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Abstract: Finger veins have been proved to be an effective biometric for personal 

identification in the recent years. However, finger vein images are easily affected by 

influences such as image translation, orientation, scale, scattering, finger structure, 

complicated background, uneven illumination, and collection posture. All these factors 

may contribute to inaccurate region of interest (ROI) definition, and so degrade the 

performance of finger vein identification system. To improve this problem, in this paper, 

we propose a finger vein ROI localization method that has high effectiveness and 

robustness against the above factors. The proposed method consists of a set of steps to 

localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. 

Accurate finger region segmentation and correct calculated orientation can support each 

other to produce higher accuracy in localizing ROIs. Extensive experiments have been 

performed on the finger vein image database, MMCBNU_6000, to verify the robustness of 

the proposed method. The proposed method shows the segmentation accuracy of 100%. 

Furthermore, the average processing time of the proposed method is 22 ms for an acquired 

image, which satisfies the criterion of a real-time finger vein identification system. 
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1. Introduction 

Recent advances in information technology and the increasing demand for security have led  

to a rapid development of biometric-based automatic personal identification systems [1]. Traditional 

biometric characteristics include face, fingerprint, palm-print, iris, retina, gait, hand geometry, etc. 

Biometric-based identification systems using these media have been successfully used in many safety 

access applications such as customs, airports, and banks. However, no biometric has been proved to be 

perfectly reliable, robust, secure and cost effective. For example, palm-prints and fingerprints are 

susceptible to being forged, as they are exposed, being outside the human body. Face recognition is 

affected by illumination and occlusion. Iris recognition is unfriendly due to the need for direct 

application of light into the eyes [2]. The tremendous growth in the demand for more user friendly and 

secured biometrics systems has motivated researchers to explore new biometric features and traits [3]. 

As a newly emerging biometric technology, finger vein identification has attracted considerable 

attention in the biometric recognition field. Compared with the other more traditional biometrics, finger 

vein recognition technology has the benefits of high anti-counterfeiting strength, small imaging devices, 

low cost, easy collection of images with contactless operation universality, and liveness [4,5]. 

Furthermore, since the veins are located internally within the living body, the finger vein identification 

system is less affected by the outer skin surroundings (skin disease, humidity, dirtiness, etc.). Hence, 

finger vein recognition is considered to be one of most promising solutions for personal identification 

in the future [6]. 

Over the past decade, finger vein recognition technology has produced remarkable achievements. 

According to the existing research, finger vein images are easily affected not only by external factors 

such as scattering [7], uneven illumination [8], and ambient temperature [9], but also by factors 

appearing in the collection process, e.g., translation, orientation, rotation, scale, finger pressure, and 

collection posture. Hence, robust ROI localization is crucial for a finger vein identification system. It 

directly results in whether the interest regions from the same finger vein images have high similarity. 

To a large extent, the robustness of the ROI localization method determines the performance of the finger 

vein identification system.  

Unfortunately, most of the investigations have focused on finger vein extraction [10–13], finger 

vein image enhancement [6,7,14,15], novel finger vein feature representation methods [16–20], and 

multimodal recognition systems that combine the finger veins with other biometrics [9,21,22]. Little 

research has been devoted to finger interest region exploitation. Furthermore, most of the currently 

utilized finger vein ROI localization methods are, in practice, sensitive to finger position variation [6]. 

To solve the problem, Yang et al. proposed a finger vein ROI localization and vein ridge enhancement 

method [6]. The finger structure and optic knowledge are combined to localize the ROI. This works 

well for most finger vein images, but the method fails for some images since the influence of image 

orientation is ignored, although the influence of image orientation has been alleviated with a 

considerable imaging device. 
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In this paper, we propose and detail a robust finger vein ROI localization method. Two extended 

edge operators are employed first for coarse finger region segmentation. This has been verified to 

result in faster speed than those using the masks [22]. For the images in the abnormal case, elaborate 

binarization is proposed to remove the false background caused by the influences from uneven 

illumination, scattering, and improperly collection. To do this, secondly, the extended edge operators 

on the enlarged image are processed to solve the influence from improper collection, followed by a 

single linkage clustering algorithm to delete wrong middle edge points, resulting from the influence of 

uneven illumination and scattering. Afterwards, the calculated orientation angle is employed for 

orientation correction. The removal of false backgrounds and estimated corrected orientation angle can 

be guides for each other to get a more accurate finger region. Finally, an extended ROI detection 

method is employed based on searching the reference line in the second knuckle of the finger. To 

alleviate the influences from the uneven illumination and variation of finger width, the reference line is 

derived from the vertical projection of block image truncated from the segmented or orientation 

corrected image. Experimental results on our established database (MMCBNU_6000), including 6,000 

images from 100 subjects, have demonstrated that the proposed method is highly feasible and robust 

for the influence factors from translation, orientation, scale, finger gesture, scattering, and illumination, 

which shows the segmentation accuracy of 100%.  

The remainder of this paper is organized as follows: Section 2 reviews state-of-the-art technologies 

concerning the ROI localization method. A detailed description of our robust ROI localization for 

finger vein recognition is given in Section 3. Section 4 presents a portable finger vein imaging device 

and provides extensive experimental results that verify the proposed method. The conclusion of this 

paper and ideas for further exploration are summarized in Section 5. 

2. Related Works  

ROI localization is an indispensable process for a finger vein identification system to explore the 

effective region from the acquired image. It largely determines the performance of the identification 

system. ROI localization is usually composed of finger region segmentation, image orientation 

correction, and ROI detection. Since ROI localization is an indispensable process for a finger vein 

identification system, most of the researches have briefly reported their ROI localization methods. 

Here, we briefly review the ROI localization methods. 

Finger region segmentation aims to segment the finger region from an acquired image with a 

complicated background. For finger region segmentation, there are basically three kinds of methods: 

the thresholding method, the finger edge detection based method, and their combination. In [17], the 

captured image was binarized using a threshold value that has been determined by Otsu’s method. 

Then the center of the object was considered as the finger region. Kumar et al. [9] subjected the 

acquired finger vein image to binarization using a fixed threshold value of 230, to coarsely localize the 

finger shape. Afterwards, the isolated and loosely connected regions in the binarized image were 

eliminated, using the Sobel edge detector and area thresholding. Song et al. [12] detected the outlines 

of the finger by thresholding the Laplacian of the image, and then found the boundaries closest to the 

horizontal center line. The finger edge detection based method aims to find the upper and lower finger 

edges, using different edge operators. The Sobel operator was used for detecting the edges of a finger 
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in [19]. The width of the finger region was then obtained based on the maximum and minimum 

abscissa values of the finger profile, while the height of the finger region could be similarly detected. 

In [23], a Canny operator with locally adaptive threshold was applied to get the single pixel edge of the 

finger. Xie et al. proposed to extract the binary edge image using the Hough transform [15]. 

Unfortunately, these methods are not reliable and robust for images with complicated backgrounds, 

influences from scattering and uneven illumination.  

The purpose of image orientation correction is to rotate the images to the same base angle (vertical 

or horizontal orientations). Less detailed works have been introduced to solve image orientation 

correction. Although the image orientation can be alleviated by designing a good imaging device with 

guidance, the acquired images are more or less affected by the orientation, due to different shapes of 

different fingers, especially for images acquired from thin fingers. In [23], the midline obtained from 

the midpoints of the upper and lower finger edges was utilized to horizontally adjust the finger. 

According to two peaks corresponding to two horizontal finger contour lines after a Hough transform 

operation, Xie et al. corrected the orientation of the image when the two detected peaks satisfied the 

set condition [15]. In this way, the performance of image orientation correction is highly dependent on 

the accuracy of the detected finger edges. However, factors from image and camera noise always 

degrade the performance of finger edges detection, especially the influence from segmentation errors. 

ROI detection focuses on the extraction of the region of interest from the orientation corrected 

image. There are basically three kinds of methods to detect the ROI. The first method is directly 

considering the segmented image as the ROI [9,24]. This method has good performance under the 

assumption that the influences of translation, orientation, scale, etc., have been alleviated by the 

imaging device. The second method usually captures a fixed rectangle region from the segmented 

image or orientation corrected image. Basically, the rectangle region is less than the captured image. 

Xie et al. determined the ROI with a rectangle region from the center of the rotated image [15].  

In [17], the center of the finger region was extracted from the segmented image to be the ROI.  

Wu et al. set a fixed region to extract the ROI [18]. However, the ROIs detected using these two 

methods are easily affected by translation and scale, notwithstanding the good design of the imaging 

device. The third method [6,23,25,26] extracts the ROI based on a reference line in the image. Since 

the bone in the finger joint is articular cartilage, and it can be easily penetrated by infrared light, the 

joint part in the image is brighter than that of other parts. Hence, after the horizontal image projection 

of the orientation corrected image, the peaks of the projection curve correspond to the approximate 

position of the joints. These peaks can be utilized to be the reference points for ROI detection. 

However, the methods [23,25,26] are easily affected by uneven illumination and intensity variation 

resulting from the finger structure. To solve the problem, a sub-region that is less than the finger vein 

region is located for the vertical projection of pixel values in [6]. 

The existing methods are not perfectly reliable and robust for the influences from translation, 

orientation, scale, collection of image, uneven illumination, background of imaging device, etc. Hence, 

we are encouraged to explore a robust ROI localization method for finger vein imagery.  
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3. Robust Finger Vein ROI Localization 

An effective and robust finger vein ROI localization method is essential for a finger vein 

identification system. In this section, we detail the proposed method, which consists of segmentation, 

orientation correction, and ROI determination, and which is illustrated in Figure 1. In order to reduce 

the processing time, the acquired image with 480 × 640 pixels size is resized to 120 × 160 primarily 

with “bicubic” interpolation. The details of each step are described as follows. 

Figure 1. Block diagram illustration of the proposed method. 

 

3.1. Segmentation  

Owing to the complicated background of the captured images, the acquired finger vein images are 

divided into two cases: normal case and abnormal case. This is decided according to whether false 

backgrounds exist in the coarse binarized image. The images without false backgrounds appearing in their 

coarse binarized images are considered as the normal case. Otherwise, it is identified as the abnormal 

case. Figure 2 shows the block diagram of the segmentation process in this paper. For a coarse 

binarized image without false background, the orientation angle is computed for image orientation 

correction. For those with false background, elaborate binarization is necessary for accurate finger 

region segmentation. 
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Figure 2. Block diagram of segmentation. 

 

3.1.1. Coarse Binarization 

For the finger vein images in the normal case, the finger region is segmented using the binarized 

image. In the normal case, since the finger region is brighter than the background region, it is easy to 

localize the finger region from the captured image. In [22], a finger vein image is horizontally divided 

into upper part and lower part of the same size. Then, two masks (Figure 3a,b) is utilized for finger 

region binarization. The essential idea of this method is to detect two edge lines from the upper and 

lower images. With the mask operation, the contour of the finger can be localized, by detecting the 

maximum values for each column from the filtered image. The region between the detected upper 

contour and lower contour is then binarized to 1, to be the foreground. On the contrary, the pixels 

outside the finger region are set to 0, to be the background. Inspired by it, an extended operator shown 

in Figure 3c,d that extends the Prewitt operator is proposed to segment the finger region. The process 

of coarse binarization is described in Figure 4. 

Figure 3. Masks for localizing the finger region from the resized acquired image.  

(a), (b) masks used in the method [22]; (c), (d) the proposed edge operators. 
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Figure 3. Cont. 

 

 

Figure 4. Block diagram of coarse binarization. 

 

Figure 5 displays the binarization process of the finger region using the proposed edge operators. A 

given image (e.g., Figure 5a1) is divided into two sub-images, upper one and lower one. The masks of 

Figure 3c,d is then applied to upper one and lower one respectively, according to the direction from the 

center line to boundary lines of original image. Because of this directionality of each filter mask, the 

change from brighter one to darker one make a bright line and the change from darker one to brighter 

one make a dark line. The upper and lower filtered images are then normalized to 0–255,  

and combined together to form an integral filtered image (e.g., Figure 5b2). For the filtered images,  

Figure 5b1,b2 clearly shows that two complete edges appear in the upper and lower part of the filtered 

images. Even for the image (Figure 5a2) with the useless finger part, and influence from uneven 

illumination affected by absorption of the useless finger, the proposed edge operators can also segment 

the finger region well. However, the proposed operator is not robust for the cases shown in  

Figure 5a3–a5. Since the upper finger contour is not completely shown in the captured image  

(Figure 5a3), there is a broken finger edge in the upper part of the filtered image. The same case with 

false background appears in the left lower part of Figure 5a4. Although a very small finger region 
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disappears in this kind of acquired image, it can also be recognized according to our experimental 

result, with the assumption of accurate finger segmentation result. The false background that exists in 

Figure 5c5 is attributed to scattering [7] and uneven illumination [8]. The scattering effect can greatly 

reduce the contrast between the venous and non-venous region [27]. In addition, the useless finger 

region shares the infrared light, which results in the lower finger part absorbing less infrared light than 

the upper part. Hence, a false background exists in its binarized image.  

Figure 5. Coarse binarization results using the proposed edge operators. (a1–a5) resized 

acquired image samples; (b1–b5) the filtered images using the proposed operator; and  

(c1–c5) binarized finger regions (segmentation results). 
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3.1.2. Elaborate Binarization 

For the images in the normal case, the correct binarized finger region can guide the finger 

orientation correction. Unfortunately, false backgrounds exist in some binarized images because the 

acquired images correspond to the abnormal case. Hence, additional processes are necessary to obtain 

an accurate binarization result. To do this, elaborate binarization is designed for the correct 

segmentation. Figure 6 shows the block diagram of elaborate binarization for the images with 

abnormal background. Each step is reported in detail, as follows. 

Figure 6. Block diagram illustration of elaborate binarization.  

 

Boundary Padding and Coarse Binarization 

It can be ascertained that the proposed operator can correctly binarize the finger region whose edges 

are clear and complete in the filtered image. Inspired by this, an ideal method to segment the images 

with false background in the coarse binarization results (Figure 5a3,a4) is to pad the boundary for 

them. This method has the assumption that the image boundaries can be directly considered as the 

finger edges, because only a small finger region disappears in these images.  

To this end, it is firstly verified as to whether the false background is caused by the disappeared 
edge in the upper or the lower part. Assume ( , ) m nI x y R   is a resized finger vein image. 

1 2{ , , , }nup up up up   and 1 2{ , , , }nlow low low low    are the Y-axis values from the detected upper and 

lower edge points, respectively. Each group of edge points is divided into two parts with the same size, 
I IIup up up  , and I IIlow low low  . Then the variances of each part from the upper and lower edge 

points are calculated, as follows: 

1 2 /2_ var( ), { , , , }.I I I
nVar up up up up up up    (1)

/2 1 /2 2_ var( ), { , , , }.II II II
n n nVar up up up up up up     (2)

1 2 /2_ var( ), { , , , }.I I I
nVar low low low low low low    (3)
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/2 1 /2 2_ var( ), { , , , }.II II II
n n nVar low low low low low low     (4)

A threshold Thr  is set to verify whether the upper part or lower part has the disappeared edge. The 
disappeared edge is in the upper part if _ || _I IIVar up Thr Var up Thr  , while the disappeared edge is 

in the lower part when _ || _I IIVar low Thr Var low Thr  . With the position in which the disappeared 

edge is located, a new finger vein image ( , )NewI x y  with resolution of ( )m t n   is built, by padding 

( , )I x y . The padding region t n  at the top of Figure 7a1 has the same intensity value 0 as the 

background. Similarly, a region t n  with intensity value 0 is padded at the bottom of image ( , )I x y , 

for the second case (Figure 7b2,b3). Here, the threshold 38Thr   is an empirical value, which is 

determined according to the experimental results. t  is determined as 3 to reduce the processing time. 

Figure 7. Re-binarization of the finger region using the proposed masks: (a1–a3) resized 

acquired image samples; (b1–b3) padding images; (c1–c3) the filtered images, and  

(d1–d3) final binarized images. 

 

Figure 7 shows the key steps of the re-binarization of the finger region using the proposed edge 

operators. As shown in Figure 7b1–b3, since only three rows are padded, the padding regions are not 

obvious. Compared with the filtered images shown in Figure 5c3,c4, the detected edges are unbroken, as 

shown in Figure 7c1,c2. With the integrated edge, accurate finger regions (Figure 7d1,d2) are 

segmented from the resized acquired images. Afterward, the final binarized image is obtained, by 

discarding the part of t n  in the top or bottom of the re-binarized image. For these images, the 

accurate segmented finger region can guide the finger orientation correction.  

Unfortunately, the process of re-binarization is also not robust for the kinds of images shown in 

Figure 7a3. The reason is that the broken edge results from scattering and illumination, other than the 

disappeared finger part. The same binarization errors occur in the final binarized image (Figure 7d3). 
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To solve this problem, the calculated orientation angle is employed to guide the removal of the  

false background. 

Deletion of Wrong Middle Points 

In this paper, middle points obtained from the detected upper and lower edge points are employed, 

to guide the image orientation correction [23]. For the image with correct segmentation (Figure 8a), 

middle points obtained from the upper and lower edge points can be employed to estimate the 

orientation angle of the acquired image. However, the segmentation errors appeared in Figure 8b will 

degrade the accuracy of calculating the orientation angle, which results in inaccurate orientation 

correction. Hence, it is necessary to delete the wrong middle points located in the segmentation errors. 
Assuming ( , )BI x y  is the binarized image, we obtain the Y-axis values of the middle points from the 

finger region: 

, 1,2,..., ,
2

i i
i

up low
y i n


   (5)

where iup  and ilow  are the upper and lower detected edge point on the Y-axis, respectively. The 

middle points ( , ), 1, 2, ... ,i ix y i n  are marked by ‘o’ as shown in Figure 8.  

Figure 8. Display of the calculated middle points of the finger region in: (a) correct binarized 

finger region; (b) binarized finger region with binarization errors; and (c) binarized finger 

region after deletion of wrong middle points. 

 

A single linkage clustering method [28] is applied to delete the inaccurate middle points to estimate 

the facial orientation in [29]. Furthermore, an iterative strategy is developed to prevent random choice 

of the link distance to get the final estimated orientation. The method can be extended to detect 

arbitrary objects with mirror symmetry or near symmetry property. Inspired by this, we apply the 

single linkage clustering method in this paper, to delete the wrong middle points. Since the operator of 

re-binarization has largely decreased the number of wrong middle points, the iterative strategy 

proposed in [29] is redundant for the orientation estimation in this paper. By using the single linkage 
clustering algorithm, the wrong middle points ( , ), 1, 2, ... ,w w

i ix y i p  ( p  is the number of incorrect 

middle points) in the false background (Figure 8b) can be deleted. Figure 8c shows the binarized finger 

region with accurate middle points. 
  

(a) (b) (c) 
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Calculation of Orientation Angle  

With the accurate middle points, the orientation angle can be calculated using least-squares 

estimation (LSE). Assuming the line function of the finger is described by y kx b  , then the 

parameters can be directly derived according to least-squares estimation (LSE):  

2

1 1

( )( ) ( ) ,
n n

i i i
i i

k x x y y x x
 

      (6)

,b y k x   (7)

1 1

1 1
, ,

n n

i i
i i

x x y y
n n 

    (8)

where 1, 2, ..., , 1,2,..., ,ix n i n  . Hence, the corrected orientation angle   between X-axis and the 

estimated line can be computed as follows:  

arctan( ), 0,

arctan( ), 0.

k k

k k


 
  

 (9)

Removal of False Backgrounds 

The estimated orientation corrected angle can not only be applied for finger vein image orientation 

correction, but also employed in filling the broken region for those images with false backgrounds. 

Assume   is the estimated finger orientation. With   and the values of X-axis coming from the wrong 
middle points ( , ), 1, 2, ... ,w w

i ix y i p , we can calculate their correct values of Y-axis , 1, 2, ... ,c
iy i p  

using the line function y kx b  . Furthermore, the corresponding values of Y-axis of the disappeared 

edge points can also be computed. Thus, the accurate estimated middle points ( , ), 1, 2, ... ,c c
i ix y i p  can 

be directly guided to remove the false background. Figure 9 shows the processes to remove  

the false background. With this operation, the proposed method is robust for segmenting all of the 

captured images. 

Figure 9. Processes of removing the false background. (a) binarized image with all middle 

points; (b) binarized image with correct middle points; (c) segmented image with the 

estimated line calculated from the correct middle points; and (d) integrated finger region 

after removing the false background.  

 

  

(a) (b) (c) (d) 
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3.2. Orientation Correction 

In this part, the segmented images are rotated according to the estimated orientation angle. For the 

images with false backgrounds (e.g., Figure 9a), the orientation corrected angle   can be employed to 

correct the orientations of the correct segmented images. Since there is no false background in the 

binarized images obtained from the acquired images with correct background, all the middle points are 

utilized to compute   using the LSE method. Hence, with the orientation corrected angle  , the 

segmented images can be rotated using “bicubic” interpolation. In this paper, the acquired image will 

be orientation corrected with the condition that the absolute value of   is larger than 1 degree. 

3.3. ROI Detection 

Even though images are acquired from a finger of a person, they may be transition, scale, or 

rotation-variant issues caused by the acquisition environment such as the user’s actions, so it is not 

guaranteed that the same image can be always obtained from the same object. These variations always 

cause high inner-class-distance of two images from one individual, and so degrade the matching 

performance, even for the accurate segmented images. Hence, ROI detection aims to explore the 

interest regions from the same individual’s processed images and make the inner-class-distance as 

small as possible. An ideal method for ROI detection is to find the reference line for each  

image [6,23,25,26]. As described in Section 2, the method applied in [23,25,26] is easily affected by 

the uneven illumination and intensity variation resulting from the finger structure. Hence, the method 

used in [6] to detect ROI is extended and then employed in this paper. It should be stressed that the 

ROI detection in this paper may be performed on the correct segmented image or orientation corrected 

image, rather than the segmented image in [6]. 
Furthermore, different from the method based on searching the reference line in the first  

knuckle [6], in this paper, the ROI of finger vein image is defined as a fixed region, based on the 

reference line in the second knuckle. This is determined owing to the excogitation of our imaging 

device. Since near infrared light can easily penetrate the articular cartilage [23], the gray values of the 

pixels in knuckles are larger than other parts, which results in larger accumulated value of the parts in 

the knuckles than other regions. Hence, with vertical projection of the image, the column with 

accumulated value that has maximum value can be the reference line for ROI detection. As shown in 

Figure 10a, ROI is defined as a rectangle determined by two points, 1 1( 15, 2)r ref y    and 

2 2( 80, 2)r ref y   . All constant parameters used for ROI detection are selected through experiments. 

The procedures for ROI detection are described as follows: 

(1) In order to determine two values, 1y  and 2y , two edge pixels, 1 1( , )x y  and 1 2( , )x y  are used, 

where 1y  and 2y  are two ends of Y-axis on the line of 1x x  in the finger vein region. Since 

the smallest widths from different fingers are almost located in the right terminal of the 
images, two edge pixels are selected as 1(150, )y  and 2(150, )y , as shown in Figure 10b.  

(2) The value, ref , can be determined by using the position of the second knuckle of a finger. 

Since second knuckles commonly appear on the left side of finger vein images, a truncated 

block image w  obtained from the left part of the image is used to decide the location and 

reduce processing time. w  of 1 1m n  is determined by two pixels, 1(20, )y  and 2(80, )y . A 
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block image w  is then projected in the vertical direction. Figure 10c shows the curve of 

image vertical projection:  

1

1
1

( , ), 1, 2, ..., .
m

j
i

V w i j j n


   (10)

(3) The column with the maximum projected value in the curve, c , is chosen to get the reference 

line, 20ref c  , for ROI detection. In Figure 10d, the reference line is displayed with a red 

dotted line: 

1arg max( ), 1, 2, ..., .j
j

c V j n   
(11)

(4) Since the lengths of different fingers vary, the positions of the detected reference lines are 

different. To extract a ROI as large as possible, the width of the ROI is defined as the region 

from 15ref   to 80ref  , displayed in red solid lines in Figure 10d. Hence, the length of the 

extracted ROI is 95. Owing to different shapes from different fingers, the height of the ROI is 

based on 1 2y   and 2 2y   displayed in yellow solid lines in Figure 10d. In this way, the 

detected ROI contains the effective foreground (finger region), as much as possible.  

(5) Since the height of the ROI varies with different fingers, geometry normalization is necessary 

to eliminate the geometrical variations. In this paper, all localized ROIs are normalized to  

60 × 128 pixels with ‘bicubic’ interpolation, like Figure 10e. 

Figure 10. Processes of finger vein ROI detection, (a) processed image with w; (b) curve 

of truncated image vertical projection; (c) ROI with reference line (red); (d) localized ROI; 

and (e) geometry normalized ROI. 

 

In practical scenario, the collection positions of each finger for several attempts are variant, even 

there is an elegant design of guidance in a imaging device. Hence, the collected images are more or 

less affected by the image translation. The influence from image translation can degrade the 

performance of a finger vein recognition system. Furthermore, due to different individuals have 

different finger lengths, the values of c  are located in a wide region. These factors results in the 

smaller region of ROI (Figure 10e), compared with the original image (Figure 10a). Although the 

image size of ROI is reduced, the difference between two finger vein images that are from one finger is 

also reduced.  
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4. Experimental Results and Discussion 

In order to verify the feasibility and robustness of the proposed method, extensive experiments are 

performed on our established database which is named MMCBNU_6000. The images are all captured 

using a lab-made portable imaging device. 

4.1. Finger Vein Imaging Device and Dataset 

As shown in Figure 11a, the lab-made imaging device is composed of a camera with an infrared 

light passing filter and an array of infrared LEDs of 850 nm wavelength. For the sake of improving the 

convenience for image collection, a holder is added on the back of the device, and a hole is punched 

that is larger than the thickness of the top of an adult’s finger. In addition, a USB interface is applied 

for power supply to allow the portability. As shown in Figure 11b, the size of our device is  

6.8 × 5.4 × 10.1 (length × width × height: cm), which is about the same height as a can of coffee. 

Figure 11. Lab-made Imaging device and example for image collection. (a) the portable 

finger vein imaging device designed by our lab; and (b) an example of image collection for 

the left forefinger. 

 

MMCBNU_6000 consists of finger vein images captured from 100 volunteers, who are students 

and professors in CBNU from Asia, Europe, Africa, and America, coming from 20 different countries. 

The ages of volunteers are from 16 to 72 years old. Statistical information of the nationality, age, 

gender, and blood type of each volunteer is available for deep analysis on the finger vein image. Since 

the length of the thumb and the little finger is too short, compared with other three fingers, each 

subject was asked in the capturing process to provide images from his or her index finger, middle 

finger, and ring finger of both hands in a standard office environment (rather than a darkroom). The 

collection for each of the six fingers is repeated 10 times to obtain 10 finger vein images. For each 

image collection, the subject was asked to input his or her finger optionally. Our finger vein database is 

composed of 6,000 images. Each image is stored in “bmp” format at 480 × 640 pixels size.  

Figure 12 shows the influences of different kinds of factors on finger vein images. All the 

influences enhance the difficulty of correct ROI localization. Translation, orientation, scale, and 

Illumination source: LEDs 

Hole 

Length Width 

Heigh

Camera 

Holder 

(a) 

(b)
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rotation, as shown in Figure 12a,b,d,e, may result in wrong regions of interest (ROI), which will 

increase the probability of erroneous matching. The quality of finger vein images (Figure 12c) is 

always poor because the scattering effects can greatly reduce the contrast between the venous and  

non-venous regions [27]. For the effect from pressure shown in Figure 12f, the inaccurate ROI may be 

obtained even though there is a correct ROI detection. The factor of uneven illumination displayed in 

Figure 12g will mistake the vertical projection. Moreover, since the finger beside the captured finger 

shares the IR light, the IR light for the captured finger is not enough. In this way, the vein image from 

the captured finger is shown blacker than those in the normal case, as shown in Figure 12h. This factor 

always affects the accuracy of finger region segmentation. 

Figure 12. Influences from different factors on the finger vein images. (a) translation;  

(b) orientation; (c) scattering; (d) scale; (e) rotation; (f) finger pressure; (g) uneven 

illumination; and (h) collection posture. 

 

4.2. Comparison of Segmentation Performance 

In this part, the existing segmentation methods, Otsu’s thresholding [17], mask based method [22] 

and re-binarization using the proposed edge operators, are implemented for comparison.  

 

(c) (d)

(e) (f)

(g) (h)

(a) (b)
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Figure 13. Segmentation results using different methods. (a1–a8) acquired images,  

(b1–b8) Otsu’s thresholding method used in [17], (c1–c8) mask based method used in [22],  

(d1–d8) re-binarization using the proposed edge operators, and (e1–e8) the proposed method. 

 

 
(a8) (b8) (c8) (d8) (e8) 
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Figure 13 shows the segmentation results using the above methods and the proposed method.  

Figure 13a1 is a normal image, with good image background and image quality. Owing to the uneven 

illumination, the left upper finger region in the image Figure 13a2 is brighter than other regions. There 

is some parasitic light in Figure 13a2,a3. The image in Figure 13a4 is acquired from a volunteer whose 

age is 72 years old. The factors causing the complicated background from Figure 13a5 to Figure 13a8 

result from image collection for the index and ring fingers, improper collection posture, and scattering. 

It is ascertained that Otsu’s thresholding method and the method using edge mask are not robust for 

segmentation. For Otsu’s thresholding method, some segmentation errors appear in the outputs, due to 

the influences from illumination, parasitic light, and useless finger parts. The mask based method [22] 

can solve these errors. However, the method using the mask is invalid for the influence from scattering 

and incomplete finger.  

Hence, these two methods are not robust for some variations from the external and internal factors. 

As shown from Figure 13e1 to Figure 13e8, the proposed method can correctly segment the acquired 

images with the influences from illumination, scattering, parasitic light, and useless background. 

Compared with the results (Figure 13e1–e8) using the mask based method [22], the proposed method 

has higher robustness than the masks displayed in Figure 3a,b. With the accurate edge information, an 

accurate orientation correction angle can be estimated to guide the image orientation correction.  

In order to compare the robustness of the proposed method with other methods, the segmentation 

accuracies obtained using different segmentation methods are computed. The output image without 

false background is considered as a correct segmentation, as the images shown in Figure 13e1–e8. 

Otherwise, the output with false background (e.g., Figure 13b2–b8,c5) is identified as a false 

segmentation. The segmentation accuracy can be computed as follows: 

.
number of correct segmented image

Accuracy
total images in database

  (12)

As shown in Table 1, the robustness of the proposed method is confirmed from the segmentation 

accuracy of 100%, achieved using MMCBNU_6000. Otsu’s thresholding method is highly sensitive to 

the influences from illumination and background, which brings poor segmentation result. The mask 

based method also has high segmentation accuracy, duo to the good image background of the images 

in our database.  

Table 1. Comparison of segmentation accuracy using different methods. 

Methods 
Otsu’ 

Thresholding [17] 
Mask Based 
Method [22] 

Re-Binarization 
Proposed 
Method 

Segmentation accuracy 86.75% 99.43% 99.92% 100% 

Table 2 depicts comparison of the processing time using different segmentation methods. All the 

experiments are performed using MATLAB (R2010a) on a computer with Intel Core i3-2120 and  

4 GB RAM. From the results as shown in Table 2, the proposed operator has less processing time than 

the mask used in [22], which shows the average processing time of 7.7 ms for the coarse binarization. 

In addition, the processing time of the proposed method includes the time for image segmentation, 

image orientation correction, and ROI detection. The total processing time using the proposed method 
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to localize the ROI from an acquired image is 22 ms, which satisfies the criterion of a real-time 

identification system.  

Table 2. Average processing time of different segmentation methods. 

Otsu’s Thresholding 

[17] 

Mask Based  

Method [22] 

Proposed Method 

Coarse Binarization Using the 

Proposed Operators 
Posterior Operation 

9 ms 8.6 ms 7.7 ms 12.3 ms 

4.3. Comparison of Orientation Correction Performance 

In this section, we compare the orientation correction results with, and without elaborate binarization, to 

illustrate the importance and robustness of the proposed method. As depicted in Figure 14, since a 

false background appears in the segmented image, the orientation correction angles are not accurate 

when directly derived from the LMS. With this estimated angle, an inaccurate ROI will be extracted 

for recognition. After detection and deletion of wrong middle points, the estimated angle is much more 

accurate than those without this operation, which is shown in Figure 14e. It is ascertained in Figure 14 

and Table 3 that the proposed method is robust against the influences from scattering, uneven 

illumination, and improper image acquisition. The positive angles in Table 3 mean the image should be 

rotated counterclockwise, while the image should be rotated clockwise when the angle is a  

negative value. 

Figure 14. Orientation correction results using different methods. (a) acquired images;  

(b) segmented images using the mask based method proposed in [22]; (c) orientation 

corrected images according to the segmented result of (b); (d) segmented images using the 

proposed method; and (e) orientation corrected images according to the segmented result of 

(d). For the rotated image in the second row of (e), better vision effect can be obtained 

when you focus on the lower finger contour. 

 
  

(a) (b) (c) (d) (e) 
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Table 3. Comparison of estimated orientation correction angles before and after elaborate 

binarization for images in Figure 14a. 

Images in Figure 14a 
Estimated Angle before 
Elaborate Binarization 

Estimated Angle after 
Elaborate Binarization 

First row image 5.5709   0.9084  

Second row image 0.7749  5.553   
Third row image 2.2362  0.8465  

In all of the acquired images in MMCBNU_6000, 3,718 images are orientation corrected. Hence, 

more accurate ROIs can be extracted than those without orientation correction [6].  

4.4. Comparison of Matching Performance 

The matching performance is compared in this experiment, to evaluate the effectiveness of the 

extracted ROIs. Three kinds of ROIs are all extracted from the correct segmented images, using the 

proposed segmentation method. The first method to extract ROI is using the method in [23,25,26], 

which means the processed images are projected to search the reference line. Image orientation 

correction is operated in obtaining the first ROIs. The second method is using the truncated images 

extracted from segmented images, to seek the reference line [6]. There is no orientation correction in 

the process of ROI detection. The third case, detecting ROIs from the block image truncated from 

processed images for reference line searching, is the proposed method.  

Two conventional feature representation methods are applied to evaluate different ROIs. They are 

discrete wavelet transform (DWT [30]) and local binary pattern (LBP [31]). For DWT, the low 

frequency component after two layer wavelet decomposition using “haar” wavelet basis is applied, to 

give the final features. For LBP, the extracted uniform histograms from 2 × 2 nonoverlapping block 

images are the final features. Since the purpose of this paper is to investigate an effective and robust 

ROI localization method, rather than an effective feature extraction method, the parameters in these 

two methods are not explored more deeply. Nearest neighbor classifier with cosine distance measure is 

utilized for matching.  

Five finger vein images from one individual are selected as the training set, while the rest five 

images are used as the test set. Hence, the training database and testing database are both composed of 

3,000 images. Each finger is considered as an individual. To evaluate the matching performance, false 

accept rate (FAR) and false rejection rate (FRR) are reported. FAR and FRR will change with  

the variation of threshold. The equal error rate (EER) of a system is the value when FAR is equal  

to FRR. For the matching performance in terms of EER using different feature extraction methods,  
the number of genuine matching is 6,000 ( 2

5600 C ), and the number of imposter matching is 

44,925,000 ( 2
3000 6000C  ). 

Figures 15 and 16 depict the comparative results of the ROC curves using DWT and LBP for 

feature extraction, respectively. It is ascertained that the ROIs extracted using the proposed method are 

the most effective ones, which show the smallest EERs in Table 4. The importance of image 

orientation correction in ROI localization is demonstrated, even the influence from image orientation is 

alleviated in the excogitation of a considerable finger vein imaging device. The better performance of 
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the proposed method also demonstrates the proposed method has corrected the image orientation well. 

In addition, the method, of truncating the block image from the orientation corrected image for vertical 

projection to seek the reference line, is effective in eliminating the influences from uneven illumination, 

finger structure, finger pressure, etc.  

Figure 15. Comparison of the ROC curves obtained by using DWT for feature extraction 

from different kinds of ROIs. 

 

Figure 16. Comparison of ROC curves obtained by using LBP for feature extraction from 

different kinds of ROIs. 
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It should be noted that the matching performance relies heavily on image enhancement method, the 

parameters of feature extraction method, distance metric and classifier, etc. The focus of this article is 

to investigate a robust finger vein image segmentation method for the images in MMCBNU_6000, 

other than an effective feature extraction method or a design of effective distance metric. The matching 

performance shown in Table 4 is applied to illustrate the robustness of the proposed method. The 

influence from image rotation (Figure 12e) and finger pressure (Figure 12f) also partly attributes the 

common performance shown in Table 4. Better matching performance can certainly obtained when we 

hammer at the researches of finger vein image enhancement, and effective feature extraction with 

excellent distance metric and classifier. 

Table 4. EERs calculated using DWT and LBP for feature extraction from different kinds  

of ROIs. 

Feature Extraction 

Method 

Equal Error Rate (EER) 

First Method to Extract 

ROIs [23,25,26] 

Second Method to 

Extract ROIs [6] 

Proposed Method to 

Extract ROIs 

DWT 4.22% 4.68% 3.93% 

LBP 2.63% 2.72% 1.92% 

Table 5 shows the average processing time of different methods utilized for ROI localization. It is 

ascertained that all three methods can be employed in a real-time identification system. Since the ROI 

is extracted from the truncated image, the average processing time using the proposed method is a little 

less than those using the first method. With 8.7 ms consumption on image orientation correction for 

one image, the EER values reduce 0.75% and 0.8% for feature extraction methods using DWT and 

LBP, respectively.  

Table 5. Average processing time of different ROI localization methods. 

Methods to  
Extract ROIs 

First Method to Extract 
ROIs [23,25,26] 

Second Method to 
Extract ROIs [6] 

Proposed Method to 
Extract ROIs 

Average processing time 22.3 ms 13.3 ms 22 ms 

4.5. Portability Analysis of the Proposed Method 

In this section, we analyze the portability of the proposed method. As our best knowledge, the 

available finger vein databases include: the database from University of Twente (UTFVP) [32], the 

PKU Finger Vein Database from Peking University [33], Homologous Multi-modal Traits Database 

(SDUMLA-HMT) [34], and Hong Kong Polytechnic University Finger Image Database [35].  

For the images from UTFVP [32], it is illustrated from Figure 17 that the similar segmentation 

errors (e.g., Figure 5c3,c4) appear in the Figure 17b, when directly using the mask based  

method [22]. With removal of the false background using the proposed method, accurate segmentation 

results are achieved, as shown in Figure 17c. For 1,440 finger vein images in UTFVP, the proposed 

method can also achieve segmentation accuracy of 100%, which demonstrates the good portability of 

the proposed method. This partly attributes to the pure background of the images in UTFVP. In this 

experiment, the threshold Thr  is 150 and the acquired image is reduced to half of its size. 
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Images included in the PKU Finger Vein Database [33] from Peking University have dark 

background, but the complicated inner structure of the imaging device and the image tags in the right 

corners of each image produce fake finger contours. Hence, inaccurate segmentation results are 

achieved, as shown in Figure 18b. However, when we delete the top and bottom finger parts that 

include the image tags (Figure 18c), accurate segmentation results are achieved by using the  

proposed method. 

Figure 17. Image samples and segmented results for the images from UTFVP. (a) Image 

samples; (b) segmented results using mask based method proposed in [22]; and  

(c) segmented results using the proposed method. 

 

Figure 18. Some finger vein image samples and their corresponding segmented images 

using the proposed method. (a) images from PKU Finger Vein Database; (b) segmentation 

results using the proposed method; (c) images after removal of the top and bottom image 

tag regions; (d) segmentation results using the proposed method after removal of the top 

and bottom image tag regions.  

 
  

(a) (b) (c) (d) 

(a) (b) (c) 
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As shown in Figure 19a, images included in Homologous Multi-modal Traits Database  

(SDUMLA-HMT) [34] also have dark backgrounds. Although the holders in the left and right sides 

place the fake finger contours in the region of the holders, the proposed method can also obtain 

accurate ROIs. As introduced in the first procedure of ROI detection, the smallest widths of the 
segmented images in Figure 19b can be found in the middle region. Then two edge pixels 1 1( , )x y  and 

1 2( , )x y  can guide to do the posterior procedures, as introduced in the ROI detection part. In this case, 

the accurate ROIs can also be exploited using the proposed method.  

Figure 19. Some finger vein image samples from SDUMLA-HMT and their corresponding 

segmented images using the proposed method. (a) two finger vein images; (b) the 

corresponding segmented images using the proposed method. 

 

Figure 20. Some finger vein image samples and their corresponding segmented images 

using the proposed method. (a1–a2) images from Hong Kong Polytechnic University 

Finger Image Database [35]; (b1–b2) segmentation results using the proposed method; 

(c1–c2) images after removal of the top and bottom rectangle regions;  

(d1–d2) segmentation results using the proposed method after removal the top and bottom 

rectangle regions. 

 

Images in the Hong Kong Polytechnic University Finger Image Database [35] have bright 

backgrounds, so we can use the proposed method for the segmentation by applying filters in reverse. 

The filter of Figure 3d can be used for the upper image and the filter of Figure 3c can be used for the 

(a2) (b2) (c2) (d2) 

(a1) (b1) (c1) (d1) 

(a) (b)
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lower image. However, the rectangle used to guide the finger brings the fake finger contour. In 

addition, the missing finger region, duo to the uneven illumination and the finger structure, also results 

in the wrong segmentation results shown in Figure 20b1,b2. To deal the influence from the black 

rectangle, the same method that removes the top and bottom finger parts is applied. The entire finger 

vein images in this database are firstly reduced to its half size, and the 4 and 14 rows of the top and 

bottom image parts are incised, respectively. Then the extended edge operators are performed on the 

processed images. By doing this, accurate segmentation results are achieved, as shown in  

Figure 20d2. Unfortunately, as shown in Figure 20d1, the same operation cannot solve the problem 

caused by the uneven illumination. The post-processing must be employed to obtain the accurate 

segmentation results. 

Hence, with the portability analysis of the proposed method on the available databases, we can draw 

the conclusion that the proposed method has good portability, which can be directly used for the 

images from MMCBNU_6000, UTFVP [32], PKU [33] and SDUMLA-HMT [34]. Some of the 

parameters in this paper should be tuned according to the images in different databases. The proposed 

method can also be employed for the images in the Hong Kong Polytechnic University Finger Image 

Database [35] to get the coarse finger segmentation result. Since the images in this database have 

bright backgrounds, the uneven illumination can produce fake backgrounds in the finger region. 

Hence, additional processing must be performed to get the accurate segmentation results. 

5. Conclusion 

In this paper, we proposed a finger vein ROI localization method that has high robustness towards 

the influences coming from image translation, orientation, scattering, complicated background, 

collection posture, and uneven illumination. To eliminate or alleviate these influences, three steps, 

which include segmentation, orientation correction, and ROI detection, are designed for 

implementation. Two extended edge operators are employed in the coarse and elaborate finger region 

binarization. Afterwards, a single linkage clustering method is applied to discard the wrong middle 

points located in the false background. This ascertains the accurate estimation of the corrected 

orientation angle. With the estimated orientation angle, the images with false background can be filled 

up to get accurate segmentation results. To detect the ROI as large and effective finger region as 

possible, an extended ROI detection method is employed. The block image truncated from the 

processed image is projected to detect the reference line. This can abate the variations of uneven 

illumination and finger structure. Experimental results on our collected database MMCBNU_6000 

have illustrated that the proposed method is robust for the aforesaid influences. In addition, the 

proposed method can be applied in a real-time finger vein identification system. In the future, we will 

devote ourselves to the investigation of a method to eliminate the influences from rotation as shown in 

Figure 12e and finger pressure (Figure 12f). A robust ROI localization method that has extensive 

applicability for finger vein images acquired by different devices also attracts our interest. 
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