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Abstract: This paper presents a task allocation-oriented framework to enable efficient

in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop

multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds.

The proposed system incorporates a fast task reallocation algorithm to quickly recover

from possible network service disruptions, such as node or link failures. An evolutional

self-learning mechanism based on a genetic algorithm continuously adapts the system

parameters in order to meet the desired application delay requirements, while also achieving

a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time

delay while updating task assignments, we introduce an adaptive window size to limit the

delay periods and ensure an up-to-date solution based on node mobility patterns and device

processing capabilities. To the best of our knowledge, thisis the first study that yields

multi-objective task allocation in a mobile multi-hop wireless environment under dynamic

conditions. Simulations are performed in various settings, and the results show considerable

performance improvement in extending network lifetime compared to heuristic mechanisms.

Furthermore, the proposed framework provides noticeable reduction in the frequency of

missing application deadlines.
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1. Introduction

The growing need to support high performance applications in multi-hop multimedia wireless

sensor networks (MWSNs) [1] while coping with limited node capabilities [2] highlights the necessity

of resource sharing and node collaboration [3–5]. For example, in a surveillance sensor network

consisting of wireless camera nodes [6,7], real-time computation of large amounts of visual data and

performing complex image processing-based algorithms in resource constrained sensor nodes imposes

news challenges for MWSN design. On the other hand, transmitting all the raw image data via multi-hop

wireless communication to a remote gateway or to the cloud and retrieving the computation results

is very costly in terms of energy consumption, as well as large time delays on the order of seconds.

Hence, multimedia in-network processing [8] could be one solution to this problem, which divides a

computationally demanding program into smaller tasks and,then, intelligently assigns them to a set of

nodes in order to efficiently use available network resources. However, additional costs may occur, due

to the multi-hop wireless communication that is required toexchange information among individual

tasks. Hence, task allocation algorithms have to consider the trade-off between processing and

communication costs.

Network dynamicity causes additional complexity in a task allocation system. For example, in an

earthquake relief use case, multiple collaborative agentsequipped with cameras are dispatched to the

emergency scenes to carry out time-critical missions, suchas search and rescue [9], and form a dynamic

MWSN. However, when a critical agent/node leaves the network, due to communication interruption or

physical node failure, serious consequences, such as network service disruption, can occur. In such cases,

control messages are exchanged among nodes in order to isolate the faulty ones and detect the affected

tasks that need to be immediately reallocated to suitable nodes. Furthermore, stochastic movements of

a patrolling agent might affect its own communication or cause interference on its neighbours. This

implies that the effectiveness of a fixed task allocation solution may degrade and eventually become

invalid if there is no update for the solution based on the latest network conditions. The simplest reaction

is to regard each change in the network topology as the arrival of a new task allocation problem that has

to be solved from scratch by re-running the allocation algorithm. Nevertheless, due to the complexity of

MWSNs, assessments of finding a qualified solution are often computationally time consuming, which

has a direct effect on the quality of the computed solution for time-critical applications.

1.1. Motivation

In this paper, the problem of dynamic task allocation and scheduling in MWSNs is considered.

Algorithm complexity and the corresponding runtime to produce and update solutions are explicitly

taken into account. Existing sophisticated heuristic algorithms [10,11] are not suitable for dynamic
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network conditions, due to their algorithm complexity. In contrast, simple and fast algorithms run the

risk of providing only low quality solutions. A genetic algorithm (GA) is a possible alternative to these

heuristic approaches, as a GA is typically designed for multi-variable settings and is shown to be efficient

in solving task allocation and scheduling problems [12,13]. However, GAs are time consuming and,

hence, cannot be directly applied to networks with dynamically changing conditions or topologies. On

the other hand, the execution of a GA can be divided into several sequential stages [14], each of which

requires less resource and executes more quickly. Seeing this fact, the conjecture is that it is possible

to provide an intermediate result of a GA, which is sub-optimal, as a fair solution that suits the latest

conditions in a dynamic network. Furthermore, the quality of the provided solutions can be improved

over time by progressively enhancing the pool of solutions,called the GA population, using an efficient

and fast heuristic that makes corrections based on network changes. Therefore, in this paper, the objective

is to develop a framework that is a combination of an evolutional GA and a heuristic to strike the balance

between algorithm execution time and adaptability to network dynamics.

1.2. Main Contribution

In this paper, the Dynamic Task Allocation and Scheduling (DTAS) framework is presented. DTAS

aims at minimizing the frequency of instances when an application misses an arbitrarily set deadline

(deadline miss ratio), while also extending network lifetime by balancing node energy consumption

levels. To the best of our knowledge, this is the first study that provides multi-objective task allocation

in complex and dynamic multi-hop network environments.

DTAS can be summarized as follows: First, a heuristic minimum hop count algorithm is designed

to guide the initial solution creation, which can effectively reduce problem complexity. Second, a

self-learning process (SLP) based on a GA is applied, which continuously evolves a set of solutions,

so that multiple design objectives can be met. Intermediateresults of SLP can be provided as temporary

sub-optimal solutions to cope with changing network conditions. The fitness function in SLP initially

favours meeting the deadline requirement and, then, gradually leans towards a balanced solution between

task execution time and network lifetime. An adaptive window is proposed to keep the GA execution

time under control, such that the final solution is up-to-date with the most recent network conditions.

Finally, to deal with sudden node or link failure events and to update the solutions in SLP, a Fast Task

Recovery Algorithm (FTRA) is designed to quickly reallocate faulty task assignments.

1.3. Related Work

The task allocation problem in parallel and distributed systems has been extensively studied in both

wired and wireless networks. Existing solutions are based on multi-objective optimization approaches

considering: minimizing task completion time [15,16], reducing energy consumption [11,17,18], load

balancing to achieve an equalized node lifetime [19,20] and maximizing service reliability [21]. In wired

networks, since nodes are often connected with dedicated and high quality links, communication costs

and delays are often considered to be negligible. However, the situation in an MWSN is quite different,

and solutions like [17,19] and [22] consider both processing costs and wireless communication costs.

Integer Linear Programming is adapted in these approaches to solve the problem of energy-efficient
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task mapping and scheduling with deadline constraints. Nevertheless, these algorithms are based on a

single-hop topology, and the time to compute the optimized solution is not added to the overall cost,

which hinders their applicability in large-scale networks.

Heuristic approaches are deterministic and non-backtracking, since task allocation decisions cannot

be changed, even if the decisions are found to be inappropriate at a later stage of the algorithm

execution [11]. Therefore, solutions are likely to be prone to errors, especially in dynamic MWSNs.

To overcome this issue and provide optimal solutions, genetic algorithm (GA)-based multi-hop task

allocation schemes are proposed in [13,20]. Nevertheless, such schemes can only work on static network

conditions and have high time-complexity; hence, they can only provide off-line optimization. In

contrast, recent work in [23,24] consider dynamic task allocation in wireless environments, yet only

single-hop communication is taken into account. Furthermore, most of these studies [11,13] assume a

relatively powerful machine that is capable of running an optimization algorithm whilst meeting task

deadlines. However, such an assumption implies extra hardware cost, hence significantly limiting the

applicability of these algorithms in embedded systems.

The rest of the paper is organized as follows. In Section2, the models and assumptions are

presented, followed by the addressed research problem. Section 3 covers the technologies developed

for task allocation in MWSNs. Then, the proposed DTAS framework is presented in Section4, and the

effectiveness of the design is illustrated in Section5. Finally, Section6 concludes the paper.

2. Preliminaries

2.1. System Models

A Directed Acyclic Graph (DAG)G = (T,E) is used to model an application [11,19]. Each vertex

in the DAG represents a taskTi ∈ T that is connected to other vertices by directed edges. Each task,Ti,

has a workload,pi, representing the processing requirement in terms of the number of CPU clock cycles

to execute the task. The weight on each edge,eij , stands for the amount of data transmitted fromTi to

Tj . A direct edge (eij ∈ E) shows the precedence relations among tasks,i.e. Ti should be completed

beforeTj . Therefore, a DAG has a topological task execution order, which we term the task scheduling

sequence (TSS). Furthermore, an application can iteratively execute the DAG. Around is defined as the

time period of a DAG execution cycle.

The network topology consists of a total number ofM heterogeneous nodesV = {v1, v2, · · · , vM}

that are randomly deployed in the network. For simplicity, transmission power control is not enabled.

Hence, all nodes have a fixed communication range, and they are connected via multi-hop links. Nodes

are battery powered, and each node has a finite energy supply that is not refilled. Heterogeneous initial

battery energy and processing speeds are considered. However, it is assumed that the gateway is much

more powerful and easier to be maintained (e.g., recharge) compared to the remotely distributed nodes. A

non-preemptive scheduling policy is adopted, so that only one job can be processed at each node at a time.

It is assumed that nodes are synchronized and that the wireless channel condition is stable. Furthermore,

in order to perform scheduled multi-hop communication, a bandwidth reservation mechanism is used,
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such as a TDMA (time division multiple access) based MAC (media access control) protocol [25,26].

Unless specified otherwise, each task is executable at everynode.

The network dynamics considered in this study has the following properties:

1. As an example application, surveillance networks with movable agents equipped with wireless

cameras are considered, in which each agent has a probability, pmove, to move at a pointed or

random direction with a speed ofνmove in each round. At present, a pedestrian moving speed is

assumed forνmove (between[0.91, 1.22]m/s).

2. Each node has an exponential distribution of failure probability pf(t) = 1 − e−λt, whereλ is the

average node failure rate in the time interval[0, t] [21].

Communication links in the network may change over time because of these random changes.

However, each node has regular gossip message exchanges with its neighbours and periodically reports

its ownneighbour listto a central network controller (the gateway). Based on the collected information,

the network link topology,L, is updated periodically. A dedicated control channel is used for these

message exchanges, whose energy consumption is included inthe total cost calculation.

2.2. Definitions

The terms used in the rest of the paper are as follows:

1. Network lifetime (NL):The time period until the first node fails due to energy depletion.

2. Schedule length (SL):The execution time of a DAG.

2.3. Problem Definition

The problem that this paper addresses is two-fold. First, anoptimized task allocation solution,s, is

to be found with the objective of maximizing the network lifetime,NL, under the required time-delay

constraints. To achieve this, the total schedule length,SL, must meet the deadline,tdeadline. Hence, the

objective function can be formulated as follows:

max{NL(s), s ∈ total search space}

subject to : SL(s) ≤ tdeadline (1)

Secondly, the chosen solution,s, should be able to update itself, such that it can adapt to network

dynamics. However, this is a challenging task because of thefollowing reasons:

1. Node mobility and node failure events:The optimized task allocation solution may become invalid

when such events occur. Re-assigning the affected tasks canonly serve as a temporary solution,

as re-optimization is required according to emerging network conditions. Nevertheless, due to the

problem complexity, a complete re-run of the algorithm is costly.

2. Algorithm runtime and complexity:The proposed task allocation algorithm runs at the gateway

node, and its algorithm runtime is denoted byK. In static networks, a high-cost algorithm can

work perfectly well as an off-line solution. On the other hand, algorithm runtime is critical in
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dynamic environments. Since optimization parameters haveto be quickly modified in order to

adapt to changing conditions, optimization procedures that require a large value ofK to complete

are likely to produce outdated solutions in dynamic environments.

The main design objectives can be summarised as shown in Figure1.

Figure 1. Design objectives.

Given:
1. An application, DAG

2. A heterogeneous MWSN with:

(a) node mobility and random node failure events

(b) different node capabilities (energy, processing speed)

3. Energy model and cost functions

4. An arbitrary user deadline,tdeadline
5. Gateway processor speed

Do:
1. Perform task allocation and reallocation

2. Schedule the computation and communication events

Such that:
1. The objective function (1) is satisfied

2. Network dynamics are considered

In the following, first, how static task allocation and scheduling is performed in MWSNs is explained.

Then, Section4 presents how thedynamicallocation problem can be solved using our Dynamic Task

Allocation and Scheduling (DTAS) framework.

3. Task Allocation and Scheduling in MWSNs

In a DAG, G, a task pair (Ti, Tj) connected by a directed edge,eij , could be allocated to nodes

that are several hops away from each other in the network. Therefore, multi-hop communication costs

must be included in the task allocation solution structure.Furthermore, task scheduling in an MWSN

needs to take into account particular issues, like parallelprocessing among independent nodes, possible

simultaneous communications and multi-cast transmissions. To tackle these issues, in our previous

work [13], we developed a task allocation model and a multi-hop scheduling mechanism forstatic

MWSNs. Since the proposed DTAS presented in Section4 is based on this model, we briefly describe it

in this section.

3.1. Multi-Hop Extension of Task Allocation

For a solution,s, to be evaluated in a multi-processor environment, first, anencoding process

transformss into individual tasks that can be independently processed.Then, an initial mapping of these
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tasks to network nodes is performed, which is modeled by a three-by-δ matrix,C, called thechromosome,

whereδ is the total number of the tasks in the DAG.

An example is illustrated in Figure2a, which contains a mapping of a three-task DAG to a four-node

network. The elements in the first row are the tasks, while thecorresponding places in the second row

and third row stand for node ID and computation load, respectively. By observing either the matrix C or

the network, it can be seen thatT1 is allocated tov1, andT1’s child tasks,T2 andT3, are allocated tov3
andv4, respectively. Figure2a also demonstrates the communication relation amongst tasks, modeled

by a three-by-γ matrix, E, called theedge, whereγ is equal to the total number of edges in the DAG.

The three elements in each column ofE represent the sender task (T1), the receiver tasks (T2 or T3) and

the total amount of data (e12 or e23) that need to be transmitted.

Figure 2. An example of the multi-hop extension process.

In order to consider multihop communication costs,C andE must be modified. First, relay nodes

are determined by a routing algorithm (e.g., minimum-hop Dijkstra [27]), and then,C and E are

extended by adding information on multi-hop relays. This process is calledmulti-hop extension, and

the extended matrices,C andE, are named thehyper-chromosome(HC) andhyper-edge(HE). This is

shown in Figure2b. Here, taskT4 is called arouting task, with no processing cost, and is allocated to

the relay node,v2, which connectsv1 to v3 andv4. This extension corresponds to the second column of

HC. As a result, virtual links fromT1 to T4, fromT4 to T2 and fromT4 to T3 are created, as shown in the

extended DAG in Figure2b. The second and third columns ofHE correspond to these new links.

Based onHC andHE, the time and energy costs of both multi-hop communication and computation

at the assigned nodes can be calculated, and the network lifetime, NL, and the schedule length,SL,

required by the objective function can be obtained.
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3.2. Computation of the Network Lifetime (NL)

In order to calculate the expected lifetimeNL(s), the computational costs,pi, and the edge costs,eij,

first need to be converted into the actual time and energy costs at the assigned nodes, based on processing

speeds and communication distances.NL(s) is calculated by:

NL(s) = min{
Rvj

E
vj
total

| j = 1, 2, · · · ,M} (2)

whereRv denotes nodev’s residual energy level andEv
total is the total energy consumption during one

round of DAG execution at nodev. Rv can be obtained from periodic node reports whose signallingcost

is explained in Section4.5.

The total cost,Ev
total, includes the computation costs,Ev

p , of all data processing tasks inHC and the

communication costs,Ev
t andEv

r , of data transfer tasks given inHE, as follows:

Ev
total =

∑

T∈HC

Ev
p (T ) +

∑

T∈HE

Ev
t (T ) +

∑

T∈HE

Ev
r (T ) (3)

The energy consumption of processingT onv isEv
p (T ) = tvTP

v, whereP v is the power consumption

of nodev’s processor.tvT is the processing time (sec) of taskT at nodev, calculated bytvT = pT
fv

, where

pT is the computational load (bits) ofT andfv stands forv’s processor speed (bits/sec).

A popular short-range communication energy model [28] is used to calculate communication energy

consumption costs:

Ev
t =







(bet + εfs · d
2) · eij , if d < d0

(bet + εmp · d
4) · eij , if d ≥ d0

Ev
r = ber · eij

where the baseline energy consumption in operating the transmitter and receiver radios are expressed

asbet andber, respectively. The transmission energy consumption is denoted by either the ‘free space’

channel model (εfsd2) or the ‘multi-path fading’ channel model (εmpd
4), depending on the distance,d,

between the two nodes and a distance threshold,d0 [28].

3.3. Computation of the Schedule Length (SL)

Based onHC andHE, multi-hop scheduling should provide a suitable schedule length,SL, that

enables simultaneously occurring communication and parallel processing events. However, interference

between different transmission events and the overlap of task execution at each node should be avoided.

Therefore, the same scheduling method proposed in [13] is applied, where a two-hop interference

model [29] is used and a medium access delay is introduced, such that the sender of a communication

event does not cause interference on its one-hop receivers,and vice versa. Details of computation

scheduling and communication tasks can be found in [13].
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4. The DTAS Framework

Static task allocation in multi-hop wireless networks shown in the previous section is already a

complex process and has been shown to be NP-hard (Non-deterministic Polynomial-time hard) [11],

while network dynamics further complicates the problem. For instance, node mobility and failure events

can easily render a task allocation solution invalid, in which case, a complete re-run of the task allocation

algorithm from scratch is not a feasible option, since this is computationally inefficient. Therefore, a

purely GA or sophisticated heuristics, which have to be re-run after each network update, are not suitable

for dynamic MWSNs. On the other hand, an optimal initialization with a simple recovery process also

struggles to solve this problem, as its performance reducesover time due to network topology changes.

As a remedy to this problem, DTAS is proposed in this paper, which is designed to combine the strength

of both heuristic (efficient) and GA (evolutionary) algorithms, to capture network dynamicity and to

quickly re-adjust task allocation solutions to newly emerging conditions. DTAS is illustrated in Figure3.

Figure 3. The dynamic task allocation framework.

DTAS has the following three main components:

1. Self-learning process (SLP): SLP is a periodically operated GA-based system component that runs

in the system background and performs parallel optimization of task allocation solutions. Unlike

conventional GAs, solutions at each evolutional stage of SLP can be modified based on changes in

network topology. Hence, SLP results can be continuously updated and evolved.

2. Fast Task Recovery Algorithm (FTRA): FTRA is a low-complexity event-triggered system

component, which updates SLP solutions. FTRA can quickly perform task re-allocation when

node or link failures occur.

3. Task Re-allocation Decision Maker (TRDM): TRDM interacts with other system components and

makes task re-allocation decisions based on different network conditions.

As seen in Figure3, the gateway node maintains afeasible solution space, which contains the best

set of solutionsS = (s1, s2, · · · , sn) that are suitable for the latest network conditions.S is an empirical

data history that is used to train existing solutions in order to improve future system performance and

it is periodically updated by SLP and has an adaptive window size ofn, which virtually limits the time

period necessary to renewS. n is modified based on network dynamics and the processing capability of
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the gateway device. Based on the current network conditions, TRDM picks the best available solution

s∗ ∈ S and passes it to theAction Manager, which then performs task re-allocation in the network.

A node and a communication link that are assigned with tasks by s∗ are named as anactive node

(va) and anactive link(la), respectively. In the event of an active node or link failure or multiple such

failures, the execution of the current DAG round is stopped and an alternative best-fit solution inS can

immediately be invoked by TRDM. However, if no valid solution is found inS, then TRDM asks FTRA

to provide alternative solutions. Then, the new round of DAGtask execution would restart, once the

affected tasks have been allocation and rescheduled.

4.1. Solution Space Initialization

When an application arrives, the solution space,S, is first initialized and, then, dynamically updated

by DTAS components. Multi-heuristic approaches are used inorder to provide a suitable system

start-up. The majority of the initial solution space,S, is generated by aMinimum Hop Count (MHC)

algorithm (detailed in the next section), while the rest areprovided by other simple heuristics, such

as Random (Tasks are randomly allocated to nodes.) and Greedy (Tasks are assigned to a single, but

relatively powerful, node in order to reduce communicationcosts). The complementary use of such a

multi-heuristic scheme provides some level of diversity tothe initial solution space, which preventsS

from getting stuck in a local optimum.

4.2. The Minimum Hop Count Algorithm (MHC)

MHC is used for system initialization, as well as being implemented in the FTRA algorithm to

reallocate tasks when network failure events occur. Since afast system response is normally expected for

these two processes, MHC is designed to assign tasks based onhop distance only, rather than calculating

SL and NL. This is because hop distance directly affects communication costs, which normally dominate

the total consumption (in both time and energy) [13,19]. Therefore, a hop distance-based fuzzy search

can efficiently reduce algorithm execution time and providequick sub-optimal solutions to the system.

Details of MHC are provided below.

In a task graph, G, the set of tasks that precede a task,T , is denoted byTpre, and the set of

nodes thatTpre is assigned to isVpre. A task that does not have any predecessor tasks is called a

source task. The assignment of source tasks may depend on individual applications. For instance, in

wireless sensor networks, sensing tasks are source tasks and might be fixed at specific nodes. However,

successor tasks are often processed at other nodes in the network. In such cases, MHC is used to find

cost-effective allocations for the successor tasks. The pseudo-code of MHC is presented in Algorithm1,

which allocates a task,T, to a node,Node(T).

In order to reduce the chance of high-cost multi-hop communication, the candidates for assigning

taskT are chosen among the nodes that have the minimum Total Hop Count (THC) to the nodes inVpre.

This is performed at lines 9–13 of Algorithm1, where hop countsHC
vj
vi from vi to individual nodes

vj ∈ Vpre are summed to calculateTHCi for vi. Then, those nodesvi with THCi ≤ min(THC)+ η are

selected as candidates, and the final node is randomly pickedamong these candidates.η is used to limit

the number of candidate nodes.
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An example of the MHC algorithm is shown in Figure4. T1, T2 andT3 have been assigned tov2,

v5 andv6, respectively. Hence, the goal is to allocateT4 to a suitable node. IfT4 is assigned tov1, the

hop count (HC) fromT1 to T4 is HCv1
v2

= 1. Similarly, the HC fromT2 andT3 to T4 can be obtained

asHCv1
v5

= 4 andHCv1
v6

= 4, respectively. By summing the three HCs, we haveTHC(v2, v5, v6 →

v1) = 9. The table in Figure4a shows that assigningT4 to v4 provides the minimumTHC among all

nodes. Whenη = 1, the candidate set is{v3, v4, v5, v6}.

Algorithm 1 The Minimum Hop Count (MHC) algorithm.

1: At nodevi:

2: for eachT ∈ G based on a task scheduling sequence (TSS)do

3: candidates← ∅

4: if Tpre = ∅ then
5: AssignT as a source task tovi;

6: continue;

7: else
8: DetermineVpre

9: for each nodevi ∈ V do
10: THCi ← 0;

11: for eachvj ∈ Vpre do
12: THCi ← THCi +HC

vj
vi ;

13: end for

14: end for
15: end if
16: for each nodevi ∈ V do
17: if THCi ≤ min(THC) + η then

18: candidates← {candidates, vi};

19: end if
20: end for
21: % randomly select a node fromcandidates

22: Node(T ) = rand(candidates);

23: end for

Note that, ifη is set to zero, only nodes with the minimumTHC can be selected as candidate. As

a result, the solution space loses its robustness, and the final solution may not be the best possible one.

Figure4b shows another example to demonstrate this. The DAG now includes six tasks, whereT1, T2 and

T3 have been assigned tov2, v5 andv6, similar to the previous example in Figure4a. Whenη = 0, T4, T5

andT6 can be assigned to different combinations of nodes, as shownin the matricesC of Figure4b, c.

In Figure4b, v2 is directly chosen forT4 with min(THC) = 0, and then,T5 is allocated tov4 with

min(THC) = 4. Finally,T6 can be assigned to eitherv2, v3 or v4 with the samemin(THC) = 2, and

the aggregateTHC reaches six. In contrast, ifT4, T5 andT6 are assigned tov4, as shown in Figure4c,

the aggregateTHC becomes four, which is a better result. Therefore, in complicated scenarios with

more tasks and various edge costs (eij), η = 0 may not lead to the best possible solution. Thus, the
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purpose of the MHC algorithm is to eliminate inefficient or high-cost solutions and produce candidates

that are more likely to become the best solution. A further refinement among these candidates to pick

the best solutions∗ is performed by SLP, which is described in the next section.

Figure 4. Minimum Hop Count candidate selection.

4.3. The Self-Learning Process (SLP)

In a slowly changing environment, using past solutions as a benchmark point provides suitable

algorithm initialization when seeking new solutions. Based on this fact, SLP is applied to refine the

solution set provided by MHC. SLP is a daemon process that continuously evolves the solution space,

S, in order to generate new task allocations in every time period,K, as depicted in Figure5. To reduce

the algorithm complexity and system response delay, only oneGA generation[14] is performed in each

iteration. Details of the SLP GA used in each stage of the SLP process are presented in Section4.9.

Figure 5. The self-learning process (SLP).

4.4. The Fast Task Recovery Algorithm (FTRA)

When active node failure (Vf ), link failure (Lf ) or multiple simultaneous failure events take place,

event-triggered reports (detailed in Section4.5) containing information about those failure events and
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corresponding network topology changes are sent back to thegateway (Please note, not all node/link

failure events would effect the current allocations∗, which are not belonging toVf andVl, e.g., a node

fails, but with no tasks assigned.). The FTRA algorithm is then used to perform task re-allocations.

The FTRA algorithm is shown in Algorithm2. When a node,vi, in C fails (line3), its tasks have to

be re-allocated. If anyT ∈ Tdefect is a source task (line 8), then FTRA randomly assigns this task to

one of the neighbour nodes. Otherwise, the MHC algorithm (line13) is used to choose the replacement

node. Then, multi-hop extension is performed (line21) in order to avoid any resulting broken links.

Algorithm 2 The Fast Task Recovery Algorithm (FTRA) algorithm.

Require: C, E, Vf

Ensure: New HC, HE

1: % Detect the set of defected tasksTdefect

2: for each nodevi ∈ C do
3: if vi ∈ vf then

4: Include allT assigned onvi in Tdefect

5: % Fix node failure

6: for eachT ∈ Tdefect do

7: Find allVpre for T

8: if Vpre = ∅ then
9: % Re-allocate source tasks

10: ni ← vi’s one-hop neighbours

11: % Randomly select a node fromni

12: Node(T ) = rand(ni)

13: else
14: Node(T ) = MHC(vi)

15: end if
16: UpdateC with T andNode(T )

17: end for
18: end if

19: end for
20: % Fix possible link failure: perform multi-hop extension %

21: C =⇒ HC,E =⇒ HE

4.5. The Task Reallocation Decision Maker (TRDM)

TRDM is the decision maker and the central component of DTAS,which realizes seamless

collaboration and interaction between FTRA and SLP, as seenin Figure6. It makes decisions according

to feedback from the network: (1) periodic reports (no topology change) and (2) event-triggered reports

(active node failure events).
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1. Periodic reports:

Each node in DTAS periodically sends aREPORTmessage to the gateway, providing its latest set of

neighbours and residual energy level. Based on this information, the gateway updates its knowledge of

the network topology and can re-calculateNL by Equation (1), so that the latest energy distribution is

taken into account when new task allocation solutions are generated. The frequency of periodic reports is

equal to the algorithm runtime,K, as too frequent reports cause additional signalling costs, while a long

report period may have a poor adaptation to the network dynamicity. Furthermore, if the TRDM misses

a periodic report, it basically assumes that it would receive the next one and do nothing. However,

in the unlikely case that if the TRDM have not received any periodic report from a particular node

for a long time, including event-triggered reports initiated by its neighbours, it reports the failure of

that node. Then, the TRDM may send additional report requests, which come with the cost of more

contro overhead.

Upon receiving all node reports, TRDM asks FTRA to examine all existing solutionss ∈ S.

Periodic reports do not include situations in whichVf affects s∗, since such cases are handled by

event-triggered reports. However, changes in network topology and residual node energy levels may

influence other existing solutions inS. FTRA identifies any such affected solutions and makes task

re-allocation accordingly.

Once FTRA completes its modifications onS, TRDM initiates SLP. At the end of SLP,S may contain

a better solution,snew, than the current one,s∗, in which case, TRDM selects the new solutions∗ = snew

and passes it to the Action Manager for a task re-allocation.The gateway broadcasts anALLOCATION

message, which delivers the new task assignments to the nodes ins∗ and releases the nodes that currently

hold these task allocations.

Figure 6. Task Reallocation Decision Maker (TRDM) function flowchart.
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2. Event-triggered reports:

An event-triggered report is generated when an active node/link failure occurs (Vf/Lf 6= ∅) by one

of the neighbouring nodes. In this case, the current solution s∗ is directly affected, and hence, an urgent

task re-allocation is required. The event-triggered reports have a high priority and are continuously to

be sent, until they reach the TRDM. Upon receiving this failure notification, the gateway broadcasts a

REPORTREQUESTmessage, asking for the latest residual energy levels and neighbour lists. Then,

each node sends aREPORTmessage to the gateway.

The first step that TRDM takes is to searchS for any solution that fits the current network conditions

(see step1© in Figure6). This may help the system quickly recover from the failure event. Basically,

the best-fit solution,svalid, is chosen based on a ranking table that records each solution’s performance

profile. s∗ is usually the one listed at the top of the ranking table. Hence, svalid can be determined by

choosing the second best one in the ranking table, which is not affected byVf . Then,svalid is passed

to the Action Manager for immediate task re-allocation. Details of the ranking table are provided in

Section4.9.

If there is no solutionsvalid that fits the new network conditions, TRDM consults FTRA, which then

provides a valid solution to the Action Manager (see2© in Figure6). The rest of the solution space is

also examined and updated by FTRA (Figure6 3©), although not provided as an output to the Action

Manager. This is a measure towards adaptingS according to the knowledge of the latest conditions

acquired via the event-triggered report.

4.6. DTAS Solution Selection and Evolution

In this section, the generation of each solutions with multiple objectives is briefly described, and

then, the GA used in SLP is presented in detail.

4.7. A Hybrid Fitness Function

In GAs, a solution is ranked by a fitness value that representshow suitable the solution is to meet

design objectives. A solution is more desirable if it has a high fitness value. In DTAS, the two parameters,

NL and SL, are used to compute a single “hybrid” fitness value for a task allocation solutionss as follows:

fitness(s) =
NL(s)

max(NL(S))
− α

SL(s)

max(SL(S))

α =







0 , SL(s) ≤ tdeadline

min(NL(S))
max(NL(S))

, SL(s) > tdeadline

(4)

where a candidate solution’s network lifetime,NL(s), and schedule length,SL(s), are normalized by

the corresponding maximum values in the solution space,S. The rationale behind this normalization

is to capture the relative significance ofs among all solutions inS. Here,α is a tuning parameter that

provides a weight between the two fitness parameters. We haveα = 0 when the schedule length meets

the deadline. A non-zero value ofα lowers the fitness value depending on how largeSL(s) is, which is

a measure that penalizes those solutions with a largeSL. Note that Equation (4) favours the solutions

with a largerNL.
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Since a fitness value in SLP GA has to be a non-negative value (applying the Roulette-Wheel selection

scheme [14]), fitness(s) ≥ 0, hence:

α ≤
NL(s)

max(NL(S))
×

max(SL(S))

SL(s)
(5)

In order to guarantee thatfitness(s) ≥ 0, ∀s ∈ S, we setSL(s) = max(SL(S)) and

NL(s) = min(NL(S)). This provides the lower bound forα in Equation (5), which isα = min(NL(S))
max(NL(S))

.

Using the hybrid fitness value,fitness(s), NL(s) andSL(s) are calculated, and the solutions are

sorted and indexed in the ranking table.

4.8. Adaptive Window Sizen

In DTAS, an adaptive window sizen is defined to adjust the size of the solution space, which

essentially controls the trade-off between complexity andperformance. A larger value ofn increases

the algorithm runtime, K, but has a higher probability of offering better solutions to meet the design

objectives. In contrast, a small value ofn provides a short algorithm response time with results of lower

quality, which may still be suitable for frequently changing networks.

4.9. The SLP GA

Conventional GAs normally terminate and produce results after running for several iterations or the

optimal solution has been identified. In contrast, the SLP GAoutputs and uses temporarily sub-optimal

solutions in each SLP run, and the top ranked solution in the ranking table is selected ass∗. SLP GA

also stops under the satisfaction of two conditions: i) No event-triggered report has been received. This

means SLP can always work on a stable solution space. ii) No better solution is found by the SLP GA

before a pre-defined timer expires, which is set tox · K rounds. Nonetheless, once FTRA is used, the

timer will set to its default value. Typical GA operations are employed in SLP GA as shown in Figure7,

where each GA step is briefly described below.

Inheritance: In order to keep the good allocations of the current solutionspace S, the top m% of n

chromosomes in the ranking table are inherited to the next generation, while the rest of then×(1−m%)

chromosomes are produced via theselection, crossoverandmutationprocess described below.

The ranking table is initially sorted in a decreasing order of the combined fitness value (fitness).

After that, chromosomes that can meet the deadline requirement are moved to the top of the table.

In this way, chromosomes that satisfy the application deadline while having larger fitness values are

placed in the upper rows of the ranking table. In case none of them in the current population can

meet the application deadline, the ranking table is re-sorted in an increasing order ofSL, such that the

chromosomes with a shorter schedule length can be inherited.

Selection: The selection process chooses the most suitable chromosomes to crossover, which

produces new offspring. In SLP GA, the well-known Roulette-Wheel scheme [14] is used, where a

chromosome with a better fitness value has a higher probability of being selected.

Crossover: The crossover operation is performed on each selected chromosome pair and produces

new chromosomes by recombination of some portions of both parent’s genetic materials (task
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allocations). In order to keep the topological execution order of the DAG, the tasks in the first row

of the chromosome matrix C remain unchanged, while the mapped nodes in the second row are swapped

after the crossover point. An example of single point crossover is shown in Figure8 where the mapped

nodes in the second row are switched over after the crossoverpoint. In this way, the purpose of the

crossover has been achieved, and the execution sequence of tasks in the DAG is still preserved.

Figure 7. The SLP genetic algorithm (GA).

Figure 8. Example of crossover.

Furthermore, crossover only applies to the original chromosome rather thanHC, due to the exclusive

routing task mapping. Therefore, newHC andHE need to be regenerated for the offspring in order to

calculate their fitness values. Please note that the crossover may or may not produce better offspring

than their parents. However, if both parents have good ‘genes’, there is a higher probability of producing

better survival chromosomes.

Mutation: In order to maintain genetic diversity and reduce the probability of the solution that GA

produces a local maximum, the mutation process avoids having too similar chromosomes. Two types

of mutation are employed: one is on a ‘task allocation’ basis(each chromosome has a probability of

φ to change a randomly selected tasking mapping to another node); the other is on a ‘chromosome’

basis (each chromosome has a probability ofφ being completely replaced by a randomly created new

chromosome), whereφ is the mutation rate.
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4.10. Complexity Analysis

Given a DAG with N tasks and a network with M nodes, the complexity of the fitness function

(calculation ofNL andSL) isO(N · ε), whereO(ε) is the complexity of the routing algorithm (e.g., if

Dijkstra [27], O(ε) = O(M2)). Therefore, DTAS has an algorithm complexity ofO(N · ε · n) for SLP,

where the adaptive window sizen denotes the number of the solutions that are evaluated for each SLP

stage. The algorithm complexities of selected competitorsare shown in Table1, wheree is the number of

edges in DAG,x represents the chromosome number in GA population andy is the generation number.

Table 1. Algorithm complexity comparison.

Algorithm Complexity

SLP O(N · ε · n)

Greedy [16] O(N)

MTMS [11] O(N · e · ε ·M)

ITAS [13] O(N · ε · x · y)

Please note that the algorithm complexity determines how often each algorithm can update its

solution; hence, it directly affects the system’s adaptability to network dynamics. Sincen ≪ e · M

andn 6 x, SLP in DTAS shows less complexity compared to MTMS and ITAS.Greedy has the least

algorithm complexity compared to the others, as seen in Table 1, yet it delivers low quality results

that hinder performance, as presented in Section5. Numerical results of each algorithm’s runtime,

performance and their adaptability to network dynamics areshown in Section5.3.

5. Results

The DTAS framework is evaluated through simulations. To thebest of our knowledge, this is the

first study to address such a complex DAG-based task allocation problem in a multi-hop and mobile

environment. Hence, two classic heuristic algorithms and aconventional GA-based algorithm are picked

as benchmark competitors:

Greedy [16]: The Greedy algorithm assigns most of the tasks to a powerful node, e.g., the gateway.

Hence, raw data need to be first transmitted to the gateway andthen processed there. Greedy can be

quickly re-run to perform a task re-allocation once networkchanges occur.

MTMS [11]: MTMS is a well-known cross-layer task allocation algorithm for multi-hop wireless

networks. It performs multi-objective optimization, which aims at minimizing the total energy

consumption while meeting the user deadline.

ITAS [13]: ITAS is a conventional GA-based multi-objective optimization algorithm that also

performs complex task allocation in multi-hop wireless networks.
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5.1. Simulation Setup

5.1.1. Application DAG Generation

The parameters to generate a random DAG are obtained from MTMS [11]. For a single object tracking

case,256×256 images have an average computation load of approximately 300 KCC (kilo-clock-cycle)

for the tasks, and we assume 800 bits of communication data that need to be transmitted between the

tasks. Then, each communication and computation workload of the DAG tasks are generated with a

standard deviation of 25% of the above average values.

5.1.2. Network

The network consists of two node types: super nodes (10–20%) and normal nodes. A normal node

has a processor speed of 133MHz (e.g., an Intel Strong Arm 1100 processor with150 MIPS [19]).

The power consumption for such a processor isPc = 200 mW , and each node has a battery energy of

2, 000 J (2× AAA NiCad batteries). On the other hand, super nodes have a206MHz processing speed

with 235 MIPS, Pc = 400 mW , and a battery energy of4, 000 J . The communication bandwidth is

250Kbps, and the communication range for all nodes is30 m on the ISM Bands (industrial, scientific

and medica bands). Based on those parameter settings, the average time cost to process a task and

transmit information (single-hop) between them are around2.26 ms and 3.2 ms, respectively. Thus, in

simulations, the application deadline varies between[20, 30, · · ·80] ms(by default 40ms) considering

parallel processing and multi-hop communications, which we believe are reasonable values for such

applications based on the number of tasks and the number of nodes we used. In addition, two types

of gateway (GW) devices with different processing capabilities are considered: GW-A (e.g., a PC or

laptop) with a2 GHz processor and GW-B (e.g., a smart phone) with a1 GHz processor. Unless

specified otherwise, GW-A is used as the default gateway typein performance evaluations. The gateway

is fixed at the centre of a100 × 100 m2 network area, while the other nodes have an equal movement

probabilitypmove with a moving speed ofνmove. In all simulations, the GA parameters are pre-optimized

based on [13], andη = 1 is chosen for the MHC algorithm. The average overhead packetlength of the

periodic and event-driven reports is assumed to be200 bits.

In the following, results of independent simulations are presented, by altering a single simulation

parameter each time, so that any changes in performance would be based solely on this parameter. All

results are averages of more than400 simulation runs.

5.2. Effect of Node Mobility on Network Dynamics

In this section, first the effect ofpmove andνmove on network dynamicity (represented by the number of

link-change event) are shown. Here, a link-change event is either a link breakage event when nodes move

out of each other’s communication range, or the formation ofa new link as a result of node mobility.

Results in Figure 9a demonstrate that the total number of link-change events occur more frequently with

a larger probabilitypmove of node mobility (more nodes move) and/or a higher node speedνmove. The

performances of the algorithms in meeting the task execution deadline degrade when node mobility gets

higher, which can be observed in Figure 9b. ITAS and MTMS havea higher performance degradation,
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due to their algorithm complexity. Greedy’s performance isquite stable, as it assigns most of the tasks on

a single node; thus, it is less affected by topology changes.On the other hand, it has the highest deadline

miss ratio, due to the ‘hotspot’ problem. Although DTAS shows the best performance compared to

MTMS, ITAS and Greedy, it is inevitable that the deadline miss ratio of DTAS also increases significantly

when more link-change events take place. Nevertheless, DTAS shows the best performance under the

tested mobile environment. Further simulation results on adaptability to network dynamics can be found

in Section5.3.

In the rest of this section,νmove is randomly chosen between [1, 2] m/s in the following tests

as a typical pedestrian speed. Differentpmove values are used to represent different levels of

network dynamicity.

Figure 9. Impact of pmove and νmove. (a) Network link-change events; (b) Deadline

miss ratio.
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5.3. Algorithm Adaptability to Network Dynamics

The goal of this set of simulations is: (1) To compare the adaptation of the DTAS to network

dynamics compared to Greedy, MTMS and ITAS; (2) To test each algorithm’s performance in meeting

the design objectives.

Table2 illustrates the runtime of each algorithm. Obviously, the longer an algorithm takes to run and

produce its solution, the lower the frequency that the algorithm can update its task allocation solution

(s∗). In order to observe this trade-off, another time unit is introduced to count the algorithm runtime,

called theTask Reallocation Frequency (TRF), shown in the last column of Table2. TRF represents

how often, in terms of application rounds, an algorithm can perform task re-allocation based on its

algorithm runtime, where anapplication roundis the basic time unit in simulations representing the

completion time of the DAG.
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Table 2. Algorithm runtime comparison. GW, gateway; DTAS, Dynamic Task Allocation

and Scheduling; TRF, Task Reallocation Frequency.

GW Hardware Algorithm Runtime K (s) TRF (Rounds)

GW-A (2 GHz)

DTAS (n = 40) 1.083 28

Greedy 0.022 1

MTMS 26.835 670

ITAS 32.786 820

In Table 2, it can be observed that Greedy is a fast algorithm, which is able to perform task

re-allocation in every round. Thus, Greedy is re-run at eachtime when an urgent task re-allocation

is required. In contrast, MTMS and conventional GA-based ITAS require a longer time to execute, due

to their complex search mechanisms.

In order to evaluate the algorithm’s adaptability to network dynamics, two test parameters are defined:

Expected System Performance(ESP) andActual System Performance(ASP). ESP is calculated by

averaging the snapshots of TRF cycles, while ASP is averagedfrom samples collected at each round. To

explain it in a simpler way, the ESP value can be treated as an algorithm’s performance in static network

conditions, while the ASP value shows how the algorithm actually performs under network dynamics.

Therefore, if an algorithm is fast enough to perform task re-allocation in each round, thenASP = ESP ;

otherwise, the value of ASP may degrade over time. A large gapbetween the two values indicates poor

adaptation to network dynamics.

Figure 10. Comparison of algorithm adaptability to network dynamics.(a) Schedule length,

Expected System Performance (ESP)vs. Actual System Performance (ASP); (b) Deadline

miss ratio, ASP; (c) Network lifetime, ESPvs. ASP.
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It can be observed in Figure 10a that the ESPs of the schedule lengths of MTMS, ITAS and DTAS are

below the user deadline. However, the ASP of both MTMS and ITAS goes far beyond the deadline. In

addition, whenpmove increases and more nodes are mobile, MTMS and ITAS have a larger gap between

their corresponding ASP and ESP, due to their poor adaptability to network dynamics. Furthermore, as

Greedy can simply be re-run when network dynamics occur, theASP of Greedy is very close to its ESP.
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However, Greedy still cannot meet the deadline constraint,since it aggregates tasks to a single node,

which becomes a processing bottleneck. In Figure 10b, significant performance improvement can be

noticed for DTAS, which has a much lower ratio of missing the application deadline for all three node

mobility cases compared with the other algorithms.

Figure 10c illustrates the comparison of results for network lifetime. As opposed to Greedy, the other

algorithms distribute the total workload among more nodes.Therefore, a longer network lifetime can be

noticed for MTMS, ITAS and DTAS. Furthermore, DTAS has a relatively smaller gap between the ASP

and ESP of lifetime, and it can provide the longest lifetime values under the tested mobile environment.

5.4. Contribution of SLP

The system updater SLP is the unique feature of DTAS comparedwith the other algorithms (e.g.,

heuristic approaches), and it can work independently from other DTAS components. Hence, in this

section, the contribution of SLP to the overall performanceis evaluated.

Since the main objective of the fitness function in SLP is to meet the deadline constraint, system

performances of the deadline miss ratio with or without the inclusion of SLP are shown in Table3. A

significant improvement in reducing the ratio of deadline misses can be observed when the system is

equipped with SLP, with larger gains obtained for lower mobility cases.

Table 3. Performance of SLP: deadline miss ratio.

Algorithm pmove = 0.1 pmove = 0.3 pmove = 0.5

With SLP 0.17 0.23 0.32

Without SLP 0.40 0.42 0.44

5.5. Effect of Changing the Deadline Constraint

In this section, the DTAS’s performance for different application deadlines is studied. DTAS

is compared with only the best case scenarios of Greedy, MTMSand ITAS under different node

mobility cases.

Results in Figure11 demonstrate that DTAS is more adaptive to the deadline constraint and provides

the lowest deadline miss ratio and the largest network lifetime. In fact, ITAS, MTMS and DTAS

all promote resource sharing among nodes, which helps avoidnetwork hotspots, yet DTAS shows a better

performance, since MTMS and ITAS have poor adaptation to network dynamics. In contrast, a notably

short network lifetime of Greedy can be noticed in Figure 11c, which stems from the fact that Greedy has

an imbalanced task assignment that easily overloads some nodes, creating traffic or processing hot-spots.

Greedy’s performance is quite stable, as it does not consider the application deadline while making task

allocation decisions.
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Figure 11. Effect of altering the deadline constraint. (a) Deadline miss ratio; (b) Average

schedule length (SL); (c) Average Network lifetime (NL).
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5.6. Effect of Changing the Number of Nodes

In this section, the scalability of DTAS to networks with different numbers of nodes is studied.In

Figure 12a, it can be observed that the average schedule length of DTAS first decreases when the number

of nodes rises and, then, increases as more nodes join the network. This is because there is less chance

to perform parallel processing when there are only a few nodes in the network. In addition, tasks are

queued in node memory, which reduces processing efficiency.Thus, as more nodes are involved, the

performance of DTAS in meeting task deadlines improves. However, when the network further expands,

the search space increases exponentially, and finding a suitable solution is more difficult, resulting in a

higher deadline miss ratio. Nevertheless, thanks to SLP andthe adaptive window, DTAS still has the

shortest average execution time and the lowest deadline miss ratio, as seen in Figure 12a.
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Figure 12. The effect of the number of nodes. (a) Average SL; (b) Average NL; (c) Energy

consumption on overhead; (d) Scheduling delays.
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On the other hand, the scalability of MTMS and ITAS is poor, due to their time complexity, as

illustrated in Figure 12d. Furthermore, since Greedy gathers tasks on a few nodes, the increase in the

number of nodes does not have much effect on the performance of Greedy, as shown in Figure 12b. When

the number of nodes increases, the numbers of periodic and event-driven reports described in Section4.5

increase dramatically. Therefore, the energy consumptionon control overhead of DTAS also increases,

as seen in Figure 12c. Although DTAS has a higher energy consumption stemming from its control

overhead, it provides better and more balanced task allocation solutions to the network. Therefore,

DTAS still has a marginal lifetime improvement (Figure 12b,with pmove = 0.1) compared to ITAS and

MTMS. Furthermore, since the schedule length has a higher priority in the objective function of DTAS,

especially when a tight application deadline is imposed, DTAS mainly focuses on meeting the deadline

rather than improving network lifetime. Nevertheless, DTAS has a much better lifetime improvement

compared with ITAS and MTMS, as shown in Figure11.
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5.7. Effect of CCR

The communication load to computation load ratio (CCR) is animportant parameter for DAG, as

it indicates the ratio of the average energy consumption of the communication events to that of the

computation activities. A larger value of CCR indicates that communication events dominate the total

cost. When CCR increases, it incurs additional communication delays. Both MTMS and ITAS show

a poor capability to avoid such communication delays, due totheir algorithm complexity. The impact

of this complexity on the SLs of MTMS and ITAS can be observed in Figure 13a. On the other hand,

Greedy shows much less performance degradation and even outperforms DTAS when a larger value of

CCR is employed, as demonstrated in Figure 13a. This is basedon the fact that Greedy gathers most of

the tasks on the same node, which reduces the communication cost. Nevertheless, due to the hot-spot

problem, Greedy always shows the shortest network lifetime, as seen in Figure 13b. In addition, the

larger the CCR value, the more difficult it is to meet the deadline. Hence, when CCR increases, DTAS

spends most of its effort on reducing the schedule length rather than extending network lifetime. Thus,

DTAS shows similar network lifetime degradation as MTMS andITAS (Figure 13b), yet still provides

the most balanced solution.

Figure 13. The effect of communication load to computation load ratio (CCR). (a) Average

SL; (b) Average NL.
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5.8. Effect of the Node Failure Probability

The average node failure probabilityλ is varied in this section, and the results are shown in Figure14.

When λ increases, nodes are more likely to fail. Hence, all algorithms show poorer performance,

yet DTAS performs better than Greedy, MTMS and ITAS, becausethe proposed FTRA algorithm can

update the solution space once a node failure event happens.Since Greedy uses fewer nodes for task

allocation compared to the other algorithms, it is less affected when the node failure probability rises.
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Nevertheless, Greedy cannot meet an arbitrary deadline andprovides the shortest network lifetime, due

to the hot-spot problem.

Figure 14. The effect of the average node failure probability (λ). (a) Deadline miss ratio;

(b) Average NL.
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5.9. Selection of the Adaptive Window Sizen

The impact of the window size on DTAS’s performance in minimizing the deadline miss ratio and

extending the network lifetime when tested on different gateways is illustrated in Figure15. A more

powerful gateway obviously can process a larger solution space for the same time period. Therefore,

the performance of DTAS is better in GW-A than in GW-B. In addition, it can be clearly observed that

the performance of DTAS first increases with more chromosomes joining the GA evolution process and,

then, decreases when the window size becomes larger than a certain value. This is due to the fact that

the larger window sizen is, the longer it takes for DTAS to update its task allocationsolution, as shown

in Figure 15e. Hence, the solution adaptation to network dynamics degrades whenn further increases.

Therefore, a smaller window size is preferred for networks with higher node mobility. The best values

of window sizen (the lowest point in the deadline miss ratio curve) for GW-A and GW-B are40 and30,

respectively, as observed in Figure 15a, b. A similar effectfor differentνmove values can be observed in

Figure16.
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Figure 15. The effect ofn andpmove (νmove = 1m/s). (a) Deadline miss ratio (GW-A); (b)

Deadline miss ratio (GW-B); (c) Network lifetime (GW-A); (d) Network lifetime (GW-B);

(e) Algorithm runtime.
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Figure 16. The effect ofn andνmove (pmove = 0.3). (a) Deadline miss ratio (GW-B); (b)

Network lifetime (GW-B).
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5.10. Effect of High Node Mobility

In this section, real-time performance curves with two distinguishing node mobility settings are

provided for Greedy, MTMS and DTAS. Since the performance ofITAS is quite similar to MTMS

in the high mobility case. Thus, it is not displayed for clearpresentation purposes.

Figure 17. Comparison of algorithm SL for different node mobilities inreal-time. (a) low

mobility, pmove = 0.3, νmove = 1 m/s; (b) high mobility,pmove = 1, νmove = 5m/s.
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In the low mobility case, as demonstrated in Figure 17a, the DTAS curve is higher than the application

deadline only momentarily a few times, whereas Greedy and MTMS consistently exceed the deadline.
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However, in the high mobility case, the DTAS curve frequently crosses the deadline curve, as seen in

Figure 17b. This is due to the fact that SLP does not have sufficient time to evolve the solution space

between two consecutive network change events. Therefore,decreasing the window sizen or using a

more powerful gateway can improve SLP’s adaptability to mobility. In Figure 17b, such improvement

can be observed when we haven = 10 for DTAS. Nonetheless, low mobility is our main targeting

scenario, as mentioned before, where DTAS can show all its advantages.

6. Conclusion

In this paper, the DTAS framework is proposed for multi-hop multimedia wireless sensor networks

with low mobility nodes, which can minimize the deadline miss ratio while also preserving and balancing

node energy levels to extend network lifetime. This task allocation problem is very challenging when

network dynamic and multi-hop wireless communication aspects are addressed simultaneously. A fast,

but simple, heuristic algorithm, like Greedy, may only provide sub-optimal solutions. On the other

hand, a sophisticated heuristic search algorithm, like MTMS, or a conventional GA-based solution, such

as ITAS, performs relatively well under static network conditions, but has poor adaption to network

dynamics, due to algorithm time-complexity. An integration of such a stage GA-based evolutional

algorithm with an efficient fast heuristic running in between to adjust and correct the GA population

is shown to be suitable for solving such complex and dynamic task allocation problems under a slowly

changing environment. Furthermore, DTAS is able to make trade-offs between algorithm runtime and

performance. Adaptive solutions can be produced accordingto how fast network changes occur, while

also considering the processing capability of a controllerdevice that needs to deal with such changes.
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