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Abstract: Notoginseng is a classical traditional Chinese medical herb, which is of high 

economic and medical value. Notoginseng powder (NP) could be easily adulterated with 

Sophora flavescens powder (SFP) or corn flour (CF), because of their similar tastes and 

appearances and much lower cost for these adulterants. The objective of this study is to 

quantify the NP content in adulterated NP by using a rapid and non-destructive visible and 

near infrared (Vis-NIR) spectroscopy method. Three wavelength ranges of visible spectra, 

short-wave near infrared spectra (SNIR) and long-wave near infrared spectra (LNIR) were 

separately used to establish the model based on two calibration methods of partial least 

square regression (PLSR) and least-squares support vector machines (LS-SVM), 

respectively. Competitive adaptive reweighted sampling (CARS) was conducted to identify 

the most important wavelengths/variables that had the greatest influence on the adulterant 

quantification throughout the whole wavelength range. The CARS-PLSR models based on 

LNIR were determined as the best models for the quantification of NP adulterated with 

SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the 

three models respectively. The research demonstrated the potential of the Vis-NIR 

OPEN ACCESS 

mailto:yhe@zju.edu.cn


Sensors 2013, 13 13821 

 

 

spectroscopy technique for the rapid and non-destructive quantification of NP  

containing adulterants.  

Keywords: spectral analysis; adulteration; chemometrics; least-square support vector  

machine (LS-SVM); partial least square regression (PLSR); competitive adaptive 

reweighted sampling (CARS) 

 

1. Introduction 

Notoginseng the root of Panax notoginseng (also known as Panax pseudoginseng, or sanchi in 

Chinese), is a highly valued traditional Chinese medical plant because of its hemostatic and 

cardiovascular functions [1]. Notoginseng contains saponins (commonly referred to ginsenosides and 

notoginsenosides), essential oils, amino acids, polysaccharides, and flavonoids [2], and has been found 

to have pharmacological antioxidative, anti-inflammatory, anti-coagulation, neuroprotective, anti-fibrotic, 

anti-diabetic, anti-cancer, proangiogenic, cardiovascular and cerebrovascular ischemia protective 

functions, as well as anti-atherogenic effects [3].  

Authentication of food and ingredients is of crucial concern to both consumers and food processors 

in public-health and economic terms. The purity of food ingredients is easily subject to abuse by 

suppliers [4,5]. Numerous food products are susceptible to being deliberately adulterated, especially 

when there are other low-cost products that have similar appearances and physical characteristics  

with the corresponding food products. Notoginseng is one such food product that is easily subject to 

tampering. Some businessmen deliberately adulterate notoginseng powder (NP) with Sophora 

flavescens powder (SFP) or corn flour (CF) into because of their much lower prices. Because SFP and 

CF have similar appearances and physical characteristics as NP, it is almost impossible for consumers 

to identify the purity of NP only by relying on naked eyes. At present, for most consumers, 

identification of NP mainly relies on the examiner‟s subjective senses [6].  

Visible and near infrared (Vis-NIR) spectroscopy has been successfully proved as an efficient and 

advanced tool for rapid and nondestructive determination of food quality [7,8]. According to spectral 

ranges, Vis-NIR spectroscopy is generally divided into the visible spectrum (400–700 nm), short-wave 

NIR spectra (SNIR, 700–1,100 nm) and long-wave NIR spectra (LNIR, 1,100–2,500 nm). The visible 

spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. It mainly 

records the color information of samples. NIR spectroscopy technique records the spectral bands that 

mainly correspond to C–H, O–H, and N–H vibrations, which are overtone and combination bands.  

Vis-NIR spectroscopy with fiber optic diffuse reflectance probe can be executed with little sample 

preparation and can be remotely controlled which makes the whole operation more convenient [9].  

Vis-NIR spectroscopy has advantages over some of the conventional techniques of food analysis, e.g., 

it is rapid, timely and less expensive, hence is more efficient when a large number of samples are 

involved and many analyses are required. Moreover, Vis-NIR spectroscopy does not require expensive 

and time-consuming sample pre-processing or the use of chemical extractants. It is perhaps for these 

reasons that Vis-NIR spectroscopy could be considered as a possible alternative to enhance or replace 

conventional laboratory methods for the detection of NP adulterants. Recently, Vis-NIR spectroscopy 
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is an emerging analytical technique to measure the internal qualities of powders [10–13]. Specifically 

in the analysis of the adulterant identification of powders,Wu, et al. [14] applied Vis-NIR spectroscopy 

for the rapid and noninvasive quantification of two common adulterants (flour and mungbean powder) 

in Spirulina powder. Borin, et al. [15] quantified common adulterants in powdered milk by NIR 

spectroscopy. Shi, et al. [16] applied NIR spectroscopy to characterize powder blending, testing a 

ternary powder mixture composed of lactose, avicel, and fine and coarse acetaminophen powder. 

However, to the best of our knowledge, no such research endeavors for the quantification of NP with 

adulterants using Vis-NIR spectroscopy technique have been reported yet.  

Given the limited effort on the investigation of rapid techniques for determination NP with 

adulterants, the major objective of this study was to identify the feasibility of using Vis-NIR 

spectroscopic technique to rapidly and non-invasively quantify NP with adulterants. The specific aims 

of this paper were to: (i) quantify NP with adulterants using visible spectra (360–700 nm), SNIR 

spectra (700–1,040 nm) and LNIR spectra (937–2,500 nm) based on treatments with a single SFP 

adulterant, single CF adulterant, and the mixture of both adulterants; (ii) evaluate the adoption of 

partial least squares regression (PLSR) and least-squares support vector machines (LS-SVM) methods 

to accomplish the adulterant analysis; and (iii) select which spectral wavelengths may be best suited 

for the adulterant quantification. 

2. Materials and Methods 

2.1. Sample Preparation  

Pure NP used in this study was obtained from Tongrentang Chinese Medicine (Beijing, China). The 

SFP used in this study was produced by Haozhou Daozhuang Co. Ltd., Haozhou, China. The CF used in 

this study was produced by Chengdu Hongsheng Co. Ltd., Chendu, China. Three NP sets were prepared: 

(1) a set of five NP treatments with SFP as a single adulterant; (2) a set of five NP treatments with CF 

as a single adulterant; and (3) a set of nine NP treatments with both SFP and CF as adulterants. The 

SFP constituents in the first NP treatment set were 0%, 5%, 10%, 15%, and 20% by mass (Design A in 

Table 1). Similarly, the CF constituents in the second NP treatment set were 0%, 5%, 10%, 15%, and 

20% by mass (Design B in Table 1). Meanwhile, in the third NP treatment set, there were 5% and 5%, 

5% and 10%, 5% and 15%, 10% and 5%, 10% and 10%, 10% and 15%, 15% and 5%, 15% and 10%, 

and 15% and 15% in percentages by mass for SFP and CF constituents, respectively (Design C in 

Table 1). Each treatment in any set had 20 samples, resulting in 100 samples in the treatment A and B 

sets, respectively, and 180 samples in treatment C set. All samples were prepared using an electronic 

balance. The mixing process was carried out using a mortar. 
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Table 1. Sets of five notoginseng powder (NP) treatments with a single adulterant of 

Sophora flavescens powder (SFP) (Experimental design A), with a single adulterant of 

corn flour (CF) (Experimental design B), and with both SFP and CF as adulterants 

(Experimental design C). 

Experimental Design Treatment No. NP% by Mass (g/g) SFP% by Mass (g/g) CF% by Mass (g/g) Sample Number 

A 

1 100 0 0 20 

2 95 5 0 20 

3 90 10 0 20 

4 85 15 0 20 

5 80 20 0 20 

B 

1 100 0 0 20 

2 95 0 5 20 

3 90 0 10 20 

4 85 0 15 20 

5 80 0 20 20 

C 

1 90 5 5 20 

2 85 5 10 20 

3 80 5 15 20 

4 85 10 5 20 

5 80 10 10 20 

6 75 10 15 20 

7 80 15 5 20 

8 75 15 10 20 

9 70 15 15 20 

2.2. Spectral Measurement 

A USB4000 Miniature Fiber Optic Spectrometer (The Ocean Optics, Inc., Dunedin, FL USA) was 

used to measure Vis-SNIR reflectance spectra of samples in the 350–1050 nm region. A NIR256-2.5 

Spectrometer (The Ocean Optics, Inc) was used to measure LNIR reflectance spectra of samples in the 

range of 900–2,550 nm. Each sample had powders in a uniform container (1 cm in height, 1 cm in 

diameter). The surface of the sample was smoothed. A fiber-optic probe was placed at a distance of  

10 mm and 90° angle away from the surface of the sample. The spectrum of each sample was the 

average of 10 successive scans. To improve the signal to noise ratio, spectra at some wavelengths were 

not considered. As a result, the spectra of wavelengths (360–700 nm) measured by USB4000 were 

used as the visible spectra (VIS), the spectra of wavelengths (700–1,040 nm) measured by USB4000 

were used as the short-wave near infrared spectra (SNIR) and the spectra of wavelengths (937–2,500 nm) 

measured by NIR256-2.5 were used as the long-wave near infrared spectra (LNIR).  

2.3. Model Calibration 

In the model calibration, PLSR and LS-SVM were applied, respectively, to establish calibration 

models according to the spectral information of samples in the calibration set with their reference NP 

concentrations. After the model was established, the prediction set was then analyzed in order to estimate 

the actual predictive capability of the established models, to minimize the concrete risk of overfitting 
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and to avoid chance correlations. The prediction set was independent of the calibration set and was 

applied only after the model was established. In this work, from the 20 samples in each treatment,  

15 samples were used for calibration or model establishment, while the remaining five samples were 

used for prediction. 

PLSR analysis proposed by Gerlach, et al. [17] is widely used for calibration in current spectral 

analyses methods. Known as a bilinear factor method, PLSR attempts to find multidimensional 

direction in the spectral matrix (X) that explains the maximum multidimensional variance direction in 

the column vector (Y) [18]. Both the spectra (response variables) and concentration (dependent 

variables) matrixes are decomposed simultaneously in the PLSR calculation. After the calculation, a 

set of orthogonal factors (latent variables, LVs) is projected. The first few LVs that are most related to 

predict dependent variables are then used for the model calibration. The calculation of PLSR was 

carried out using Unscrambler V9.7” (CAMO PROCESS AS, Oslo, Norway). 

LS-SVM is an least squares version of support vector machines (SVM) proposed by Suykens and 

Vandewalle [19]. It applies least squares error in the training error function [20]. LS-SVM finds the 

solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem 

for classical SVM. Radial basis function (RBF) kernel was used as the kernel function of LS-SVM, as 

it is a nonlinear function and a more compact supported kernel [21]. A grid-search technique with 

leave one out cross-validation was used in the LS-SVM calibration process to determine the optimal 

parameter values of LS-SVM model, namely the regularization parameter γ and the RBF kernel 

function parameter σ2. For each combination of γ and σ2 parameters, the root mean square error of 

cross-validation (RMSECV) was calculated. The optimum parameters were selected when they produced 

the smallest RMSECV. The details of LS-SVM description was shown in the literature [22]. In this 

study, LS-SVM was executed using Matlab 2011a software (The Mathworks, Inc., Natick, MA, USA). 

The LS-SVM toolbox (LS-SVM v 1.5, Suykens, Leuven, Belgium) was applied in MATLAB to derive 

all of the LS-SVM models. 

2.4. Variable Elimination Using Competitive Adaptive Reweighted Sampling (CARS)  

Vis-NIR spectral data have a high degree of dimensionality with collinearity and redundancy 

among contiguous variables (wavelengths). Much of the same information is contained in the congruent 

wavelengths that are related to the similar constituents [23]. On the other hand, redundant information 

is included in those wavelength variables that are correlated with their neighboring variables. Moreover, 

some variables may contain irrelevant information or noise rather than pertinent information to quality 

attributes of samples. Eliminating those collinear and redundant variables from the full-spectrum has 

shown positive improvements on the prediction accuracy in many cases [24–27]. In this study, CARS 

was used to select the most important variables that had less redundancy and contributed most in the 

quantification of adulterated NP. CARS algorithm was proposed by Li, et al. [28] to select an optimal 

combination of the variables from the full range variables coupled with PLSR. The selection is based 

on the absolute coefficients of variables in the PLSR model, which are set as an index for evaluating 

the importance of each variable. The variables with large absolute coefficients have more chance to be 

selected in the CARS calculation. In general, there are four successive steps in each CARS sampling 

run, namely Monte Carlo model sampling, enforced wavelength reduction by exponentially decreasing 
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function (EDF), competitive wavelength reduction by adaptive reweighted sampling (ARS) and 

RMSECV calculation for each subset. Monte Carlo (MC) sampling runs aim to select the variables  

that are of high adaptability regardless of the variation of training samples. EDF is used to eliminate 

the variables with relatively small absolute regression coefficients. ARS is carried out to further select 

variables utilizing the principle of „survival of the fittest‟ that is the basis of Darwin‟s Evolution 

Theory [29]. At last, the optimal variable set is determined according to the RMSECV. In this work, 

the processes of CARS selection were performed with the aid of Matlab 2011a software. The model 

establishment using the full range spectra (328 variables for visible spectra, 378 variables for SNIR, 

and 241 variables for LNIR) was called Method I; while using only the important wavelengths selected 

by CARS was called Method II throughout this paper. 

2.5. Model Evaluation Standard 

The predictive abilities of the models were evaluated according to some statistics, such as correlation 

coefficient of calibration (rC), root mean square error of calibration (RMSEC) and coefficient of 

determination of calibration (R
2 

C) for the calibration process, and correlation coefficient of prediction 

(rP), root mean square error of prediction (RMSEP), residual predictive deviation (RPD), and 

coefficient of determination of prediction (R
2 

P) for the prediction process. The standard for evaluating 

the performance of a model is that a good model should have high correlation coefficients (rC and rP), 

high coefficient of determination (R
2 

C  and R
2 

P ), and the low root mean square errors (RMSEC and 

RMSEP) as well as a small difference between RMSEC and RMSEP. 

3. Results and Discussion 

3.1. Spectral Analysis  

Figure 1 shows the spectra of samples from Designs A and B in Vis-NIR regions. In the visible 

region, there were absorption peaks for all the curves around 450 nm, and the spectra at other bands 

were generally reflected. This was the reason why the pure NP and adulterated NP had a grey colour. 

In the SNIR region, a weak absorbance was found around 980 nm that was assigned to the O–H 

stretching second overtone of water, which was explainable as there was little water in the NP. The 

absorbance at 1,225 nm was assigned to the second overtone of C–H stretching. The absorbance at 

1,450 nm was assigned to the first overtone of O–H stretching. The absorbance at 2,140 nm was 

assigned to the combination overtone of C–H and C=C stretching. The absorbance at 2,380 nm was 

assigned to the second overtone of O=C deformation. The absorbance at 2,488 nm was assigned to the 

combination overtone of C–H and C–C stretching of starch [30,31]. Generally speaking, the spectral 

profiles of samples from Designs A and B had similar trends and appearances, respectively. In the 

visible region, that was mainly because the colors of SFP and CF were very close to that of NP. In the 

near-infrared region, it was also difficult to observe the differences between the pure samples and the 

adulterated samples. There were three main reasons for this: firstly, in the adulterated samples, the 

contents of SFP and CF in the samples were relatively low. Secondly, these three kinds of powders 

(NP, SFP, and CF) are all organic matters and have similar chemical bonds, resulting in similar 

spectral profiles. Thirdly, the near-infrared spectra are overtone and combination bands of the  
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mid-infrared spectra. There were many wide absorption bands with overlaps, weak absorption and low 

sensitivity for the pure and adulterated NP samples. There was no feature peak directly related to the 

adulterants in the reflectance spectral profiles or the second derivative spectra (data are not shown). 

When more samples were considered, the spectral profiles of the tested samples showed various 

magnitudes. Therefore, the adulteration couldn‟t be directly discriminated from the spectra only by 

naked eyes. It was still difficult to find relationships between spectra and the content of NP directly. 

Instead, chemometrics were employed for the data mining and analysis. Because most spectral 

preprocessing algorithms are conducted based on the full range spectra and it is difficult to obtain the 

preprocessed spectra at only several optimal wavelengths by using wavelength dispersion devices, no 

preprocessing treatments were applied to the spectral data during the selection of optimal wavelengths 

and the development of the calibration model in this study. 

Figure 1. Spectral patterns of the tested notoginseng powder (NP) adulterated by different 

concentrations of sophora flavescens powder (SFP) and/or corn flour (CF) in 360–1,040 nm 

(a) and 937–2,500 nm (b). Percentages are shown by mass (g/g). 

  

(a) 360–1040 nm (b) 937–2500 nm 

3.2. Quantitation of Adulterated NP Based on Full Range Spectra 

Establishment of regression models for the quantification of NP adulterated by SFP (Design A) CF 

(Design B), and the mixture of two adulterants (Design C) was executed using LS-SVM algorithm 

based on the data of visible, SNIR, and LNIR spectra, respectively (Table 2). When visible spectra 

were used for the model establishment, the LS-SVM model had good prediction for Design A. The 

statistical result expressed as rC between the samples‟ full range spectra and their NP concentrations 

was 0.971 with a RMSEC of 1.693%. In addition, the model had a rP of 0.932 and a RMSEP of 

2.778%. When Design B was analyzed, the LS-SVM of visible spectra had a reasonable result with a 

rC of 0.950 and a RMSEC of 2.269 in calibration, and a rP of 0.845, and a RMSEP of 3.809% in 

prediction. Meanwhile, the performance of the LS-SVM model based on visible spectra was not 

satisfactory for Design C, where rP was only 0.688 and RMSEP was over 4%. When SNIR was used 

for the model establishment, the LS-SVM model had good results for both Designs A and B. In 

general, the SNIR had similar prediction result to the visible spectra for Design A, but had better result 

for Design B, where the RMSEP decreased by 53.7% to 2.029%. However, the SNIR also failed for 

Design C. Its LS-SVM model had the RMSEP of 3.830 with rP of 0.786. When LNIR was applied, 
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similar results were obtained for Designs A and B, compared with the visible and SNIR spectra. On the 

other hand, the LNIR offered a good prediction for Design C, in which the rC was 0.892, the rP was 

0.898, and the RMSEP was less than 2%. PLSR was also considered for the model calibration. In most 

cases, LS-SVM obtained better results than PLSR, except the case that LNIR was used for Design B. 

In general, the analysis of Designs A and B could be successfully achieved by using visible or SNIR 

spectra, which were both acquired using the USB4000 Miniature Fiber Optic Spectrometer. However, 

due to the limited information on hydrogen containing bonds, such as O–H, C–H, and N–H provided 

by visible and SNIR spectra, it was difficult to use the spectra from 360 nm to 1,040 nm to do the 

quantification of NP adulterated by the mixture of two adulterants. Because more information relevant 

to the hydrogen-containing bonds is contained in the LNIR, it showed its extraordinary capability of 

prediction compared to the visible and SNIR spectra for Design C. In addition, by analyzing the absolute 

differences between RMSECV and RMSEP, which was a standard to evaluate the robustness of 

established models, it was found that only the LS-SVM model established based on SNIR for Design C 

was overfitted, where the difference was over 3%. Other models had their differences less than 2%, 

showing that the most LS-SVM models (Method I) for the quantification of adulterated NP were not 

overfitted and had a good robust feature.  

Table 2. Results of regression models for the quantification of Notoginseng powder (NP) 

adulterated by sophora flavescens powder (SFP), corn flour (CF), and the mixture of two 

adulterants using least-squares support vector machines (LS-SVM) algorithm based on the 

data of visible spectra, short-wave near infrared spectra (SNIR), and long-wave near infrared 

spectra (LNIR), respectively. 

Adulterant 
Spectral 

Range 

Modeling 

Method 
LVs 

Calibration Prediction 

rC  R
2 

C RMSEC (%) rP R
2 

P  RMSEP (%) RPD 

SFP Visible LS-SVM / 0.971 0.943 1.693 0.932 0.846 2.778 2.670 

  PLSR 6 0.939 0.882 2.427 0.911 0.787 3.261 2.314 

 SNIR LS-SVM / 0.961 0.922 1.972 0.921 0.841 2.815 2.559 

  PLSR 4 0.867 0.751 3.528 0.874 0.762 3.451 2.055 

 LNIR LS-SVM / 0.984 0.967 1.276 0.917 0.840 2.829 2.501 

  PLSR 4 0.924 0.853 2.709 0.912 0.821 2.994 2.362 

CF Visible LS-SVM / 0.950 0.897 2.269 0.845 0.710 3.809 1.858 

  PLSR 10 0.936 0.876 2.489 0.792 0.602 4.461 1.623 

 SNIR LS-SVM / 0.994 0.987 0.796 0.959 0.918 2.029 3.514 

  PLSR 5 0.851 0.724 3.716 0.821 0.670 4.062 1.746 

 LNIR LS-SVM / 0.986 0.973 1.166 0.930 0.864 2.609 2.724 

  PLSR 5 0.957 0.916 2.047 0.946 0.893 2.308 3.071 

SFP&CF Visible LS-SVM / 0.834 0.685 3.241 0.688 0.471 4.198 1.376 

  PLSR 2 0.548 0.300 4.830 0.574 0.327 4.735 1.220 

 SNIR LS-SVM / 0.996 0.991 0.555 0.786 0.560 3.830 1.577 

  PLSR 1 0.576 0.332 4.720 0.571 0.325 4.743 1.218 

 LNIR LS-SVM / 0.892 0.794 2.621 0.898 0.789 2.652 2.183 

  PLSR 8 0.887 0.787 2.665 0.871 0.754 2.862 2.033 

LVs: Number of latent variables. 
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Figure 2. Changing trends of the number of sampled variables in the competitive adaptive 

reweighted sampling (CARS) calculation. (a) 5-fold the root mean square error of  

cross-validation (RMSECV) values; (b) and regression coefficients of each variable; (c) with 

the increasing of sampling runs. The line (marked by asterisk) denotes the optimal point where 

5-fold RMSECV values achieve the lowest. 

 

3.3. Identification of Effective Wavelengths Using CARS 

CARS was carried out to select the effective variables by using the simple but effective principle 

“survival of the fittest” on which Darwin‟s Evolution Theory is based. The CARS calculation was 

executed based on the visible spectra, SNIR, and LNIR, respectively. As an example, the variation 

trends of some key parameters in CARS along with the increment of sampling runs based on the 

analysis of the LNIR spectra of samples in the calibration set for Design B are shown in Figure 2, in 

which there are three sub-figures included. Figure 2a shows the variation trend of the number of 

sampled variables during the calculation. After a stepwise selection of CARS, only effective variables 

were kept while other insignificant variables were removed efficiently. Figure 2b shows the tendency 

of 5-fold RMSECV values along with the increase in the number of sampling runs. Despite that there 

was no much change of RMSECV before the 45th run, the variable number dramatically decreased 

during the calculation. The RMSECV reached the smallest value of 2.268%, when the run times 

reached 42, which was denoted by an asterisk line. Only four variables remained at this step. After 

that, the RMSECV increased abruptly in two phases due to the removing of two informative variables, 

proving that these two variables were important to the model calibration. The model‟s prediction 

ability would be reduced dramatically without considering these variables. One of the variables is 

indicated by P1 in Figure 2c. When it was eliminated as its coefficient dropped to zero, the RMSECV 

rose up as indicated by dot line L1. Another case is that the coefficient of another variable denoted by 

P2 dropped to zero, resulting in the sharp rising of RMSECV value denoted by dot line L2. The principle 

of CARS calculation could be understood more visualized by analyzing the regression coefficient path 

of each variable (Figure 2c). Each variable had its own regression coefficient path during the CARS 
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calculation. When they were removed by CARS, their coefficients dropped to zero, which is somewhat 

like the incompetence species are exterminated. The remained variables with large coefficients would 

get more probability to survive, just like the „survival of the fittest‟ in Darwin‟s Evolution Theory. 

After the CARS calculation, an optimal combination of some competent wavelengths was retained with 

uninformative variables eliminated. As a result of the CARS calculation, there were eight, three, and 

six variables selected as the effective variables for visible spectra, SNIR, and LNIR respectively in 

Design A, eleven, six, and four variables in Design B, and four, four, and eight variables in Design C. 

The specific effective variables selected by CARS for visible spectra, SNIR, and LNIR for the 

quantification of NP adulterated by SFP, CF and the mixture of two adulterants are shown in Table 3. 

Table 3. Selected effective variables by competitive adaptive reweighted sampling (CARS) 

for visible spectra, short-wave near infrared spectra (SNIR), and long-wave near infrared 

spectra (LNIR) for the quantification of notoginseng powder (NP) adulterated by Sophora 

flavescens powder (SFP), corn flour (CF) and the mixture of two adulterants, respectively. 

Adulterant Spectral Range Selected Effective Variables (nm) 

SFP Visible 406, 408, 431, 439, 475, 476, 537, 697 

 SNIR 755, 926, 1016 

 LNIR 937, 984, 1508, 1951, 2003, 2407 

CF Visible 506, 508, 509, 511, 541, 578, 579, 621, 629, 634, 699 

 SNIR 700, 750, 865, 980, 992, 1040 

 LNIR 1580, 1886, 1945, 2311 

SFP&CF Visible 361, 393, 699, 700 

 SNIR 737, 745, 858, 941 

 LNIR 944, 1004, 1018, 1606, 1912, 2048, 2496, 2502 

3.4. Quantitation of Adulterated NP Using Selected Wavelengths 

As a consequence of the variable selection, new reduced spectral matrix was generated by selecting 

the spectral data only at the effective variables that contained the most relevant spectral information  

of adulteration detection. The new matrix was then used to replace the full range spectra for building 

new quantification models. In order to choose the optimal calibration method for the adulteration 

quantification, the performances of two calibration algorithms of PLSR and LS-SVM were compared 

based on the selected variables. Table 4 shows the results of regression models for the quantification of 

NP adulterated by SFP, CF and the mixture of two adulterants based on the selected wavelengths. 

When visible spectra were used for the model calibration, good predictions were obtained by the 

CARS-LS-SVM models for Designs A and B with an average rP of 0.921 and an average RMSEP of 

2.868%. The CARS-PLSR model obtained a similar result to the CARS-LS-SVM model for Design A, 

but its prediction for Design B was not as good as for Design A. Both CARS-LS-SVM and  

CARS-PLSR models failed for Design C, in which their RMSEP were larger than 4%. In general,  

the results of variable selection were acceptable for visible spectra. After most variables eliminated,  

the performances of the CARS-LS-SVM models maintained the same levels of the corresponding  

LS-SVM models (Method I).  
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Table 4. Results of regression models for the quantification of notoginseng powder (NP) 

adulterated by Sophora flavescens powder (SFP), corn flour (CF), and the mixture of two 

adulterants using partial least squares regression (PLSR) and least-squares support vector 

machines (LS-SVM) algorithm based on the spectra at the competitive adaptive reweighted 

sampling (CARS) selected wavelengths of visible spectra, short-wave near infrared spectra 

(SNIR), and long-wave near infrared spectra (LNIR), respectively. 

Adulterant Range NV 1 Modeling Method LVs 2 
Calibration Prediction 

rC R
2 

C  RMSEC (%) rP R
2 

P  RMSEP (%) RPD 

SFP Visible 8 LS-SVM / 0.966 0.933 1.836 0.918 0.822 2.979 2.376 

 Visible 8 PLSR 5 0.956 0.914 2.072 0.914 0.822 2.982 2.375 

 SNIR 3 LS-SVM / 0.924 0.854 2.700 0.922 0.846 2.779 2.555 

 SNIR 3 PLSR 3 0.718 0.515 4.923 0.864 0.741 3.598 1.967 

 LNIR 6 LS-SVM / 0.979 0.959 1.431 0.953 0.894 2.305 3.198 

 LNIR 6 PLSR 5 0.953 0.909 2.136 0.940 0.878 2.466 2.869 

CF Visible 11 LS-SVM / 0.961 0.924 1.949 0.923 0.848 2.757 2.581 

 Visible 11 PLSR 7 0.893 0.797 3.183 0.816 0.639 4.250 1.703 

 SNIR 6 LS-SVM / 0.964 0.928 1.897 0.963 0.923 1.964 3.624 

 SNIR 6 PLSR 5 0.854 0.729 3.684 0.805 0.628 4.314 1.646 

 LNIR 4 LS-SVM / 0.987 0.974 1.136 0.949 0.898 2.253 3.139 

 LNIR 4 PLSR 3 0.954 0.910 2.124 0.939 0.880 2.453 2.899 

SFP&CF Visible 4 LS-SVM / 0.744 0.542 3.907 0.664 0.433 4.348 1.328 

 Visible 4 PLSR 3 0.563 0.317 4.773 0.579 0.324 4.746 1.219 

 SNIR 4 LS-SVM / 0.929 0.857 2.180 0.709 0.443 4.310 1.411 

 SNIR 4 PLSR 3 0.649 0.421 4.392 0.620 0.382 4.540 1.274 

 LNIR 8 LS-SVM / 0.903 0.815 2.481 0.891 0.781 2.704 2.152 

 LNIR 8 PLSR 6 0.881 0.777 2.729 0.867 0.744 2.921 1.998 
1 NV= Number of variables;2 LVs= Number of latent variables. 

When SNIR spectra were considered, the CARS-LS-SVM models did good prediction for Designs 

A and B with an average rP of 0.942 and an average RMSEP of 2.372%, which were similar to the 

corresponding LS-SVM models (Method I). On the other hand, the quantification of adulterated NP in 

Design C was still not successful with the RMSEP over 4%, when the CARS-LS-SVM model was 

established based on SNIR. Moreover, the CARS-LS-SVM model was still overfitted with the absolute 

differences between RMSECV and RMSEP over 2%. However, it was noticed that the difference of 

the LS-SVM model after variable selection (Method II) was much reduced from 3.275% to 2.130%, 

compared with the LS-SVM model (Method I). CARS-PLSR models were also established based on 

SNIR. However, their performances were worse than the corresponding CARS-LS-SVM models for 

all three designs. Especially for Design B, the RMSEP of the CARS-PLSR model was over twice as 

much as that of the CARS-LS-SVM model. By comparing the results of LS-SVM models (Method I) 

and the CARS-LS-SVM models for SNIR, it was found that the variable selection could remain the 

performances for Designs A and B, but was not very successful for Design C, where the RPD value 
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decreased by 11.48%. When the spectra were switched from SNIR to LNIR, both the CARS-PLSR and 

CARS-LS-SVM models had the rC and rP higher than 0.9, showing their good prediction for Designs A 

and B. Moreover, it was noticed that different from the visible and SNIR spectra, the LNIR could 

detect the quantification of adulterated NP for the Design C based on either the CARS-PLSR model or 

the CARS-LS-SVM model. This result was similar to that of the quantitation of adulterated NP based 

on full range spectra of LNIR.  

According to model evaluation standard, the performances of the CARS-PLSR and CARS-LS-SVM 

models were compared. For the Design A, the best model was determined as the CARS-LS-SVM 

model of LNIR, which had the rC of 0.979 and rP of 0.953. The RPD value of this model was 3.198, 

which means the model is usable for most applications [32]. Similarly, the best models for the Designs 

B and C were determined as the CARS-LS-SVM models of SNIR and LNIR, respectively. Their RPD 

values were 3.624 and 2.152, indicating they were usable for screening and for most applications, 

respectively [32]. On the other hand, the optimal models for adulteration detection should not only 

consider the model‟s accuracy, but also the convenience of the model establishment. In general, the 

establishment of PLSR models does not need the projection of kernel functions, and therefore is 

simpler than that of LS-SVM models. When only the CARS-PLSR models were considered, the best 

prediction models were all determined as the LNIR‟s models for three designs. Actually the performances 

of CARS-PLSR models of LNIR were acceptable. The models‟ RPD values for the Designs A and  

B were almost 2.9 and that for the Design C was almost 2. The above results show that the LNIR 

spectroscopy was the most suitable one among the three spectral ranges for the quantification of NP 

with adulterants. Its measurement of using a small spectrometer (dimensions of 153.4 × 105.2 × 76.2 mm) 

was nondestructive, inexpensive, and very convenient to implement. The CARS-PLSR functions of 

LNIR for Designs A, B, and C are shown as follows: 

[ Design A 937 nm 984 nm 1508 nm 1951 nm 2003 nm 2407 nm135.7 29.3 24.1 11.5 13.8 10.5 4.1Y X X X X X X       ] (1) 

[ Design B 1580 nm 1886nm 1945 nm 2311 nm96.9 8.3 3.2 16.2 13.4Y X X X X     ] (2) 

[ Design C 944 nm 1004 nm 1018 nm 1606 nm 1912 nm 2048 nm 2496 nm 2502 nm9.5 13.0 5.1 7.6 9.3 17.1 7.4 6.1 4.7Y X X X X X X X X         ] (3) 

In general, the quantifications of adulterated NP for Designs A and B were easier than that for 

Design C. The appreciable decline in the performances results for Design C compared with Designs A 

and B was most likely caused by the simultaneous presence in the NP samples of two adulterants of 

SFP and CF whose components likely produced complexity in spectra, making the use of visible and 

SNIR spectra incompatible. Given LNIR‟s richer information on hydrogen containing bonds than other 

two spectral regions, it was not surprising that the LNIR spectra performed better. The LNIR spectroscopy 

technique provided adequate quantitation of NP samples adulterated with not only one adulterant of 

SFP or CF but also their mixture.  

4. Conclusions 

The potential of Vis-NIR spectroscopy for rapid quantification of NP with adulterants was investigated. 

The results discussed in this paper indicated that the LNIR spectroscopy was satisfactory as a rapid and 

convenient tool for assessing the NP concentration. Three wavelength ranges of visible, SNIR and 

LNIR were separately considered for the model establishment, and their performances were compared. 
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The results show that the all three ranges could do the NP quantification efficiently when one adulterant 

of SFP (Design A) or CF (Design B) was added into NP. On the other hand, when both SFP and CF 

were added into NP (Design C), only the LNIR spectra, which contained more spectral information on 

hydrogen containing bonds, obtained a good prediction on NP concentration, while the visible and 

SNIR spectra failed in this case. By means of CARS algorithm, a few important spectral variables 

were selected from the full range spectra, so that the high dimensionality with redundancy and 

collinearity among the Vis-NIR spectra was reduced. Moreover, there was a general lowering of the 

difference between RMSEP and RMSEC for CARS models, showing that they were more robust than 

those models established using the full range spectra. Considering both the model‟s accuracy and the 

convenience of the model establishment, the best quantitative models for Designs A, B, C were all 

determined as the CARS-PLSR models with LNIR. In view of the adulterant detection of NP, the 

results of this study verified the substantial propensity of the Vis-NIR spectroscopic technology to be 

an excellent alternative to the time-consuming and laborious processes. 
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