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Abstract: Human movement analysis is a field of wide interest since it enables the 
assessment of a large variety of variables related to quality of life. Human movement can 
be accurately evaluated through Inertial Measurement Units (IMU), which are wearable 
and comfortable devices with long battery life. The IMU’s movement signals might be,  
on the one hand, stored in a digital support, in which an analysis is performed a posteriori. 
On the other hand, the signal analysis might take place in the same IMU at the same time 
as the signal acquisition through online classifiers. The new sensor system presented in this 
paper is designed for both collecting movement signals and analyzing them in real-time. 
This system is a flexible platform useful for collecting data via a triaxial accelerometer, a 
gyroscope and a magnetometer, with the possibility to incorporate other information 
sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able 
to send information to other external devices and receive data from other sources. The 
system presented is being used in the real-time detection and analysis of Parkinson’s 
disease symptoms, in gait analysis, and in a fall detection system. 

Keywords: inertial sensors; hardware; firmware; autonomy; accelerometry; Parkinson’s 
disease 
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1. Introduction 

Recent technological developments in the automotive industry, telecommunications and electronics 
have enabled a major evolution in the possibilities of measuring and monitoring human movement [1]. 
One of the main current interests is analyzing human motion in fields such as sports [2] and health [3]. 
From the point of view of the field of dependency care, activity assessment and monitoring through 
human movement analysis is of great importance. It is applied to the evaluation of quality of life [4–6] 
and the ability of some individuals to walk [7]. Furthermore, human movement analysis is being used 
as a tool in for both treatment and clinical diagnosis [8,9]. 

Accelerometers and gyroscopes based on Micro-Electro-Mechanized-Systems (MEMS) technology 
have become the most used sensors in the study of human movement [10] because they are small, 
light, wearable and non-invasive [11]. These sensors are commonly used with a microcontroller able to 
process the measurements obtained. Moreover, peripherals such as a Bluetooth module are often 
included in order to enable communication with other devices. Systems made up from a combination 
of these capabilities have come to be called Inertial Measurement Units (IMU). These IMUs are now 
being widely used in human movement analysis [6,12–16] since they have been shown to be wearable 
and comfortable devices that can work autonomously for long periods. 

IMUs have been employed for human movement analysis with several possible goals, such as 
measuring energy expenditure [17] or performance variables in sports [18]. In the dependency care 
field, they are employed in the assessment and monitoring of activities and symptoms since they 
enable the evaluation of the quality of life [4–6]. Attempts to monitor activities and symptoms rely on 
supervised learning methods. For example, within the field of studying Parkinson’s disease (PD), 
decision trees [19], linear classifiers [20] or Support Vector Machines (SVM) [21–23] have been used 
to determine specific symptoms of the disease. Supervised learning methods were also employed in 
epilepsy episodes classification [24] and activity analysis in stroke patients [25]. This specific type of 
learning algorithm requires a training process that involves labeled data. In consequence, these 
research studies gathered and labeled signals in order to generate detection methods. That is to say that 
the IMU’s were used as dataloggers. In this specific application of IMUs, signals are either collected 
and saved within a flash memory unit such as a µSD card or sent by means of either wireless or wired 
connections, such as Bluetooth or UART. The resulting supervised learning algorithms that determine 
symptoms or activities are referred in this paper as offline classifiers since they rely on previously 
collected data and they cannot provide real-time detection.  

Offline classifiers can provide relevant information to clinics such as symptoms through the 
analysis of data previously captured and collected. In contrast, online classifiers provide relevant 
information in real-time; that is, concurrently to the IMU’s signal acquisition. Online classifiers are of 
great interest. While offline classifiers enable the monitoring of a disease, online classifiers open the 
additional possibility of treating a disease. For instance, they have enabled PD patients to overcome 
Freezing of Gait (FoG) episodes by means of audio cues [26]. Moreover, online classifiers have been 
used in a clinical study to determine symptoms and motor states in PD patients [27,28]. This data was 
then employed to determine the amount of medication to be administered by the apomorphine infusion 
pumps used to avoid undesirable symptoms [21,28]. Similarly, insulin can be regulated in diabetic 
patients according to the current levels of glycemia determined through online classifiers [29,30]. 
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Finally, online classifiers are used in patients with drop foot syndrome to correct their gait in real-time 
through Functional Electrical Stimulation (FES) [31]. 

In these different applications, online classifiers convert sensors signals into small pieces of 
relevant information whose storage requires less memory than the raw signals. For instance, several 
seconds of signals are converted into simple values that represent the presence of FoG, the motor state 
of a PD patient or the need to activate FES. Therefore, online classifiers enable IMU’s to drastically 
reduce the information stored or transmitted. Although this approach increases microcontroller energy 
consumption, it enlarges the autonomy of the IMUs by eliminating the need to send or store raw data. 

Summarizing the current technical hardware developments in the human movement analysis field, 
from the authors’ point of view, there are two main applications of IMUs that can be found. On the one 
hand, IMUs may be used for monitoring purposes as datalogger devices. On the other hand, IMUs may 
be used in the real-time monitoring and treatment of a disease by including online classifiers in the 
IMU’s microcontroller. To the best of our knowledge, there is no device available on the market, as 
will be shown in Section 3, able to satisfy both functionalities: collecting data for the creation of 
offline classifiers and allowing the development and implementation of online detectors. A device that 
offers both functionalities would require the IMU to provide a transparent and fast data acquisition to 
the online algorithms developed in order to allow their implementation into a structured code. 
Moreover, a flexible usage of the peripherals must be provided in order to debug the online classifiers. 
This double functionality is necessary to develop supervised learning algorithms and to use them in 
order to treat diseases. Thus, an IMU with the aim of satisfying both functionalities was developed and 
is presented in this work. Specific requirements that guided the IMU design are presented in Section 2. 
This device, called 9 × 2, has been used in the clinical study in which PD symptoms were treated in 
real-time. This study is called Home-based Empowered Living for Parkinson’s disease (HELP) [27] 
and recently won the award for best concluded 2013 European Project [32]. Previously, 9 × 2 was 
used as a datalogger in a national study called MoMoPa [33] in which movement signals from 35 PD 
patients were gathered. Recently, 9 × 2 has been used to collect movement signals in four different 
countries from 90 PD patients under the REMPARK project [34,35]. Finally, 9 × 2 is also being 
validated as part of a fall detector system in a pilot test with 200 individuals [36]. 

This paper is organized as follows: first, the desired requirements for the IMU are described. Next, 
current IMUs available as commercial products or research devices are presented. The following 
sections detail the IMU’s hardware and firmware, respectively. Finally, some conclusions are provided. 

2. IMU Requirements 

This section presents the requirements that the developed 9 × 2 IMU is designed to meet. These 
requirements arise from the need of an IMU able to not only work as a datalogger but to also implement 
online classifiers. In consequence, the main requirement for the IMU is to be multi-functional: (a) this 
device should register inertial signals with a stable sampling frequency of 200 Hz; and (b) the 
microcontroller’s firmware must be able to host online supervised learning algorithms. This main 
requirement supposes the overlapped execution of detection algorithms intertwined with the data 
capture processes, which hampers the implementation of a stable sampling frequency and the 
communication with storage units or wireless modules. 
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Regarding the usability requirements, a long autonomy and minimum consumption are two 
important premises. More specifically, since we are interested into monitoring movement, the IMU 
device is required to approximately last a whole day. This way, in case of several days of monitoring, 
the user could charge the sensor during sleep periods. Finally, the last usability concern is to be 
wearable, i.e., smaller or similar in size to current smartphones.  

With respect to inertial signal requirements, the most relevant one is to include the following 
triaxial inertial sensors: an accelerometer, a gyroscope and a magnetometer. The sensors sampling 
frequency could be enough with 40 Hz for measuring human movement [37]. However, the IMU is 
required to sample at a frequency up to 200 Hz, being this frequency adjustable. 

Regarding the capabilities of implementing online classifiers, the IMU should include a Digital 
Signal Controller (DSC) in order to reduce the microcontroller’s load of work and increase the 
autonomy. This module is able to reduce the time spent in the calculus performed by the supervised 
learning algorithms and, thus, enables the microcontroller to remain more time in low-consumption 
mode. The detection performed by the online classifiers must be shared with other devices, such a 
mobile phone, in order to, in the case of PD, provide audio cues through a wireless earphone during 
FoG episodes or to adjust the apomorphine doses administrated by an infusion pump. Therefore, the 
IMU is required to contain a wireless communication module. Finally, in respect of offline classifiers, 
one of the main goals of the IMU is to store inertial data during long periods to enable the training of 
supervised learning algorithms. Thus, a storage unit has to be included in the system. 

In order to accomplish these requirements, a well organized firmware has to be designed. The 
firmware has to be flexible to allow the implementation of, for instance, machine learning or gait 
analysis algorithms. 

3. Related Work  

Many inertial measurement units have been utilized for research, health rehabilitation or sport 
tracking purposes. A detailed summary of the IMUs employed in these fields is presented in this 
section. Two main groups of IMUs are distinguished, on the one hand, those which only provide and 
store raw data from their inertial MEMS and, on the other hand, those which provide results of an 
implemented online classifier executed concurrently to the IMU’s signal acquisition. However, none of 
the presented IMUs belong to both categories. Table 1 summarizes the most relevant IMUs presented 
in this section. In Section 4, where the 9 × 2 is detailed, a table which contains the same information as 
Table 1, but with the main features of the 9 × 2 has been included 

The following IMUs form part of the first group, those which capture and store raw data by means 
of a peripheral storage unit or by a wire or wireless connection to a PC: MTw from Xsens (Enschede, 
The Netherlands) is a 10 axis wireless IMU, including accelerometer, gyroscope, magnetometer and a 
pressure sensor. Its dimensions are 34.5 × 57.8 × 14.5 mm3 and its weight, with the battery, is 27 g. 
Due to its reduced size and its 3.5 hours autonomy, when sampling at 120 Hz, Xsens is conceived to be 
used in short tests. This device does not have a storage unit, so the data is only received through  
radio-frequency. Among the different Xsens IMUs, an interesting development is MTi-G, which 
includes a GPS for outdoors tracking. Although this new peripheral affects its autonomy (its consumption 
is 610 mW and it would make the autonomy last less than an hour sampling at 120 Hz in a 1,130 mAh 
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lithium-ion battery of 4.2V) and this IMU does not have neither a storage unit nor wireless  
module [38–40], a GPS increase the field applications. Another well-known IMU is Shimmer 
(Shimmer sensing, Dublin, Ireland), which is the acronym of Sensing Health with Intelligence, 
Modularity, Mobility, and Experimental Reusability. This sensor provides the same nine inertial 
signals obtained by the 9 × 2 IMU and it comprises two modules: the sensor/unit platform and the 
daughterboard wireless 9DoF Kinematic sensor [41]. In this IMU, a Bluetooth module and a storage 
unit are included. Its sampling frequency is programmable from 5Hz to 50 Hz with the three sensor 
systems, although, if only the accelerometer is used, a 100 Hz frequency rate is achieved. Autonomy is 
not reported when data are stored or wirelessly sent at maximum frequency. However, it is reported 
that Shimmer platform includes a 450 mAh battery [41,42]. KineO from Technoconcept (Mane, 
France) is another IMU used as a datalogger. With a sampling frequency of 100 Hz, and a triaxial 
accelerometer, gyroscope and magnetometer, the nine inertial signals are sent via Bluetooth to a 
computer, lasting up to 4 h under these conditions [43]. Another interesting inertial datalogger sensor is 
Physilog (EPFL, Lausanne, Switzerland), which is able to store inertial data from a triaxial 
accelerometer and a gyroscope at 200 Hz. It has a consumption of 71 mA, which means that given 
1130 mAh battery, it has an autonomy of 15.9 h [44,45]. The Vitaport Activity Monitor (Temec, 
Kerkrade, The Netherlands) is another datalogger IMU which has been used to study and analyze 
Parkinson’s Disease patients symptoms [46–48]. It has a sampling frequency of 32 Hz but a size of  
90 × 45 × 15 mm3 and weight of 1.36 Kg with the data recorder. This is only suitable for data 
collection, as this is too obtrusive to be used in home environments. More examples of inertial sensors 
are the 3DM-GX1 (MicroStrain, Williston, VT, USA) and the UAV V3 (SparkFun, Boulder, CO, USA), 
which are development boards which have to be connected to a computer to capture inertial data [49,50]. 
These IMUs have in common the fact that they enable the gathering of data, although online classifiers 
cannot be efficiently implemented, in the case of evaluation boards, or not even implemented, in the 
rest of IMUs, since they are commercial devices whose microcontroller is not programmable. 

The second group comprises IMUs that provide already processed information derived from inertial 
sensors. In this case, raw data are not accessible [6,8,51–56]. In this group, IMUs exclusively designed 
for analyzing specific activities, such physical activity or energy expenditure, are found. For example, 
IDEEA (MiniSun, Fresno, CA, USA) is a micro-processor unit composed of five satellite-dual-axis-
wired accelerometers and a central unit that analyzes data and sends results through RS-232 or USB 
connections to a computer. The main unit size is 70 × 54 × 17 mm3 and it weights 59 g. The whole 
system records data at 32 Hz [51,52]. IDEEA is not a datalog device, as it is specifically designed to 
measure physical activity. Dynaport (McRoberts, The Hague, The Netherlands) is another physical 
activity sensor which records energy expenditure, among other features, with a sampling frequency of 
100 Hz, during up to 72 h [8,53]. A very light sensor is activPAL (PAL Technologies, Glasgow, UK), 
which only weights 15 g and stores physical activity information during up to 7 days at 10 Hz  
of sampling frequency [6,54]. A very long-term monitoring sensor for physical activity is RT3 
(Stayhealthy, Monrovia, CA, USA). This device is the biggest IMU from those mentioned before due 
to its battery, since it has a size of 97 × 109 × 51 mm3. 
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Table 1. Commercial Inertial Measurement Units comparison. 

Name Manufacturer 
Sample 

freq/Hz 

Autonomy  

info 
Size/mm3 Weight/g 

Raw data 

datalog capacity 

Storage 

unit 
Wireless Acc Gyro Magn GPS 

Mtw Xsens 120 3.5 h 34.5 × 58 × 4.5 27 Yes No Yes Yes Yes Yes No 

Mti-G Xsens 120 610 mW 58 × 58 × 28 68 Yes No No Yes Yes Yes Yes 

MainUnit + Wireless DoF Shimmer 50 450 mAh 53 × 32 × 25 22 Yes Yes Yes Yes Yes Yes No 

KineO Technoconcept 100 4 h 49 × 38 × 19 25 Yes No Yes Yes Yes Yes No 

Physilog 3 EPFL 200 71 mA 50 × 40 × 16 36 Yes Yes No Yes Yes No No 

3DM-GX1 MicroStrain 350 65 mA 64 × 90 × 25 74.6 Yes No No Yes Yes Yes No 

UAV V3 SparkFun 40 420 mW 38 × 70 × 25 34 Yes No No Yes Yes No Yes 

IDEEA MiniSun 32 48 h 70 × 54 × 17 59 No No No Yes No No No 

Vitaport activity monitor Temec 32 12 h 90 × 45 × 15 1360 No Yes No Yes No No No 

DynaPort mcroberts 100 72 h 64 × 62 × 13 78 No Yes No Yes No No No 

activPAL paltechnologies 10 7 days 53 × 35 × 7 15 No No No Yes No No No 

RT3 Stay healthy 1 21 days 97 × 109 × 51 65 No Yes No Yes No No No 
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This sensor lasts about 21 days, but its sampling resolution is only 1 Hz and it only has an 
accelerometer. It is able to provide the signal magnitude or the values from each accelerometer  
axis [55,56]. These IMUs have in common the fact that they provide real-time processed information. 
However, as with the first group of IMUs, these devices cannot be used to implement other online 
classifiers since they are commercial products and their microcontrollers are not programmable. 

4. 9 × 2 Hardware Architecture 

According to the requirements presented in Section 2, a flexible IMU able to gather movement data 
up to 200 Hz and act as an online device to provide real-time information is needed. Sensors 
considered in order to satisfy these requirements are those with a bandwidth higher than 400 Hz  
(twice the maximum sampling frequency) and the sensors included (accelerometer, gyroscope and 
magnetometer) are integrated in such a way that they can be optionally disabled by the 
microcontroller’s firmware to avoid unnecessary power consumption. Furthermore, storage and 
transmitting capabilities may be required, depending on the offline or online behavior. To this end, 
different regulators are added in order to able and disable different parts of the circuit, including the 
three sensors and the communications module. Finally, in order to increase the IMU’s autonomy, the 
microcontroller’s firmware is designed to be able to enter into a low-consumption mode when no 
action is executed. 

In this section, the hardware system according to the design decisions detailed and it is summarized, 
compared to and contrasted with other IMUs according to the characteristics shown in Table 1. Then, 
the hardware architecture of the 9 × 2 IMU is described, such as the inertial sensors included, their 
calibration, the microcontroller which governs the system, the power management of the IMU and 
finally the communications module. Since this section is devoted to describe the IMU’s architecture, 
Section 5 details its firmware design. 

The final design of the 9 × 2 IMU has a size of 77 × 37 × 21 mm3, and it weighs 78 g, a weight 
reduction of more than 30% in respect of a standard smartphone such as, for example, the HTC Desire 
X (137 g), Google Nexus 4 (139 g) or Apple I-Phone 5 (112 g). The 9 × 2 is a wearable platform with 
which users can perform their daily living activities normally with the purpose of getting inertial data 
in uncontrolled environments. This is, therefore, a non-invasive device, designed to have a long 
autonomy in order to capture data over long periods, without the need of recharging. Autonomy of the  
9 × 2, which is accurately detailed in Section 4.5, can last up to 36.81 h, and it has a power consumption 
of 113 mW (30.7 mA with a 3.7 V battery). These autonomy conditions given are for when the inertial 
data are written to a µSD card, the Bluetooth connection is not used and the sampling frequency is  
200 Hz. Figure 1 shows a specifically designed neoprene belt with the IMU, its location when the 
sensor is used in the waist and its reference system. 

Figure 2 shows the main structure of the 9 × 2 unit. As shown, the 9 × 2 is controlled by a 
dsPIC33F microcontroller, which has the main function of managing the different sub-systems which 
compose the system and to execute the implemented algorithms. The microcontroller also handles the 
power management and controls the user interface. The user interface consists of a push-button for 
basic instructions and a RGB LED which shows the 9 × 2 status, such as battery level, to the user. It 
also has a general switch which turns the system on and off.  
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Figure 1. 9 × 2 sensor and its specially design neoprene belt. 

 

Figure 2. General block diagram. 

 

The characteristics of the 9 × 2 are presented in Table 2 in a comparable way to those of the 
previously mentioned IMUs. The 9 × 2 is the only sensor which includes all the features except the 
GPS. Moreover, consumption at 200 Hz under similar use conditions is relevantly lower than that of 
the other datalogger IMUs. Size and weight are also acceptable, being smaller and lighter than a 
mobile phone. 

Table 2. 9 × 2 features. 

Name Manufacturer 
Sample 

freq\Hz 

Autonomy 

info 
Size/mm3 Weight/g 

Raw data 

datalog capacity 

Storage 

unit 
Wireless Acc Gyro Magn GPS 

9 × 2 CETpD 200 36.8 h 77 × 37 × 21 78 Yes Yes Yes Yes Yes Yes No 

4.1. Sensors 

Inertial sensors are the main part of the 9 × 2 since they enable the movement analysis. In this 
section, the different sensors contained in the 9 × 2 and their characteristics are described. 
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4.1.1. Accelerometer 

According to the literature accelerometers are the most used inertial systems, since they are the 
most extended sensors for monitoring, assessing and analyzing human movements [6]. Consequently, 
the accelerometer is considered to be the most interesting sensor in the system and its measurements 
should be very accurate and stable. The LIS3LV02DQ (STMicroelectronics N.V., Geneva, 
Switzerland), from now on LIS3, was the accelerometer chosen since it provides a digital interface, 
includes the three axis accelerometer and the conditioning of the signal in the same package. This way, 
it is more robust to interferences as there are no electrical tracks through the PCB from the transducer. 
The LIS3 also incorporates a temperature sensor in order to re-calibrate the signal when necessary [57]. 
The LIS3 has 640 Hz of bandwidth which is sufficient to achieve a sampling frequency of 200 Hz. The 
sensor provides a programmable full scale of ±2 G or ±6 G. In the studies performed in CETpD, the 
sensor is used at waist, which is considered the most suitable location for measuring human movement 
according to some authors [14,15,58]. In this location, the range of accelerations measured from 
human movements reaches ±6 G [59]. Thus, this is the selected range for the LIS3. The sensor’s 
sensitivity at ±6 G full range is 340 LSB/g or 2.9 mg/bit. Data are digitalized and sent to the 
microcontroller through an I2C bus at 1 Mbps. 

4.1.2. Gyroscope 

Gyroscopes are interesting inertial sensors since the provide dynamic information through the 
angular speed. These measurements have been showed useful in the analysis of human movements 
such as gait [60], posture transitions [61] or falls [62]. Due to their widespread use in the video-games 
industry and mobile phone applications, they have become very low-cost devices. 

The gyroscope used in the 9 × 2 has a range of ±2,000 °/s and a sensitivity of 0.5 mV/°/s. Two 
different gyroscopes, a biaxis and an uniaxial one, have been used to measure the angular rotation. The 
devices chosen are an IDG650 (Invensense, San Jose, CA, USA), a biaxial gyroscope that provides data 
for X and Y-axis [63], and an ISZ650 (Invensense) [64], which provides data for Z-axis. Their outputs 
are analog, which results in an important decrease of power consumption compared with the 
digitalization of the signal. 

4.1.3. Magnetometer 

Magnetometers are widely used sensors for orientation purposes. However, their measurements are 
sensitive to inherent drifts and many external interferences, since they are very sensitive to magnetic 
changes such as those produced by nearby ferromagnetic objects. For this reason, magnetometers are 
commonly used as a complement to gyroscopes [65] and accelerometers [66,67] by means of  
fusion algorithms [68]. The magnetometer used in the 9 × 2 has a full scale of ±6 Gauss, and a 
sensitivity of 1 mv/V/Gauss. It is a dual system composed of a bi-axial magnetometer (HMC6042, 
Honeywell, Morristown, NJ, USA), which has the possibility to integrate the Z-axis by means of a 
second device (HMC1041Z, Honeywell) connected to it [69,70]. 
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4.2. Calibration 

Inertial sensors provide measurements affected by drifts and offsets. The characteristics of these 
changes are described in the datasheets provided by the manufacturers. In order to correct the 
measurements, a calibration process is necessary. The calibration performed on the 9 × 2 sensor relies 
on information provided in the data sheets, their application notes and a Least Squares technique 
described below [57,63,64,69,70]. 

The manufacturer of the LIS3LV02DQ provides information about an internal calibration curve, 
which compensates drifts that appear due to temperature. At any rate, according to sensor features, 
offsets of 100 mG (mili-gravity) can appear in any axis, non-linearity is 3% of the full scale, and the 
sensitivity change due to temperature is 0.025%/°C [57]. The gyroscopes used have a non-linearity of 
less than 1% of the full scale. They have a thermal drift around 10% near the limits of the operating 
temperature and mechanical intrinsic frequencies [63,64]. The HMC6042 and HMC1041Z 
magnetometers have a cross-axis sensitivity of ±0.2% FS/Gauss, a sensitivity to the temperature of 
−3,100 ppm/°C and an offset of ±10 ppm/°C. The magnetometers have a linearity error of 0.8% FS, an 
hysteresis error of 0.15% FS and a repeatability error of 0.11% FS [69,70]. 

A static calibration method has been used to adjust the inertial sensors, similarly to the method 
described by Giansanti et al. [71]. The calibration process consists in comparing the uncorrected 
measurements of the sensors with their actual values. Then, a Least Square method (LS) is applied to 
obtain the resulting calibration matrix 𝐶𝑘. Once 𝐶k is obtained, the calibrated values (𝑥′𝑘,𝑦′𝑘, 𝑧′𝑘) at any 
position are obtained by (𝑥′𝑘 ,𝑦′𝑘, 𝑧′𝑘) = (𝑥𝑘 ,𝑦𝑘, 𝑧𝑘)𝐶k, where 𝑥𝑘, 𝑦𝑘, 𝑧𝑘 are the raw measurements. 

The calibration matrix 𝐶𝑘 is defined as: 

𝐶k = (𝐿𝑘)(𝑆𝑘)𝑇[(𝑆𝑘)(𝑆𝑘)𝑇 ]−1 (1) 

where 𝑘 denotes the sensor: 𝐶a, 𝐿a, 𝑆a for the accelerometer, 𝐶g, 𝐿g, 𝑆g for the gyroscope and 𝐶m, 𝐿m, 
𝑆m for the magnetometer. 𝐿𝑘 is a matrix containing the actual values extracted from known reference 
systems described below. Finally, 𝑆𝑘  is a matrix which contains the 9 × 2 raw measurements to  
be corrected. 

The calibration of the accelerometer is based on using six positions for which the actual value is 
known, according to Figure 3. These positions correspond to the alignment of the three accelerometer 
axis with the gravity. During the alignments, 6 seconds of inertial data are recorded and filtered with a 
2nd order Butterworth filter at 5 Hz. 

Figure 3. Accelerometer calibration positions. 
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With these six positions, 18 measurements corresponding to each axis are obtained. According to 
them, 𝑆𝑎 is filled as showed in Equation (2) and 𝐿𝑎 contains the gravity as shown in Equation (3). The 
LS method is then used to obtain the calibration matrix 𝐶a according to Equation (1): 

𝑆𝑎 = �
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
𝑧1 𝑧2 𝑧3

 
𝑥4 𝑥5 𝑥6
𝑦4 𝑦5 𝑦6
𝑧4 𝑧5 𝑧6

� (2) 

𝐿𝑎 = �
−𝐺 𝐺 0
0 0 −𝐺
0 0 0

 
0 0 0
𝐺 0 0
0 −𝐺 𝐺

� (3) 

where 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 are the measurements achieved at the position 𝑖 according to Figure 3 and G = 9.81 m/s2. 
In the case of gyroscopes, a Mti from Xsens Technologies [39] with a calibration certificate has 

been used in order to obtain actual angular velocity measurements in 𝐿g. The Xsens and the 9 × 2 are 
mounted on a turntable, which is driven by a DC motor powered with a QL355TP precision power 
supply from Thurlby Thandar Instruments (Huntingdon, United Kingdom) [72]. Matrices 𝐿g and 𝑆g are 
filled with the Xsens and 9 × 2 angular velocities, respectively, at the six positions of Figure 3. 

Finally, the magnetometer system has been calibrated by means of comparing its output values 𝑆m 
to the Earth’s magnetic field, knowing that Earth’s North and South magnetic poles are the maximum 
and minimum values the sensor has to be compared with. These values are well known at any place of the 
Earth through the National Ocean and Atmosphere Administration (NOAA), which has a tool that provides 
the Earth’s magnetic field of a given location in the globe within 5 years (http://www.noaa.gov/). This 
tool is the gold–standard to calibrate magnetometers. Each measurement has been recorded during 6 
seconds and compared to the actual values. The measurements of the Earth’s magnetic field were taken 
in an area isolated from interfering elements (ferromagnetic elements) in order to obtain accurate 
measurements and avoid noise induced by these elements in the calibration measurements. 𝑆m matrix 
is created by obtaining the maximum and minimum measurements of the sensor by turning 360° 
respect the Earth plane. These maximum and minimum value are known in the geographical point in 
which the experiment took place and, therefore, they are the reference 𝐿m. 

4.3. Microcontroller 

The whole system is controlled by the dsPIC33FJ128MC804 (Microchip, Chandler, AZ, USA), a 
microcontroller (MCU) which has an internal DSC. This MCU has a modified Harvard architecture, with 
16-bits of data path, and 24-bit wide for instructions. It has 128 KB of Flash Program Memory and 16 KB 
of RAM. Digital communications peripherals are UART, SPI and I2C, which controls Bluetooth, µSD card 
and the accelerometer, respectively. It also has one ADC with nine input channels of 10 bits, which is 
enough to capture the seven analog signals (three × gyroscope, three × magnetometer, one × temperature). 

The MCU has a Real-Time Clock Counter (RTCC) engine to calibrate the RTCC up to an error of 
±2.64 s a month according to its datasheet. However, and due to intrinsic fabrication processes, the 
crystal frequency can be different in each device and the RTCC must be accurately calibrated.  
A Universal Frequency Counter (53132A, Agilent, Santa Clara, CA, USA) has been used for this 
purpose [73]. A curve of the frequency drift depending on the temperature is given by the crystal 
manufacturer in order to adjust RTCC (Abracon, Rancho Santa Margarita, CA, USA). 
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The MCU’s frequency is 80 Mhz while the CPU is able to work at 40 MIPS. This frequency can be 
tuned with a register designed for this purpose. The microcontroller’s frequency (FCY) has been also 
calibrated with the universal frequency counter 53132A. Thus, the tuning register has been modified to 
achieve the most correct frequency. Furthermore, considering the frequency drifts due to temperature, 
a correction to the frequency is applied according to the curve provided by the dsPIC33F data sheet [74] 
and measurements from the sensor temperature included in the 9 × 2. 

The 9 × 2 corrects the RTCC measurements and its tuning register values according to the current 
temperature every minute. Consequently, part of the curve provided by the manufacturers is 
implemented and the correction factors for the current temperature are applied. In our case, the curve 
comprised between 0 and 60 degrees is implemented. 

The dsPIC has a Direct Memory Access (DMA) system which allows transferring data from 
peripherals to buffers and data stored in the RAM with a minimum action of the MCU’s. DMA and the 
different power-saving modes permits the 9 × 2 to be a very low-consumption system. The dsPIC 
allows three main power-saving modes: Run mode, Idle mode and Sleep mode. Run mode is the mode 
in which CPU and peripherals are working normally. Idle mode offers the possibility to sleep the MCU 
except a selected peripheral. Then, the system clock remains active, but no instructions are executed. 
An interruption will awake the MCU when it is necessary, reducing its consumption from 63 mA to 34 mA 
(disabling all the MCU peripherals) [74]. During the sleep mode, only external clock inputs or external 
interrupts are allowed to awake the MCU. This mode drastically reduces the consumption to 10 µA. 
Peripherals can also be disabled depending on the use, avoiding unnecessary consumptions. 

4.4. Power Management 

The 9 × 2 includes a battery management system which enables saving energy. As shown in Figure 4, 
there are three low-dropout (LDO) regulators which enable not feeding the selected parts of the PCB. 
The first LDO regulator supplies the MCU, which manages the other LDO regulators. The other two 
LDO regulators supply the analog circuit and the wireless circuit. 

The system is supplied by a 1,130 mAh lithium-ion battery. The autonomy of the system is 
approximately 36.8 h at a sampling frequency of 200 Hz and while continuously storing the data 
provided by a triaxial accelerometer, gyroscope, magnetometer, the temperature values and the battery 
status. The Bluetooth system is disabled under these conditions. However, the Bluetooth system allows 
the user to send data collected to a computer at a frequency between 1 Hz and 200 Hz. When the 
system sends at 200 Hz via Bluetooth, the autonomy decreases from 36.81 h to 18 h, since Bluetooth’s 
consumption is higher than that of the µSD Card during the storage process. This autonomy is 
sufficient to cover data captures of all the current projects the 9 × 2 is participating. According to the 
requirements of the research projects, the IMU’s usage is suggested to be similar to that of a mobile 
phone. Then, the device should be charged a maximum of once per day, and normally during the night. 
In this manner, 18 h or 36 h are sufficient to cover both aspects (data capture and real-time evaluation).  

The system incorporates a battery charger and a battery monitor. The battery monitor indicates to 
the user the current state through a RGB-LED. When the battery is very low, an interruption is 
produced in the MCU and the system automatically closes all its peripherals and communications and 
enters in the Sleep mode. 
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Figure 4. Power management block diagram. 

 

In order to reduce consumption, the firmware can enable and disable the Analog and Wireless 
Regulator when necessary. The system remains in operating mode only when data need to be captured, 
data are needed to be sent or when an algorithm is being executed. 

An accurate analysis of the 9 × 2’s autonomy has been performed in different operating modes. The  
9 × 2 can either work with the Bluetooth in order to receive commands from a terminal, or can send 
the inertial data or algorithm results to this terminal. However, the 9 × 2 can operate without the 
Bluetooth module, or switching it on only when necessary. These cases are used when a data capture is 
performed, or when an online classifier is running and results are stored in the µSD. These cases are 
reported in Table 3. These autonomies have been measured after the system has been running over 2 min 
and they have been calculated taking into account the battery capacity (1,130 mAh) and the average 
consumption in a period of 10 min. This process has been repeated five times in order to take accurate 
measurements. Results shown in Table 3 are the mean and deviation of these five measurements. 
These results show that the online classifier behavior has an autonomy of 41 h at 40 Hz, the highest 
autonomy after the datalog behavior without Bluetooth, which is 45 h. When Bluetooth is used, 
autonomy decreases to about half of that duration. 

Table 3. Operating mode autonomies.  

Online classifier without Bluetooth 
Sampling Frequency/Hz 40 50 100 150 200 

Autonomy/h 41.09 ±0.2 40.07 ±0.2 35.99 ±0.4 31.22 ±0.15 27.63 ±0.1 
Data capture with µSD and without Bluetooth 

Sampling Frequency/Hz 40 50 100 150 200 
Autonomy/h 45.56 ±0.2 44.84 ±0.25 42.97 ±0.1 40.21 ±0.1 36.81 ±0.2 

Sending continuous data through Bluetooth 
Sampling Frequency/Hz 40 50 100 150 200 

Autonomy/h 19.12 ±0.35 18.96 ±0.2 18.80 ±0.1 18.28 ±0.0 17.94 ±0.2 
Data Capture for offline classifier with Bluetooth connection 

Sampling Frequency/Hz 40 50 100 150 200 
Autonomy/h 20.18 ±0.45 19.82 ±0.3 19.15 ±0.4 18.83 ±0.3 18.23 ±0.25 



Sensors 2013, 13 14092 
 

 

4.5. Communication Modules 

According to the requirements detailed in Section 2, the IMU has to wirelessly communicate with, 
at least, a mobile phone to share the output of the algorithms. Current mobile phones only offer 
Bluetooth as a low consumption communication solution with a high bandwidth and rate transfer. 
Thus, the 9 × 2 is forced to use a Bluetooth module in order to satisfy this requirement. Bluetooth 
works at 115,200 bps in the 9 × 2 system and its consumption is 31.5 mA according to its 
specifications [75]. Furthermore, in order to behave as a datalog system, the 9 × 2 also includes a µSD 
card socket. Bluetooth enables the wireless reception of all data captured by the 9 × 2 while the µSD 
card permits storing data without maintaining a continuous wireless communication.  

The µSD card socket is useful to develop offline classifiers since it is used to build databases in 
order to elaborate future algorithms. Its main advantage is that it does not need to be connected to any 
computer while getting data. In the REMPARK project, patients who form part of the collection of 
inertial data perform their normal daily living activities with the sensor attached to them while the 
sensor is collecting the inertial data and storing it into the µSD card [34,35,76]. Then, this data is 
processed offline and classifiers are designed. 

5. Firmware of the Inertial System 

Firmware is the most relevant part of the system since its main functions are: (1) manage the 
peripherals in order to guarantee an accurate and stable sampling frequency; (2) supervise the correct 
operation of communications; (3) control the processes to store the inertial data captured before 
sending it to a peripheral while it controls battery status and user interface; and (4) execute online 
classifiers. One of the main requirements of the firmware is to optimize the consumption. To this end, 
a specific firmware has been developed and real-time OS’s are avoided to optimize the consumption 
and code memory usage. Moreover, the MCU properly fluctuates among different work modes  
(Run, Idle, Sleep). In this section, the main firmware process and the state machine associated that 
manages the firmware are presented, as well as the internal processes that take a relevant role in the  
9 × 2 firmware. 

5.1. Main Process 

A major focus for the 9 × 2 was to obtain a firmware in which the MCU only works in run mode 
when necessary and, thus, remained in a low-consumption mode most of the time. In order to achieve 
this premise, the different processes involved in the data acquisition, the communications, the battery 
management and the online classifiers were prioritized. 

Figure 5 presents a diagram that describes how these independent processes interact with the main 
process and their relation with the interruptions. The main process initializes the other five processes. 
Some processes are only executed after an interrupt request. For instance, the process of capturing 
inertial data is executed immediately after an interrupt request of the data acquisition timer. Bluetooth 
and µSD Card processes are also executed only when an interrupt request is produced. In the case of 
µSD Card, when the acquisition buffer is full, a DMA interrupt is launched which starts the data 
storage. In the Bluetooth case, bluetooth reception interrupts launch the corresponding process when 
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an external command is received. Moreover, timer interrupts also launch the Bluetooth process in 
order to send data, such as algorithm’s output or raw data. Battery management and online classifiers 
are executed within the main process both after data are captured and before the MCU enters  
Idle mode. 

Figure 5. Firmware’s processes interaction. 

 

The main process comprises of an initialization phase, in which the peripherals are configured and 
associated to a DMA channel. Peripheral interrupts are enabled and a priority is given to each 
peripheral. The process with most priority on the system is the timer which controls the sensors 
samples acquisition. After this process, data collected are stored in RAM. These data can be analyzed 
and sent within a specific frame to a DMA channel. The firmware allows sending all inertial data 
through Bluetooth or through µSD card. However, if an algorithm is executed, data sent through 
communication modules may not be the raw data but the results of the algorithm. The latter case 
enables an energy saving, since communication modules are the most consuming parts of the 9 × 2. 

Online classifiers and battery management are processes with the least priority. They are only 
executed when the rest of processes allow free clock cycles in the MCU. However, algorithms can be 
associated to interrupts depending on the user’s design, so they can be executed, for example, right 
after an interrupt request of the capturing data process for filtering purposes. 

The battery management process consists of controlling the battery monitor. The MCU informs on 
the battery status through the user interface. However, if a very-low battery signal is received, the 
system closes all the communications and then sets the MCU in sleep mode. This method allows 
saving data files, and avoids losing information if the MCU suddenly switches off due to the low 
voltage. An external interruption has been configured to interrupt all processes when the user connects 
the 9 × 2 to charge the battery, since it is considered that it is not necessary to keep the system awake 
when the battery is being charged. 

The algorithmic task is executed into two different parts. On the one hand, in the interrupt request 
function associated to the data acquisition some simple computations are performed, such as the signal 
filtering. On the other hand, since online classifiers are usually based on signal windows [77,78], once a 
window is filled with inertial data, the computations take place. When the system is programmed only 
for logging data, no algorithm is executed and the system works in the Run mode during the data 
capture process or communication modules interruptions are requested. Figure 6 shows the basic 
structure of the firmware summarizing its dual behavior. 



Sensors 2013, 13 14094 
 

 

Figure 6. Firmware sequence. 

 

In order to check 9 × 2’s performance, two groups of tests have been performed, the first one 
writing continuously to a µSD without a Bluetooth connection, and the second one sending inertial 
data continuously through Bluetooth. The system has been tested while sampling at 200 Hz and the 
tests have been executed 10 times in order to achieve accurate data. On the one hand, the MCU 
remains an average of the 95.46% ± 2.0266% of the total process time in Idle mode when data is being 
sent to the Bluetooth module with a sampling frequency of 200 Hz. On the other hand, the CPU 
remains in the Idle state an average of 99.2% ± 0.0146% of the total process time when the device is 
writing to a µSD card. 

5.2. Data Capturing Process 

The main priority of the MCU is to guarantee a stable and accurate sampling frequency. Thus, the 
other processes should not have more priority than the data acquisition and they should be halted when 
an interruption for acquiring data is requested. 

In order to achieve it, the sampling acquisition instants are controlled by a timer which depends 
directly on the MCU’s frequency oscillator, which was calibrated to achieve an accurate frequency. 
Sampling frequency is 200 Hz by default, but the user can modify this frequency. Once the data 
acquisition timer interrupt is requested, the ADC module is called to collect analog data and the 
accelerometer data is captured through I2C. Then, these data are arranged and stored in RAM ready to 
be sent through SPI to the µSD card or through UART to the Bluetooth module. The data sent is 
composed of the inertial data (accelerometer, gyroscope and magnetometer), temperature, time taken 
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to collect data, and times the last variable was sent, battery status and device identification. The data 
sent can be changed to, for instance, the RTCC register values, i.e., the current time. Data are first 
stored in a dedicated RAM, which is updated for each captured sample. Algorithms which work with 
inertial information use data windows. Therefore, data corresponding to several seconds are saved. 
More concretely, 5 KB of RAM are dedicated to store inertial data. 

5.3. Bluetooth Connection 

Bluetooth module performs two main functions in the 9 × 2 unit. The first one is to receive 
instructions from an external system (PC, tablet, mobile phone). The second one is to send frames built 
(described in Section 5.2) to the external systems. There is another extra option, which is getting data 
from another complementary inertial device. The MCU then sorts these data in the frame and stores it 
in the µSD. 

At the beginning of the program the system checks if a µSD card is connected, then the system 
waits for instructions from an external system. In the data logging performed in the REMPARK 
project, for example, a PC sends the current time via Bluetooth to the 9 × 2, which is stored in the 
RTCC to maintain the current time. Another application of Bluetooth is, for instance, to receive the 
sampling frequency through instructions before collecting inertial data, so the 9 × 2 begins to capture 
and store data in a µSD card. Through this system, the IMU can be paused if necessary in order to 
avoid getting unnecessary data. Finally, in the PD application, results of the algorithms are sent to a 
mobile phone. 

5.4. µSD Communication 

SD flash memory is essential to store inertial data. This module allows capturing data without a 
wireless connection. µSD Cards used are 2 GB size with a FAT16 system file. It allows storing data 
continuously during 3 days and 19 h sampling at 200 Hz, or 19 days and 10 h sampling at 40 Hz. Since the 
9 × 2 uses FAT16, frames are built under this file system and they contain 32 bytes. A cluster in a 
FAT16 file system is 16 KB, which contains 32 sectors of 512 bytes each one. Each sector contains 16 
inertial data frames. Processes to manage clusters and sectors are totally performed by a specific state 
machine which is only executed when necessary in order to avoid disturbing the main process. The 
MCU only controls whether a sector is full, in which case it copies RAM data to DMA memory and 
sends an order to the DMA to start writing data through the SPI bus. Since SD cards are flash memory 
devices, the process of writing a block through SPI to a SD card may last up to 250 ms. When a new 
cluster or sector has to be selected, the MCU sends new instructions to the SD card, which needs extra 
time to be executed and so new ranges of memory can be written [79]. During this time, MCUs RAM 
memory has to store data which is sampled every 5 ms for 200 Hz sampling frequency. Five KB of 
RAM memory is dedicated to store inertial data; since each frame is 32 bytes long 160 frames can be 
stored. At a frequency of 200 Hz, the buffer is filled in 800 ms. This time period is sufficient to 
guarantee that no data are lost since the SD card takes up to 250 ms in order to write a block. 
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5.5. Algorithmic Process 

In order to analyze the sensors’ measurements in real time, data is commonly windowed in short 
periods [77,78]. Moreover, algorithms usually overlap these windows at 50% in order to avoid losing 
event information [80,81]. In our system, these principles are also followed and these data windows 
are stored in the MCU’s RAM, as these inertial data are continuously being updated along time. Flash 
memory contains all constants and parameters calculated in the off-line process that are needed to be 
used in the real time processing. 

Among the processes that the MCU manages, the process dedicated to execute the online classifier 
implemented in the MCU, along with battery status process, is the process with less priority. An 
algorithm process can be a long process. Since one of the premises is to guarantee accuracy in 
sampling frequency and the correct transfer of data between modules, the algorithm may be interrupted 
for any of these processes and, then, continue. Although latency time of an algorithm is important, in 
terms of body movement, few microseconds during which the algorithm’s process can be delayed are 
not relevant. 

Memory management in the online classifiers is also a relevant aspect. On the one hand, when data 
are stored in the µSD card, windows of 512 bytes are recorded to be sent to µSD. On the other hand, 
signal windows to be analyzed at the algorithm are also built. Memory among windows is shared. A 
window counter will alert the MCU when a window has been filled with samples and, then, it is ready 
to be analyzed. Then, signals are filtered and features to be analyzed are selected and extracted, 
according to Figure 7. Then, threshold based trees, neural networks, Support Vector Machines or other 
classifiers might be executed. Results of the algorithms can be sent through Bluetooth or stored in the 
µSD card for debugging purposes. These results can also be analyzed to diagnose some disease and 
then sent the diagnosis results to any other module. Finally, the system enters in Idle mode in order to 
save energy. In the online development of the sensor device for the real-time treatment of PD, the 
Digital Signal Controller motor has been used to calculate array operations in few cycles. More details 
can be found in the next subsection. 

Figure 7. Classical classification method.  

 

5.6. Online Classifier for Gait Detection in PD 

The 9 × 2 was used in a medical application, as part of HELP project, in which it provided the 
information to a clinician to remotely regulate an apomorphine pump. Doses administrated by the 
pump were increased when patients were in OFF state, a motor state mainly associated with a lack of 
medication. This OFF motor state was determined through a gait analysis performed in real-time by 
the 9 × 2 [21]. As a first step of this gait analysis, the 9 × 2 establishes if patient walks. To this end, 
artificial intelligence algorithms were introduced within the MCU in order to behave as an online 
device. Specifically, Short Time Fourier Transform and Support Vector Machines have been 
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implemented in the MCU in order to lighten its work load. The scheme of this gait detector 
implementation followed a classical classification problem approach, which can be divided into 
different parts as shown on Figure 7: data capture, window separation, feature extraction and machine 
learning classification [82]. 

A pre-requisite to perform the gait analysis in the HELP project was to identify when a PD patient 
was walking or not by means of the 9 × 2 located at the waist. Hence, a database of movement signals 
was gathered in which inertial data from different PD volunteer patients executing different activities 
were captured. This database was used to train a SVM in order to distinguish walking from not 
walking periods [21]. It was taken into account that the model had to be executed within a MCU and 
the number of support vectors had to be minimized. A SVM model with 66 support vectors was finally 
obtained and implemented within the MCU. Following Figure 7, the online device first captured 
inertial data and then, when the data window was completed, features belonging to this window were 
calculated. In this concrete problem, two features belonging to the data window power spectral density 
are extracted by means of FFT. Then, these calculated features are normalized in order to be 
comparable. The normalized data are the input for the SVM model which gives the output of the 
problem, in this case, whether the person is walking or not. 

The time that each of the phases described in Figure 7 consumed in the SVM implementation are 
described in Table 4. These time measurements were obtained through an oscilloscope connected to  
the 9 × 2 by activating and deactivating digital outputs of the MCU when each one of the stages 
described in Figure 7 started or finished. The windows size of the SVM was 3.2 s length and the 
frequency sampling was reduced to 40 Hz. Windows were 50% overlapped and each window contained 
128 samples. As Table 4 shows, every 1.6 s the MCU was awoken to begin calculation, then, a total of 
44.86 ms are needed to calculate feature extraction, data normalization and SVM classification. This 
means the MCU remains in Idle mode or processing the other processes (Data Capture, Bluetooth, 
µSD Card, Battery Management) during 97.2% of the total available time.  

Table 4. MCU’s computation times. 

Events Time duration of events 
Computation start Every window (1.6 s) 
Feature Extraction 35.07 ms 

Data Normalization 0.04 ms 
SVM classification 9.75 ms 

Total computation time 44.86 ms 

6. Conclusions 

An inertial measurement unit for long-term monitoring called the 9 × 2 has been designed. This 
IMU has already been used in previous developments which aimed to detect PD symptoms and to treat 
them in real-time [27,28,33,35,76]. Currently, the 9 × 2 is being used to collect movement signals in 
four different countries from 90 PD patients under the auspices of the REMPARK project [34,35]. The 
second part of this project consists in designing intelligent algorithms capable of monitoring different 
PD symptoms (freezing of gait, dyskinesia, tremor, bradykinesia, falls and gait parameters). Moreover, 
a new sensor based on the 9 × 2’s hardware and firmware is also being validated as part of a fall 
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detector system in a pilot test with 200 individuals [36]. Finally, the 9 × 2 has also been employed in 
research projects [81,83–86]. 

The IMU presented contains a triaxial accelerometer, gyroscope, and magnetometer. It also includes 
a temperature sensor. The 9 × 2 has a power management module which contains a battery charger and 
a battery monitor that provides information of the battery status to the user. The sensor is totally 
wearable being smaller than a mobile phone and suitable to be worn on the body with, for instance, the 
specifically developed neoprene belt shown in Figure 1. 

This system has a programmable sampling frequency from 1 Hz to 200 Hz, which is enough to 
analyze human movements [37]. Sampling at 200 Hz, and compared to other commercial sensors, it 
has the longest autonomy compared to other inertial data loggers. The 9 × 2 is, moreover, 
programmable to execute online classifiers. The time which the CPU allows for executing algorithms 
is about the 99.2% of the total time when raw data is stored at 200 Hz in the µSD card, or 95.46% if 
raw data is sent through Bluetooth at 200 Hz. The clock frequency of the 9 × 2 has been fully 
calibrated with a specific device (a 53132A universal frequency counter), and a specific method has been 
designed to calibrate the inertial sensors. The system has been designed with the possibility to disable 
specific hardware. The firmware enables the peripherals of the MCU to be disabled to reduce consumption.  

The IMU offers the possibility to send inertial data to external devices and the possibility to store it 
in a µSD card with almost 4 days of data capacity. However, the 9 × 2 lasts for 36.8 h while 
continuously storing data without recharging the device. It also includes the possibility to import 
external data such as another inertial device to compare two different signal sources in real time. 

Online classifiers have already been tested in, for instance, a pilot study in which an apomorphine 
pump was regulated according to the symptoms detected by the 9 × 2’s algorithms [28]. In this case, a 
Short Time Fourier Transform and Support Vector Machine algorithm were computed in real-time and 
were optimized through a Digital Signal Controller, speeding up the algorithm and saving energy. 

The designed IMU is a specific and useful tool for research which opens wide possibilities in the 
field of human movement analysis research. Moreover, it is a very flexible system capable of gathering 
signal databases and executing algorithms under many conditions, such as selecting a sampling 
frequency, selection of sensors to use (accelerometer, gyroscope and magnetometer), storing data in a 
SD or sending raw data through Bluetooth. Finally, the 9 × 2 enables the development and 
implementation of online classifiers, so that their outputs might be stored or sent. 
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