.43 114.20 

Orange juice added 15 ppb 13.90 13.15 2.17 87.67 

Orange juice added 45 ppb 46.24 46.85 3.55 104.11 

Apple juice Undetected Undetected / / 

Apple juice added 5 ppb 5.16 5.32 2.01 106.40 

Apple juice added 15 ppb 15.98 15.39 2.41 102.60 

Apple juice added 45 ppb 46.73 47.56 3.13 105.69 

Preserved eggs (Brand A) 0.20 Undetected / / 

Preserved eggs (Brand B) 0.40 Undetected / / 

Preserved eggs (Brand C) 0.91 Undetected / / 

Black tea 11.57 12.43 1.63 / 

Green tea 55.32 56.10 1.98 / 

4. Conclusions 

The study found that modification of screen-printed carbon electrode by reduced graphene oxide can 

significantly improve the electrochemical properties of the electrode. The rGO-SPCE displayed a wide 

linear response range for detection of lead ions in the solution while maintaining a high sensitivity. 

Moreover, Cd
2+

 at concentrations below 50 ppb and Cu
2+

 at concentrations below 100 ppb both cause 

minimal interference with the Pb
2+

 detection. The results on the determination of Pb
2+

 in real food 

samples by the disposable sensor were verified by graphite furnace atomic absorption spectroscopy. The 

performance characteristics indicated the electrochemical analysis method holds promise for rapid, 

accurate, low-cost and on-site detection of lead in foods. 
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