
Sensors 2013, 13, 14888-14917; doi:10.3390/s131114888
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

PANATIKI: A Network Access Control Implementation Based

on PANA for IoT Devices

Pedro Moreno Sanchez *, Rafa Marin Lopez * and Antonio F. Gomez Skarmeta *

Department Information and Communication Engineering (DIIC), Faculty of Computer Science,

University of Murcia, Murcia 30100, Spain; E-Mails: p.morenosanchez@um.es (P.M.S.);

rafa@um.es (R.M.L.); skarmeta@um.es (A.F.G.S.); Tel.: +34-686-917-624 (P.M.S.);

+34-868-888-501 (R.M.L.); +34-868-884-607 (A.F.G.S.)

Received: 25 August 2013; in revised form: 17 October 2013 / Accepted: 21 October 2013 /

Published: 1 November 2013

Abstract: Internet of Things (IoT) networks are the pillar of recent novel scenarios, such

as smart cities or e-healthcare applications. Among other challenges, these networks cover

the deployment and interaction of small devices with constrained capabilities and Internet

protocol (IP)-based networking connectivity. These constrained devices usually require

connection to the Internet to exchange information (e.g., management or sensing data) or

access network services. However, only authenticated and authorized devices can, in general,

establish this connection. The so-called authentication, authorization and accounting (AAA)

services are in charge of performing these tasks on the Internet. Thus, it is necessary to

deploy protocols that allow constrained devices to verify their credentials against AAA

infrastructures. The Protocol for Carrying Authentication for Network Access (PANA) has

been standardized by the Internet engineering task force (IETF) to carry the Extensible

Authentication Protocol (EAP), which provides flexible authentication upon the presence

of AAA. To the best of our knowledge, this paper is the first deep study of the feasibility

of EAP/PANA for network access control in constrained devices. We provide light-weight

versions and implementations of these protocols to fit them into constrained devices. These

versions have been designed to reduce the impact in standard specifications. The goal of

this work is two-fold: (1) to demonstrate the feasibility of EAP/PANA in IoT devices;

(2) to provide the scientific community with the first light-weight interoperable

implementation of EAP/PANA for constrained devices in the Contiki operating system

(Contiki OS), called PANATIKI. The paper also shows a testbed, simulations and

experimental results obtained from real and simulated constrained devices.

Sensors 2013, 13 14889

Keywords: IoT; network access control; PANA; EAP; AAA; light-weight

1. Introduction

The growth of small devices with constrained capabilities and Internet Protocol (IP)-based

networking connectivity is today a reality. They typically form self-configurable wireless multi-hop

networks of relay nodes, which are able to recover from communication failures. Due to these features,

they have become an important part of the Smart Grid, as well as sensor networks, such as the

Internet of Things. ZigBee [1] is a typical example of multi-hop networking technology based on the

IEEE 802.15.4 [2] standard, which uses IP version 6 over Low power Wireless Personal Area Networks

(6LoWPAN) [3] to integrate IP version 6 (IPv6)-based connectivity in constrained devices.

In certain cases, the nodes that form these networks may require Internet connectivity through a border

router (e.g., a sensor sending a measurement to a central server on the Internet), which, in turn, may

need to authenticate the node to provide network connectivity. This is typically performed through an

authentication process carried out using an existing authentication, authorization and accounting (AAA)

server deployed in some Internet organizations. As depicted in Figure 1, node number 1 is able to send

information to the Internet through the gateway, as it is an authenticated node. In the same way, this node

could also send data to another authenticated node within the constrained network. In contrast, node 3 is

not authenticated, and node 2 (authenticated) does not allow it to send any traffic to either the multi-hop

network or the Internet.

Figure 1. Network connectivity and access control.

In particular, the Extensible Authentication Protocol (EAP) [4] is widely used to provide flexible

authentication involving AAA infrastructures. With the use of EAP and AAA and thanks to

some initial pre-established credentials, a successful authentication and authorization process can

provide cryptographic material and configuration parameters to different network layers with a single

authentication. This enables secure access to the Internet. This general process is typically known as

bootstrapping. However, this aspect has been an open issue until now for multi-hop networks, mainly

Sensors 2013, 13 14890

due to a lack of a network access authentication protocol that operates at any link layer of multi-hop

networks and supports AAA inter-working.

To carry out this type of operation, it is recommended to use a protocol that operates on top of IP to

transport EAP between a node and the border router through several relay nodes (hops). There are two

standardized protocols to transport EAP in these conditions: the Protocol for Carrying Authentication

for Network Access (PANA) [5] and Internet Key Exchange v2 (IKEv2) [6]. As analyzed in [7], PANA

represents a lighter option to transport EAP, which is an important feature, considering the constrained

resources of theses small devices. Furthermore, PANA has been designed to perform network access

control, while the purpose of IKEv2 is to establish IPSec security associations. Indeed, PANA has been

chosen as the protocol to carry out network access authentication and is being adopted by ZigBee IP [8]

and European Telecommunications Standards Institute (ETSI) Machine-to-Machine (M2M) [9].

In this paper, we present, to the best of our knowledge, the first attempt to analyze and explore

the usage of PANA in real constrained devices (i.e., Internet of Things (IoT) devices). To perform

this analysis, we first present the details of PANA and EAP and provide plausible simplifications that

have steered the lightweight implementations of both protocols, named PANATIKI [10]. As we will

analyze, these simplifications still comply with the important parts of both standards to facilitate a real

deployment. We also discuss a small testbed, which we have deployed to obtain processing times and

message sizes that lead to important conclusions about the usage of PANA in networks of constrained

devices. To extend the analysis, we have used Cooja [11] to run simulations with several nodes.

The remainder of the article is organized as follows. Section 2 presents some related work,

and Section 3 presents some important background for understanding our implementation and the

corresponding results. In particular, PANA and EAP are described, as well as the most relevant aspects

of the protocol, such as the associated architecture. Section 4 identifies important design decisions,

which we have taken to adapt PANA and EAP to constrained devices without greatly affecting the

standards. Section 5 provides some results obtained from a testbed especially designed to evaluate our

implementation. Finally, we provide some conclusions and future work guidelines in Section 6.

2. Related Work

The network access control and bootstrapping procedures in constrained devices are important topics

nowadays. The authors in [12] expose the main features of IP-based security protocols for bootstrapping.

It is shown that, in general, security protocols used today on the Internet were initially designed for

nodes with high computational capabilities and permanent power supply, a large amount of memory

and network links with sufficient bandwidth. However, this is not the case in constrained devices.

The capabilities of these devices are much lower than the general purpose ones. Furthermore, the

programming paradigm and mode of operation of this type of network change.

In [13], the authors give a complete overview of the security bootstrapping solutions for constrained

devices. Five areas of bootstrapping are defined: user interface, bootstrap profile, security method,

bootstrap protocol and communication channel. The user interface provides the interaction between

the user and the bootstrap protocol. The user interface will vary depending on the capabilities on the

node. In most cases, the user interface does not exist, and all the parameters needed by the bootstrap

Sensors 2013, 13 14891

protocol are configured statically. Those parameters are saved in the bootstrap profile, which defines

what information should be exchanged during the bootstrapping process. Potentially, a single node may

run the protocol multiple times with different profiles, although they should be previously defined. The

security method defines supported mechanisms for bootstrapping.

The bootstrap protocol, which is the main focus of our contribution, is defined as the mean to carry out

message exchanges performed during the bootstrapping process. Concretely, in [13], three possibilities

are indicated as the most suitable: 802.1X [14], Host Identity Protocol - Diet Exchange (HIP-DEX) [15]

and PANA [5]. Finally, the main aspects of each protocol are explained. Of these options, PANA is the

only protocol that is able to operate between several IP hops and to interact with AAA infrastructures for

network access control. In this sense, standardization bodies working on constrained devices, like the

Zigbee Alliance [8] or ETSI Machine-to-Machine (M2M) [9], have adopted PANA as the bootstrapping

protocol used in constrained environments. In fact, it is expected that most of the upcoming Zigbee

devices will bring a PANA implementation.

In [16], there is theoretical work about the use of transport layer security-pre-shared symmetric

key (TLS-PSK) for constrained devices. However, this work only reports theoretical results. No

implementation has been carried out, and no practical results are shown. Moreover, there is no specific

proposal about a solution for the network access control for constrained environments, just a survey

about how to create cryptographic material between two constrained devices.

In [17,18], the authors propose two different solutions for network access control and key

management for constrained networks. These proposals enable secure communication between

constrained devices within a local network. However, this work does not address the authentication

of nodes willing to exchange information on the Internet. Thus, the results obtained in these related

works do not cover the problem that we try to solve in this paper.

Focusing on the available open source implementations, there are only a few PANA open source

initiatives: OpenDIAMETER [19], CPANA [20] and OpenPANA [21]. OpenDIAMETER is an old

implementation that no longer enjoys support. CPANA is a recent implementation based on the C

language and more lightweight than OpenDIAMETER, though it is not frequently updated. Moreover,

it does not include any AAA client for interacting with AAA infrastructures. Finally, OpenPANA

(developed by us) is also based on the C language and includes complete support with Remote

Authentication Dial-In User Service (RADIUS)-based AAA infrastructures. Furthermore, it supports a

wide number of EAP methods. Moreover, it provides the first open source implementation of the entity,

PANA Relay (PRE), which is important in constrained networks, as we will analyze in the following

section. In general, these implementations have been developed for general purpose computers, and

thus, they are not directly suitable for constrained devices. This motivates the development of new

PANA and EAP implementations adapted to these devices, as explained herein.

3. Background

In the following, we provide a basic background to EAP and PANA in order to understand the rest of

the paper.

Sensors 2013, 13 14892

3.1. Extensible Authentication Protocol (EAP)

The Extensible Authentication Protocol (EAP) [4] is a lock-step request/response protocol, which

supports only a single packet (request or response) in flight. Therefore, each request message (EAP

Request) is answered with a response (EAP Response). EAP allows different types of authentication

mechanisms, the so-called EAP methods (e.g., based on symmetric keys, digital certificates, etc.).

EAP-PSK [22] is an example of the EAP method. It assumes pre-shared symmetric key (PSK) between

the EAP peer and EAP server and provides a lightweight authentication mechanism consisting of only

four messages. No other secure EAP method uses fewer messages for authentication purposes. This

means it is a potential candidate in constrained environments, such as IoT networks. In fact, this is the

EAP method we have used for our experiments.

Every EAP method is run between an EAP peer and an EAP server through an EAP authenticator.

From a security standpoint, the EAP authenticator does not take part in the mutual authentication process,

but acts as a mere EAP packet forwarder.

To carry out an EAP authentication, the EAP authenticator usually starts the process by requesting

the EAP peer’s identity through an EAP Request/Identity message. The EAP peer answers with an EAP

Response/Identity with its identity. With this information, the EAP server will select the EAP method

to be performed. The EAP method execution involves several EAP Request and Response exchanges

between the EAP server and the EAP peer.

Figure 2 represents the pass-through authentication model, which is the most deployed configuration.

In this model, the EAP server and the EAP authenticator are implemented in separate nodes. Specifically,

the EAP server is placed on an AAA server deployed by the network operator somewhere on the Internet.

Here, communication between the EAP server and the pass-through EAP authenticator is performed

using an AAA protocol, such as RADIUS [23] or Diameter [24]. In both cases, a protocol referred to

as the EAP lower-layer protocol is used to transport the EAP packets between the EAP peer and EAP

authenticator.

Figure 2. Extensible Authentication Protocol (EAP) pass-through authentication model.

Certain EAP methods [25] are able to generate keying material. In particular, according to the EAP

Key Management Framework [26], two keys are exported after a successful EAP authentication: the

Master Session Key (MSK) and the Extended Master Session Key (EMSK). The former is traditionally

sent to the authenticator to establish a security association with the EAP peer, while the latter must not

be provided to any other entity outside the EAP server and peer. Thus, both entities may use the key

material for further key derivation and, therefore, for bootstrapping purposes.

Sensors 2013, 13 14893

3.2. PANA

PANA [5] is an application protocol using the User Datagram Protocol (UDP) as the transport, which

has been specially conceived of by the Internet Engineering Task Force (IETF) to carry EAP to support

different authentication mechanisms for network access. Thus, it is an EAP lower-layer protocol, which

is independent of the underlying network access technology. Consequently, the PANA architecture

described in [27] defines several logical entities that have a correspondence with the EAP entities shown

in Figure 2. This relationship is depicted in Figure 3.

Figure 3. Protocol for Carrying Authentication for Network Access (PANA) Framework.

The PANA network access control model considers a PANA Client (PaC), which requests access

to the network service offered by an Enforcement Point (EP), such as an access point or a router.

The EP is controlled by a PANA Authentication Agent (PAA), which is responsible for authenticating and

authorizing the PaCs for the network service. The PAA communicates with the AAA Server, to verify the

credentials provided by a PaC. If the AAA server correctly verifies the credentials, it sends authorization

parameters (cryptographic material, network access lifetime, quality of service (QoS) filters, etc.) to the

PAA. Then, the PAA transfers some configuration information to the EP by using either an Application

Program Interface (API) or a Configuration Network Protocol (CNP), like Simple Network Management

Protocol (SNMP) [28]. According to this operation, as depicted in Figure 3, the PaC, PAA and AAA

implement the EAP peer, EAP authenticator and EAP server functionalities, respectively.

It is worth noting that a new, but optional, entity, named PANA Relay (PRE), has been defined in [29].

This entity is located between a PaC and a PAA and is responsible for relaying the PANA messages. From

the PaC’s perspective, the PRE appears as the PAA. The deployment of this entity may not be required

in general scenarios, but it is essential in scenarios where the PaC cannot make contact directly with the

PAA. This situation is typical in IoT environments, like that shown in Figure 1, where the unauthenticated

node can only interact with the nearest authenticated node, but not with an entity several hops away

(i.e., PAA).

Sensors 2013, 13 14894

The PANA operation is performed along four phases. First, the authentication and authorization

phase is initiated by the PaC through a PANA-Client-Initiation (PCI) sent to the PAA. In this phase,

the PaC and the PAA exchange several PANA-Auth-Request/Answer (PAR/PAN) messages, which are

used to negotiate some parameters, such as the integrity algorithms used to protect PANA messages.

They also exchange PANA messages transporting EAP to perform the authentication and to establish

a so-called PANA session. At the end of this phase, two security associations are established. On the

one hand, the PANA Security Association (SA) is established between the PaC and the PAA in order to

protect the integrity of the PANA messages. To build this security association, both PaC and PAA derive

the PANA AUTH KEY from the MSK obtained once the PaC has been successfully authenticated with

EAP. This PANA AUTH KEY is the one used for integrity protecting the PANA messages. On the other

hand, after the PANA SA has been set, a PaC-EP SA may be established to protect data traffic between

the PaC and the EP.

Once the PaC is successfully authenticated, the protocol enters the access phase in which the PaC can

use the network service just by sending/receiving data traffic through the EP. If the session is about to

expire, typically a re-authentication phase occurs to renew this session lifetime, as well as the associated

security associations. The PaC or PAA can terminate the session (e.g., the PaC wishes to log out the

network access session) during termination phase, where resources allocated by the EP for the PaC are

also removed.

If the PANA authentication involves a PRE between the PaC and PAA, the PRE encapsulates each

message sent by the PaC in a new message, named PANA-Relay (PRY), and sends it to the PAA.

The PAA encapsulates its answer in another PRY message and sends it to the PRE. Finally, the PRE

decapsulates the message sent by the PAA and forwards it without modification to the PaC.

4. Adapting PANA and EAP for Constrained Devices

Resources, such as storage, computation or networking capabilities, that we find in constrained

devices are much smaller than in general purpose computers. In fact, constrained devices can be

classified according to the available read-only memory (ROM) and random access memory (RAM) [30].

Using this classification, we focus our efforts on constrained devices belonging to class 1 and class 2,

given that they are the only ones that have enough power to run a protocol stack specifically defined

for constrained devices. While class 1 devices present an available RAM of approximately 10 kB and a

supported ROM size of approximately 100 kB, class 2 devices are more powerful, having approximately

50 kB of RAM and 250 kB of ROM available. This circumstance motivates, before starting to implement

PANA and EAP, the analysis of a set of key aspects in the design of these protocols. The goal is to

determine if certain simplifications are possible without breaking the standards.

4.1. Preliminary Considerations

To perform an authentication, an unauthenticated node will have to implement the PaC with the

EAP peer functionality and the client part of the EAP methods. Once this node is authenticated, it

becomes an authenticated node and may act as a PANA relay to forward PANA messages between a

new unauthenticated PaC and the PAA deployed. Therefore, a node joining the multi-hop network and

Sensors 2013, 13 14895

trying to send traffic to the Internet will have to implement both PaC and PRE functionality. Thus, these

implementations must be optimized to preserve resources in the constrained device. In contrast, the PAA

will be typically co-located with the border router, which is assumed to have enough resources to run a

general PANA implementation. This mapping is represented in Figure 4.

Figure 4. PANA framework for network connectivity and access control.

Our first attempt to deploy PANA in constrained devices was to adapt OpenPANA to the requirements

imposed by these constrained devices. However, the source code of OpenPANA is not well adapted for

constrained environments. For example, it makes use of heavy libraries for constrained devices, like

open secure sockets layer (OpenSSL) [31] or implements multiple EAP methods to provide flexibility.

However, this variety increases the source code size. This has led us to implement, from scratch, a PaC

and a PRE specially adapted for constrained devices. This implementation is based on the Contiki OS,

which is the operating system used by the devices we have used for our real experience.

For these implementations, we have followed documents Request For Comments (RFC) 5609 [32],

RFC 4137 [33] and RFC 6345 [29], which describe the PANA state machine, the EAP state machine and

the PRE behavior, respectively. Nevertheless, it is convenient to analyze how these state machines can

be simplified without removing any mandatory behavior of the standard protocols.

Additionally, it is important to make use of the hardware resources that these devices already offer.

This means adapting the variables’ length to the word length of the microprocessor or using available

hardware cryptographic modules. For example, several constrained devices already integrate certain

hardware implementations of basic cryptographic functions. PANA and EAP typically require a certain

cryptographic suite to perform authentication and key management. In PANA authentication, the

establishment of the PANA Security Association (SA) requires cryptographic operations apart from those

required by the chosen EAP method. Thus, an important design decision is not only to keep the same

cryptographic suite in both PANA and the EAP method so that it can be reused, but also to try to select

Sensors 2013, 13 14896

this cryptographic suite in such a manner that most of the required cryptographic functions are already

implemented by the device’s hardware.

In addition, we need to reduce the number of messages, variables, features, etc., as much as possible.

Each non-mandatory feature and byte we can save will be key in achieving a reduction in other parts. As

a design principle, this must be done following the standard’s rules in order to achieve interoperability

with other implementations.

Below, we focus on specific viable simplifications in the state machines of the PaC, EAP peer and

the EAP method layer of the EAP peer. It is worth noting that the EAP method layer is implemented

by the EAP method, so it will depend on the EAP method selected. For the purpose of our study, we

have chosen the lightweight EAP-PSK (pre-shared key) [22]. This election is not random. Apart from

being based on symmetric cryptography (lighter than asymmetric one), the cryptographic suite used by

EAP-PSK uses the advance encryption standard (AES) as the main algorithm for its operation. This

algorithm is implemented in the hardware in many constrained devices.

Given that the PANA Relay entity is also implemented in this work, we also provide some insights

into its implementation. Finally, although PAA is not installed in constrained devices (we use the

PAA distributed in OpenPANA), some specific behavior of the PAA is expected to handle PANA

authentications coming from a constrained device. We discuss the details of this behavior.

4.2. EAP Peer State Machine

In general, the EAP peer state machine definition is simple (see Appendix); however, some

simplifications are still possible. In particular, we can safely obviate the portEnabled variable and the

Disabled state, because they were inherited from legacy technology (e.g., 802.1X technology), and we

can assume that portEnabled is always TRUE and Disabled is FALSE.

We have also deleted the timeout management in the EAP peer. This timeout is established by

the peer, so that it avoids waiting for a EAP Request indefinitely. Nevertheless, this situation can

also be discovered if the EAP lower layer notifies the EAP peer that the authenticator has not sent

any message after a certain period of time. Since PANA provides this functionality, it is not worth

duplicating functionality in both layers. This simplifies some transitions and avoids extra verification

and management of this timeout (see Figure B1).

Finally, we have deleted the Notification transition. A Notification message is optionally used to

transport a displayable message from the authenticator to the peer. However, it is not widely used, and

certain EAP methods prohibit or do not recommend its usage, because this message is not securely

protected. EAP-PSK is an example. Thus, our EAP peer state machine removes this state and its

management, since it is not essential.

4.3. PANA Client State Machine

In general, the complete PaC state machine can be simplified to fit better in constrained devices.

Therefore, we need to make some decisions to get a lighter version without affecting the mandatory

parts of the standard.

Sensors 2013, 13 14897

Some hints of this simplification process can be found in [7], where we have some useful guidance and

recommendations about how the PANA client can be tailored to meet the requirements for constrained

environments. From this contribution and our own experience, we can establish a set of simplifications of

the PaC state machine. Figure 5 shows a simplified PaC state machine after the following simplifications.

Figure 5. PANA light-weight state machine.

WAIT_PNA

_PING

WAIT_PNA

_REAUTH

OPEN

CLOSED
WAIT_EAP

RESULT

CLOSE

WAIT_EAP

_RESULT

WAIT_EAP

_MSG

WAIT_PAA

INITIAL

PaC-initiatedHandshake

PAA-initiated Handshake, not optimized

PAR-PAN exchange

PANA result (2)

PANA result (1)

Return PAN/PAR from EAP (1)

Return PAN/PAR from EAP (2)-(3)

EAP Result (2)

EAP Result (1)

EAP Result (3)

liveness test initiated by PaC
re-authentication initiated by PaC

re-authentication initiated by PaC

liveness test initiated by PaC
rst_n

4.3.1. PANA Session Initiation Phase

There are two ways of initiating a PANA (re-)authentication: PaC-inititated or PAA-initiated. Taking

into account that constrained devices usually have a dormant mode to save energy power, a PAA-initiated

authentication may fail if the device is sleeping. Thus, a PaC-initiated authentication is recommended,

so that the PaC can start the authentication (or re-authentication) once it is awake. This eliminates the

states related with the processing of the PAA-initiated authentication (see Table A1 in Appendix).

The recommendation of supporting only PaC-initiated (re-)authentication applies not only to sensors

generating upstream traffic, but also to actuators, which additionally support the reception of downstream

traffic. It is worth noting that the authentication process is independent of the specific application

run by the sensor or actuator. Furthermore, authentication is only needed once, before the specific

application messages are exchanged. Thus, when an actuator is installed (or when it is ready to

send/receive specific application information), it can perform the PANA authentication by triggering

the PaC-initiated mechanism. Once the actuator is authenticated, it is ready to send/receive any specific

application message.

4.3.2. Piggybacking EAP Message

EAP messages may be transported in PANA-Auth-Request (PAR) and PANA-Auth-Answer (PAN). By

default, EAP messages are transported only by PAR messages within an EAP-Payload Attribute-Value

Sensors 2013, 13 14898

Pair (AVP), while PAN is used just to acknowledge receipt of a PAR. Thus, PAA sends PAR messages

with an EAP Request, while PaC with an EAP Response. However, this implies extra signaling and

overload, since PAN transports just a confirmation. Nevertheless, PANA does allow the EAP piggyback

mechanism, which consists of transporting EAP messages in both PAR and PAN messages instead of

sending a PAN just as an acknowledgment of the receipt of a message. In this case, the PAN is also used

to transport an EAP message, and therefore, this mode considerably reduces the number of messages

exchanged in the authentication process. Nevertheless, it also has other implications. Due to EAP

piggybacking being always in use in our deployment to save resources, the transitions and states defined

in the PANA state machine that support non-EAP piggybacking can be avoided (see Table A1.{5,6,7} in

Appendix). This considerably reduces the complexity of the state machine.

In addition, the PaC would only receive PAR messages, and it would only send PAN messages. This

feature has two implications. One is that the transitions that check if a PAN message has been received

can also be deleted (see Table A1.{6}, in Appendix). The second implication is analyzed below.

4.3.3. PaC Retransmissions Avoided

Assuming the use of EAP piggybacking, our PaC will only send PAN messages. In PANA

protocol, only PAR messages can be retransmitted. In other words, we can simplify the PaC state

machine by reducing the operation in the states that pay attention to the retransmission mechanism (see

Table A1.{1,2}, in Appendix). Indeed, the only task that PaC has to do is to answer with the same PAN

upon receiving a duplicated/retransmitted PAR.

4.3.4. PANA Re-Authentication Phase and PANA Ping Message

By sending PANA-Notification-Request/Answer (PNR-PNA), PANA can initiate a keep-alive

mechanism or initiate the re-authentication. In the standard, this exchange can be initiated by either

the PaC or the PAA. However, in constrained environments, the PaC may be sleeping and would not

answer with any PNA if the PAA decides to send a PNR to verify whether the PaC is alive or start the

re-authentication [7]. This could lead the PAA to think that the PaC is not operating anymore and to

terminate the PANA session as a consequence. It is therefore safer to assume that PNR will always be

sent by the PaC if it needs to test the availability of the PAA or to perform a re-authentication. For

example, the PaC could send a PNR to the PAA every time the device wakes up. Clearly, this allows the

PAA to detect that PaC is alive.

Thus, under this assumption, we do not need to implement in the PaC state machine the processing of

any PNR coming from the PAA (see Table A1.{3,4,8,10}, in Appendix). Furthermore, the preparation

and construction of the the corresponding answer PNA can be obviated.

4.3.5. Session Termination Phase

To terminate a PANA session and release any associated resource, PAA or PaC can send a

PANA-Termination-Request (PTR), which will be answered with a PANA-Termination-Answer (PTA).

Moreover, if the PAA sends a PTR to a dormant node, this will not answer. Another way to release

these resources is to wait until the PANA session lifetime expires. This does not require any message

Sensors 2013, 13 14899

exchange and processing. Therefore, avoiding extra states or transitions in the PaC state machine (see

Table A1.{8,9,10,11}, in Appendix).

This has the drawback that PAA will have to keep the state during the whole lifetime of the PANA

session. Nevertheless, we can assume that PAA will be placed on a device (e.g., border router) with

enough resources to keep this state safely. Below red part is the footnote to the main text.

4.4. PANA Security Association

Another key part that can be optimized is the PANA Security Association (PANA SA) and the message

integrity protection once the authentication has successfully been completed. In particular, a PANA SA

is established thanks to the derivation of a key named PANA AUTH KEY. This key is obtained from the

MSK exported by the EAP method by applying a key derivation function named PRF+ (pseudo random

function) defined in [6]. The pseudo random function (PRF) used to implement PRF+ is based on

the use of hash-based message authentication code - secure hash algorithm 1 (HMAC-SHA1). This

is a keyed-hash function that provided us with the integrity protection of the messages. Once the

authentication has successfully been performed and the PANA AUTH KEY has been generated using the

mechanism shown above, the integrity protection of the messages (PANA PDU) is achieved by including

an authentication tag contained in the AUTH AVP.

However, HMAC SHA1 is not implemented in the hardware we use for our experimental testbed.

Instead, the device implements an AES module, which is a common algorithm included in cryptographic

processors of constrained devices. Taking into account the principle of taking as much advantage

as possible of the hardware resources, we have replaced HMAC SHA1 for the advanced encryption

standard - cipher-based message authentication code (AES-CMAC) algorithm [34] to derive the

PANA AUTH KEY and to provide integrity to PANA messages. It is worth noting that, although

PANA defines HMAC SHA1 as the mandatory cryptographic suite to be supported, other cryptographic

suites may be used optionally (e.g., AES). In order to get our proposal working, we demand that

the PaC supports only AES-CMAC, while the PAA facing a constrained network must support both

HMAC SHA1 and AES-CMAC. In this way, the solution is scalable. The PAA can handle the

authentication of different devices (The PAA will use HMAC SHA1 as the cryptographic suite for

authenticating a general purpose device, while AES-CMAC will be used for authenticating a constrained

device), while still following the PANA specification. We affirm that the inclusion of both AES-CMAC

and HMAC SHA1 in the PAA is feasible, as we have already done it in our project, OpenPANA [21].

In addition, as we will see in Section 4.5, the EAP method we have selected in our experimental

testbed is EAP-PSK, which also uses AES as the main cryptographic algorithm. In this manner, we still

keep the same cryptographic suite in every part of the protocol stack. Therefore, AES is not only used in

PANA AUTH KEY generation and AUTH AVP generation, but also in the EAP method. As is evident,

we recommend that other developers change this function and use another cryptographic algorithm, if

the device employed supports other types of functions, in order to follow the same principle.

Nevertheless, the choice of AES-CMAC as the cryptographic algorithm for integrity has some

implications. Specifically, it implies that the PANA AUTH KEY must be 16 bytes in length (the

HMAC SHA1 result is a 20-byte length). This is not a problem, because applying AES-CMAC to derive

Sensors 2013, 13 14900

PANA AUTH KEY already generates a 16-byte output with a single iteration. However, the MSK used

as a parameter of AES-CMAC is 64 bytes in length. AES-CMAC only accepts 16-byte length keys as

the parameter. The solution that we have adopted is the use of the 16 most significant bytes of this MSK.

4.5. EAP Method: EAP-PSK

The possibility of choosing between several EAP methods is one of the advantages of using EAP.

However, several choices imply adding more source code to the constrained device. Thus, it is convenient

to select only one EAP method and implement it. In particular, as pointed out in [7], an EAP method

that minimizes the number of messages is preferable. This is the case of Extensible Authentication

Protocol - Generalized Pre-Shared Key (EAP-GPSK) [35] or EAP-PSK [22], which have the minimum

number of messages for an EAP method. Moreover, they are based on symmetric cryptography, which

is better in terms of resource consumption than other methods based on asymmetric cryptography, such

as EAP-TLS [36].

Between EAP-GPSK and EAP-PSK, we have used the latter, because, apart from being very similar

to EAP-GPSK, it relies on a single cryptographic primitive AES-128, which lets us keep the same

cryptographic suite in all our protocol stacks. Besides, EAP-PSK is supposed to be lightweight and

well suited for any type of device, especially those of small processing power and memory. Finally, for

simplicity, EAP-PSK has also chosen a fixed message format, which eases the processing.

EAP-PSK defines two modes of authentication: EAP-PSK Standard Authentication and EAP-PSK

Extended Authentication. We have used the Standard Authentication mode, which builds a protected

channel with less source code and complexity. It is worth noting that this protected channel contains a

value in the last message named P CHANNEL 1, which is cryptographically verified by the EAP peer

part of EAP-PSK. However, the same message contains a Message Authentication Code (MAC). We

argue that the MAC verification is enough for the EAP peer to authenticate the EAP server, so verifying

P CHANNEL 1 is redundant. Thus, we have removed the source code to verify P CHANNEL 1 in the

constrained device.

Finally, the use of EAP-PSK implies that a PSK key must be distributed in advance to the device to be

authenticated. Given the resource constraints in sensor devices, our proposal is based on the assumption

that a device has been manually pre-configured with a PSK that is known a priori to the authentication

server. This assumption is reasonable since a PSK can be included in the manufacturing process of a

device and stored in the authentication server in charge of authenticating the corresponding sensor.

4.6. PANA Relay

The PANA Relay entity (PRE) is located between the PaC and the PAA, and its main function is to

forward PANA messages from the PaC to the PAA and vice versa, without keeping any session state.

Thus, the complexity associated with this entity is relatively small.

According to RFC 6345 [29], the functionalities to be implemented are mainly: reception of messages

from different sources (i.e., PaC and PAA); encapsulation of PANA messages sent by PaC to the PAA

in PANA-Relay (PRY) messages; and the corresponding decapsulation of the answer sent by the PAA to

the PaC, also contained in a PRY message.

Sensors 2013, 13 14901

4.7. PANA Agent

While the PANA Agent (PAA) does not require any particular simplification (we assume that it would

be placed in the border router or any other device with suitable resources), it is important that PAA

establish a set of policies that control its behavior when it is controlling a network with constrained PaCs.

These policies are related to the PaC’s behavior that we have described in previous sections, namely:

• PAA should not initiate (re-)authentication, even if the session lifetime is about to expire.

Instead, it must wait for a notification message from the PaC indicating the initiation of a

(re-)authentication process.

• The EAP piggyback option will be used. Given that lightweight PaC assumes its usage, this option

is activated in the PAA, as well.

• The PAA will only answer PNR messages and will not send PNR to the PaC. (i.e., such as PANA

Ping or to start a (re-)authentication process). Similarly, PAA should avoid sending a PTR message

to terminate a session.

• The PANA SA must be only removed when the associated lifetime expires. We assume that the

PaC is in charge of sending a PANA notification message before lifetime expiration to perform the

re-authentication.

• The AES-CMAC function must be available as a PRF+ and integrity function, since the PaC

deployed in an IoT device will support only this cryptographic suite. Thus, the same function

must be supported in the PAA.

5. Evaluation and Result Analysis

In this section, we show some evaluation results that we have obtained from our implementation and

the hardware platform used.

5.1. Deployed Testbed

First of all, it is necessary to describe the testbed used in this evaluation process. We have used the

JN5139 hardware [37] as an example of a constrained device. The JN5139 module has only 96 kB of

RAM and 128 kB of ROM. These limitations have been taken into account, since we must adjust our

implementation to fit in this space. It has a wireless communication module based on IEEE 802.15.4 [2]

and implements a 128-bit AES encryption module, which allows faster encryption operations. As the

operating system, it uses Contiki OS [11], which is specially adapted to this type of constrained device.

Programming in Contiki OS is based on the american national standards institute (ANSI) C language.

The entities that take part in the testbed are described in Figure 6. In particular, two scenarios have

been deployed. On the one hand, the non-PRE scenario, in which the PaC is deployed in a JN5139

module [37] that connects directly with a bridge 6LoWPAN-Ethernet.

Sensors 2013, 13 14902

Figure 6. Evaluation testbed.

Conversely, the PAA is placed on a regular PC, which is connected to the Ethernet network. Thus,

once a PANA message reaches the bridge, this hardware sends the message to the computer where the

PAA is running. The same process is done on the way back. On the other hand, we have the with-PRE

scenario, where, unlike the non-PRE one, the PaC is not directly connected with the PAA through the

bridge, but by means of a node acting as the PRE. Thus, the messages created by the PaC are sent to the

PRE, and this entity will forward the message to the PAA using the bridge over the 6LoWPAN network.

Once a message reaches the PAA, this entity will send the answer to the PRE, which will forward it to

the PaC.

Finally, the server part of EAP-PSK is already implemented by the RADIUS server. The RADIUS

messages are sent over the localhost interface, since the RADIUS server is located in the same computer

as the PAA. While the PAA has been deployed by using OpenPANA [21] (version 0.2.3), the RADIUS

server implementation is based on FreeRADIUS [38] (version 2.0.2). Both the PAA and RADIUS server

have been deployed over an Ubuntu 12.04 32-bit operating system. Elsewhere, PANATIKI [10] (version

0.1) has been used for PaC and PRE implementations.

The non-PRE and with-PRE scenarios have been also simulated on Cooja [39] to experiment with

more nodes. Cooja is a simulator of constrained networks available in the Contiki OS software. It allows

the simulation of constrained nodes running a Contiki OS-based user application suitable for the inherent

constraints to such nodes. In particular, PaC, PRE and 6LoWPAN Ethernet bridge functionalities have

been loaded into simulated z1 nodes [40], which are more constrained than JN5139 devices. In fact,

they have 92 kB of ROM and only 8 KB of RAM. The rest of the elements of our testbed (i.e., PAA

and the EAP server) have been deployed in a real computer, as explained for the real hardware-based

deployments. Given that simulated nodes (i.e., Z1 nodes) have different capabilities than real hardware

nodes (i.e., Jennic nodes), a small set of changes has been needed in both the OpenPANA and PANATIKI

software. In particular, OpenPANA (version 0.2.4) has been used to run PAA, while PANATIKI (version

0.2) has been used for PaC and PRE simulated entities. RADIUS server software remains as the same

Sensors 2013, 13 14903

version as in the hardware-based deployment. Finally, the software needed for the simulated Ethernet

bridge has been adopted by the examples available in Contiki release 2.6.

These Cooja-based simulations allow us to test our deployment according to variables that we could

not check with the real hardware-based testbed. In particular, we have tested our implementation

depending on a variable number of PaCs and a variable packet loss ratio.

5.2. Results

We have carried out two deployments of our testbed. The first deployment has been based on real

hardware, while the second deployment has been simulated on Cooja with additional nodes. In this

section, we present two sets of results corresponding to each deployment.

5.2.1. Results with Real Hardware

The three main aspects that we have analyzed in our real hardware-based testbed are memory occupied

for our implementation, message length and execution time, which are vital in the deployment of

protocols in constrained devices. Indeed, obtaining a small as possible source code is essential to fit the

results into the constrained devices. Moreover, the length of the messages exchanged is crucial in order

to reduce the exchange time and to avoid undesirable fragmentation over the IEEE 802.15.4 link. In fact,

the maximum message length allowed without fragmentation in 6LoWPAN is currently 127 bytes.

Therefore, bearing in mind that some of these bytes are used in the network and transport layer headers,

the PANA messages should be small enough in order to fit this restricted length. Thus, short messages

will be more suitable in these constrained environments. Finally, we will also study the execution times,

taking into account the constrained capabilities of the microprocessor.

Table 1. Memory sizes. PSK, pre-shared symmetric key.

Module ROM (bytes) RAM (bytes)

1 Contiki (empty main) 65,894 7,560

2 PANA state machine

2.1 definition 2,412 820

2.2 msg management 3,360 64

3 EAP state machine

3.1 definition 796 0

3.2 msg management 228 0

4 EAP-PSK method 2,568 400

5 AES-CMAC / EAX 11,94 0

6 PANA relay functionality 952 24

Total 77,404 8,868

Size added by PANA 11,510 (14.87 %) 1,308 (14.74 %)

Memory size. Table 1 shows the memory size used by our implementation. We have used the

following method to collect these values. First, we take the measurement of an empty main function.

Sensors 2013, 13 14904

This measurement provides us with a reference value, which includes the size of a basic Contiki OS

installation.

From that point, we have added a functionality to measure the increment in memory size. For

example, if we add the PANA state machine definition (i.e., transition table, associated functions, etc.)

to the empty main function and, then, we take a new measurement, the difference between the new

measurement and our reference will give us an approximate memory size used by the PANA state

machine definition. By repeating the same process for each module, we obtained the results shown in

Table 1.

The value of these measurements can be obtained from two files after compiling the application:

application.jndevkit.hex and application.jndevkit. The first is directly installed in the JN5139. The

second is used with the tool, ba-elf-size, to obtain the code size shown in Table 1. The tool shows

three main segments: the code segment (.text), the data segment (.data) and the uninitialized variables

segment (.bss). The two columns represent how much memory is used in both ROM and RAM.

It is worth explaining some of these values. The definition and message management in the EAP state

machine part have no cost in terms of RAM memory, because the values are shared with the PANA state

machine and their contribution is provided in the PANA state machine part. In addition, the cryptographic

suite implementation part does not consume RAM, due to, as we have noted, optimizations performed by

the compiler. In fact, the cross-compiler used for Contiki OS applications based on the JN5139 platform

is able to make this type of optimization to reduce the whole application size considerably.

Under these considerations, the executable file application.jndevkit.hex needs 77,404 bytes of ROM

memory and 8,868 bytes of RAM. These values involve the whole operating system, as well as the

different PANA functionalities defined in this work. Focusing only on PANA-related implementation,

this only represents under 15% of the total in terms of both ROM and RAM memory.

Message length. Another important aspect to analyze is the length of the messages that travel over

the wireless link. Table 2 shows the size of every message that takes part in the PANA authentication

and re-authentication phases. It is worth noting that the table shows two EAP Request/Response

Identity exchanges. This double EAP Request/Response Identity handshake is carried out in both

authentication and re-authentication process. The reason is that FreeRADIUS supports an experimental

EAP-PSK module that always starts with the EAP Request/Response Identity before starting with

EAP-PSK functionality. While the first exchange is started by the PAA, the second is started by

the FreeRADIUS implementation. Thus, this second exchange can be completely avoided in a more

optimized implementation of this module in FreeRADIUS. However, we show it to highlight the behavior

of the real implementation.

Under this consideration, a comparison between the relayed messages (with-PRE case) and

non-relayed messages (non-PRE case) has been performed to get these message sizes. The

Wireshark [41] tool was used. The tool was installed in the PAA entity.

From Table 2, the PANA messages with bigger sizes are the ones that carry EAP-PSK messages or

the EAP-Success message. This is because these messages carry most of the authentication information.

Due to these sizes and 6LoWPAN limitations in terms of maximum packet size (127 bytes), these

messages will have to be fragmented in the wireless link; so, the authentication and re-authentication

times will be higher. Messages expected to be fragmented have been marked with an asterisk (*).

Sensors 2013, 13 14905

Table 2. PANA message length. PaC, PANA Client; PRE, PANA Relay; PAA, PANA

Authentication Agent; PAN, PANA Answer; PAR, PANA-Auth-Request (PAR); PNR,

PANA-Notification-Request.

Message direction PANA message PaC←→ PRE PRE←→ PAA

AUTHENTICATION

PaC −→ PRE −→ PAA PCI 16 68

PaC←− PRE←− PAA PAR (S-Flag set) 40 92 *

PaC −→ PRE −→ PAA PAN (S-Flag set) 40 92 *

PaC←− PRE←− PAA PAR (EAP-Request ID, Nonce) 48 100 *

PaC −→ PRE −→ PAA PAN (EAP-Response ID, Nonce) 52 104 *

PaC←− PRE←− PAA PAR (EAP-Request ID) 32 84

PaC −→ PRE −→ PAA PAN (EAP-Response ID) 36 88 *

PaC←− PRE←− PAA PAR (EAP-PSK 1) 48 100 *

PaC −→ PRE −→ PAA PAN (EAP-PSK 2) 84 136 *

PaC←− PRE←− PAA PAR (EAP-PSK 3) 84 136 *

PaC −→ PRE −→ PAA PAN (EAP-PSK 4) 68 120 *

PaC←− PRE←− PAA PAR (EAP-Success) 88 * 140 *

PaC −→ PRE −→ PAA PAN (AUTH) 52 104 *

RE-AUTHENTICATION

PaC −→ PRE −→ PAA PNR 40 92 *

PaC←− PRE←− PAA PNA 40 92 *

PaC←− PRE←− PAA PAR (EAP-Request ID, Nonce) 72 124 *

PaC −→ PRE −→ PAA PAN (EAP-Response ID, Nonce) 76 128 *

PaC←− PRE←− PAA PAR (EAP-Request ID) 56 108 *

PaC −→ PRE −→ PAA PAN (EAP-Response ID) 60 112 *

PaC←− PRE←− PAA PAR (EAP-PSK 1) 72 124 *

PaC −→ PRE −→ PAA PAN (EAP-PSK 2) 108 * 160 *

PaC←− PRE←− PAA PAR (EAP-PSK 3) 108 * 160 *

PaC −→ PRE −→ PAA PAN (EAP-PSK 4) 92 * 144 *

PaC←− PRE←− PAA PAR (EAP-Success) 88 * 140 *

PaC −→ PRE −→ PAA PAN (AUTH) 52 104 *

The other messages are smaller given that they are just notifications of events, such as authentication

initiation or re-authentication initiation, or they exchange small information, such as the identifier of the

cryptographic suite or the client identifier itself. Thus, they are not fragmented.

Finally, as shown in Table 2, the messages in the with-PRE case are bigger than the non-PRE case.

The reason is that the with-PRE case includes the PRY transport overhead, which is 52 bytes. Thus,

encapsulated PANA messages may also generate more fragmentation in the scenario in which the PRE

is involved. Indeed, fragmentation is the main reason for the differences between the execution times in

each scenario, which we analyze below.

Sensors 2013, 13 14906

Processing time measurements. The time measurements have been taken in tick units since Contiki

OS provides a generic clock interface that gives us the time in clock ticks (one system tick is equivalent

to one millisecond).

Figure 7 gives the execution time of the whole authentication and re-authentication phases in both

scenarios. In general, the re-authentication phase takes longer than the authentication one. The main

reason is that messages exchanged in the re-authentication are typically bigger, since they include

the authentication tag (AUTH AVP). Thus, there is more fragmentation, which increases the general

re-authentication time. Moreover, when the PRE entity is used, the use of the PRY message (for

encapsulating PANA messages between PRE and PAA) increases the length of the messages sent

over the wireless link. Thus, the fragmentation increases even more, and the final authentication and

re-authentication processing time in with-PRE scenario is higher than the non-PRE scenario (apart

from the fact that the with-PRE scenario includes an additional hop). Nevertheless, authentication and

re-authentication times without using a PRE and with the use of a PRE can be considered reasonable

compared with other studies on typical PANA authentication time in non-constrained environments [42].

This shows that PANA, with the simplifications proposed in this paper, can be used for bootstrapping

network access control with AAA-inter-networking in constrained devices. Indeed, these authentication

and re-authentication operations do not need to be performed frequently (i.e., every 8 h, according to the

guidelines given in [26]).

Figure 7. Total mean authentication and re-authentication times.

0

50

100

150

200

250

300

authentication re-authentication

T
im

e
 (

m
il

li
se

co
n

d
s)

non-PRE with-PRE

134,6 +/- 0,4

241,5 +/- 1,2

147,9 +/- 1,0

258,2 +/- 1,0

To observe these general times in more detail, we show the per-message mean processing time with

a 95% confidence interval for authentication and re-authentication in Tables 3 and 4, respectively. The

time associated with each message measures the number of milliseconds between processing a received

PANA message (if any), constructing the response and sending it. From the results, we have deducted

that a message that needs to be fragmented by the sender lasts ≈6 ms. For example, when PaC sends the

PAN(EAP-PSK 2) message during the authentication phase in the non-PRE scenario, it lasts ≈3.8 ms.

However, during the re-authentication, this message includes the AUTH AVP, which means fragmenting

Sensors 2013, 13 14907

the PAN(EAP-PSK 2) in the PaC. Hence, we can observe that the processing time rises to ≈10.6 ms.

This increment of around 6 ms is always observed when any entity needs to fragment a message that

it is going to send. Messages following this hypothesis have been marked with a double asterisk (**).

Regarding the reception, it is worth noting that the time shown does not include this fragmentation

processing time, since we have not been able to measure it. The reason is that the receiver already

obtains the complete message directly from the reception socket in an asynchronous event.

Table 3. Authentication messages. Mean processing time (ticks).

Non-PRE With-PRE

PaC PaC PRE

PCI 0.99 ± 0.00 1.67 ± 0.13 6.56 ± 0.07

PAR (S-Flag set) 4.81 ± 0.04 4.81 ± 0.04 6.50 ± 0.07

PAN (S-Flag set) 3.60 ± 0.07 3.52 ± 0.07 12.43 ± 0.11 **

PAR (EAP-Request ID, Nonce) 3.06 ± 0.02 3.14 ± 0.03 6.46 ± 0,07

PAN (EAP-Response ID, Nonce) 4.03 ± 0.01 3.94 ± 0.02 12.21 ± 0.09 **

PAR (EAP-Request ID) 3.04 ± 0.01 3.09 ± 0.02 6.40 ± 0.07

PAN (EAP-Response ID) 3.98 ± 0.01 3.86 ± 0.03 12.35 ± 0.11 **

PAR (EAP-PSK 1) 3.57 ± 0.06 3.59 ± 0.07 6.51 ± 0.07

PAN (EAP-PSK 2) 3.79 ± 0.04 3.74 ± 0.05 12.41 ± 0.10 **

PAR (EAP-PSK 3) 4.66 ± 0.06 4.64 ± 0.06 6.63 ± 0.06

PAN (EAP-PSK 4) 3.79 ± 0.05 3.68 ± 0.06 12.48 ± 0.11 **

PAR (EAP-Success) 3.10 ± 0.02 3.09 ± 0.02 6.68 ± 0.06

PAN (AUTH) 5.38 ± 0.06 5.36 ± 0.06 12.47 ± 0.12 **

Table 4. Re-authentication mean processing time (ticks) per message.

Non-PRE With-PRE

PaC PaC PRE

PNR 5.96 ± 0.01 5.27 ± 0.08 12.46 ± 0.11 **

PNA 3.26 ± 0.05 3.29 ± 0.06 6.50 ± 0.07

PAR (EAP-Request ID. Nonce) 3.09 ± 0.02 3.08 ± 0.02 6.59 ± 0.07

PAN (EAP-Response ID. Nonce) 4.66 ± 0.06 4.65 ± 0.06 12.46 ± 0.11 **

PAR (EAP-Request ID) 3.07 ± 0.02 3.06 ± 0.02 6.53 ± 0.07

PAN (EAP-Response ID) 4.55 ± 0.07 4.47 ± 0.07 12.31 ± 0.09 **

PAR (EAP-PSK 1) 3.60 ± 0.07 3.58 ± 0.07 6.60 ± 0.07

PAN (EAP-PSK 2) 10.63 ± 0.07 ** 10.33 ± 0.14 ** 12.64 ± 0.11 **

PAR (EAP-PSK 3) 4.68 ± 0.06 4.63 ± 0.06 12.45 ± 0.10 **

PAN (EAP-PSK 4) 10.26 ± 0.09 ** 4.45 ± 0.07 12.68 ± 0.13 **

PAR (EAP-Success) 3.11 ± 0.03 3.09 ± 0.02 6.70 ± 0.06

PAN (AUTH) 5.33 ± 0.06 5.30 ± 0.06 12.20 ± 0.09 **

Sensors 2013, 13 14908

Focusing on Table 3, the processing of each message in the PaC during the authentication entity

lasts almost the same time. In fact, the messages are of the same size in both the with-PRE and non-PRE

scenarios. However, we can observe that this time has increased significantly in the PRE entity, especially

in the encapsulated messages from PaC to PAA. The main reason is not the generation of PRY messages

to encapsulate the PAN, but the processing time devoted to fragmentation procedures, as discussed above.

However, when the PRE receives a PRY message from the PAA with an encapsulated PAR, which is

also fragmented, the processing time does not reflect the time dedicated to reconstructing these received

fragments. As discussed, the reason is that the packet is obtained from the socket that is already complete

without any fragment. Thus, in general, the processing time in the PRE for the PAN messages are bigger

than the PAR ones (a difference of about 6 ms).

Similarly, this can be applied for the re-authentication times shown in Table 4, but with some

differences. First of all, the processing time of every message is a bit longer, given that every message

has the AUTH AVP in the re-authentication phase. Thus, some additional cryptographic operations with

respect to initial authentication occur. More importantly, including the AUTH AVP also increases the

size of the message, and fragmentation may occur. As an example, while during the initial authentication,

the PaC does not fragment the PAN messages carrying EAP-PSK 2 and EAP-PSK 4 messages, during

the re-authentication and due to the inclusion of the AUTH AVP, the PaC must fragment PAN messages,

and the processing time increases.

5.2.2. Results with Simulations

By means of simulation in Cooja, we have taken measures of the same parameters (messages

processing time, processing time per message and total execution time), but now varying the numbers

of PaCs and the packet loss ratio characterizing the constrained network (in the experiments with real

hardware, we only had one PaC and one PRE). In this manner, we obtain further details regarding a

potential deployment with more nodes.

In real life, more than one user (i.e., PaC) starts the (re-)authentication process at the same PAA to

get network access. We simulate a variable number of users ranging from two to five. Communications

carried out over constrained networks also have to deal with certain packet loss. Thus, we have simulated

a variable packet loss ratio ranging from zero to 30% (Note that a constrained network with a packet

loss ratio bigger than 30% is not considered operative any more).

Message processing time The time has been measured directly from the time values provided by

the Cooja simulator. When a simulation is run in Cooja, every logged action is timestamped. These

timestamps have been used to calculate the processing time needed for the messages involved in the

authentication and re-authentication process with a trust interval of 95%, as depicted in Figure 8. Since

we are only interested in our PANATIKI implementation, the data only shows the message processing

time in the PaC in the non-PRE case and the sum of PaC and PRE times in the with-PRE scenario. The

transmission time is not considered in this case, because it depends on the packet loss ratio.

Sensors 2013, 13 14909

Figure 8. Mean message processing time (Note that in both cases, authentication

and re-authentication, time(non-PRE) = messages processing time in PaC. Thus, time

(with-PRE) = time(non-PRE) + messages processing time in PRE.).

We have found out two main reasons to explain the different times between not only authentication

and re-authentication processes, but also between non-PRE and with-PRE cases. In Cooja-based

simulations, the AES-based cryptographic functions must be implemented in software. The

software-based cryptographic functions take much longer to be computed than those based on real

hardware. Thus, messages that need more cryptographic computation will lead to a longer processing

time. This is the case of re-authentication messages, given that they all carry an AUTH AVP, which has

to be cryptographically computed. In contrast, authentication messages do not have it (except for the

last PAR and PAN messages). The with-PRE scenario implies two different computations for the same

single message (i.e., a single message has to be computed on PaC and relayed by the PRE). Hence, the

message processing time in the with-PRE scenario is bigger than in the non-PRE scenario.

Figure 10a,b shows the processing time needed per message on average for the authentication and

re-authentication processes. Messages are shown from bottom to top in the same order as they are

transmitted. First, messages carrying EAP-PSK information created by cryptographic functions (see

PAR(PSK3) in Figure 9a) and messages carrying the AUTH AVP (see PAN(cflag) in Figure 9a or every

message in Figure 9b) need more processing time, because of the high computation cost of software

cryptographic functions. Second, in the with-PRE scenario, an extra processing time is needed for each

message, given that every message has to be processed by the PaC and again by the PRE in order to be

relayed to the PAA.

Execution time measurements. We have studied the time for the whole authentication and

re-authentication process depending on a variable number of nodes (i.e., PaCs) and a variable packet loss

ratio. We have also set up the different nodes in such a way that they are sequentially (re-)authenticated.

The results appear in Figure 10.

Sensors 2013, 13 14910

Figure 9. Mean processing time per message during the (re-)authentication phase (Note that

in both cases, authentication and re-authentication, time(non-PRE) = messages processing

time in PaC. Thus, time(with-PRE) = time(non-PRE) + messages processing time in PRE).

(a) Mean processing time per message during the authentication phase; (b) mean processing

time per message during the re-authentication phase.

(a)

(b)

From Figure 10, we can deduce that: (1) the re-authentication process takes longer than the

authentication process (this is in line with to the reasoning stated above on this document); (2) the bigger

the number of nodes being (re-)authenticated, the longer the time needed to authenticate each one, on

average; (3) by increasing the packet loss ratio held in the constrained network, the (re-)authentication

time is also increased.

Furthermore, in the with-PRE case (see Figure 11c,d), the (re-)authentication time is longer than in

the non-PRE case (see Figure 11c,d). This is due to the longer message processing time (as explained

Sensors 2013, 13 14911

in Figure 8) and to the existence of an extra link; so, an extra transmission is needed to successfully

complete a (re-)authentication process.

Figure 10. Execution times based on Cooja simulations. (a) Authentication execution time

in the non-PRE scenario; (b) re-authentication execution time in the non-PRE scenario;

(c) authentication execution time in the with-PRE scenario; (d) re-authentication execution

time in the with-PRE scenario.

(a) (b)

(c) (d)

Finally, we have observed in the Cooja-based tests a variability of the results obtained for

(re-)authentication times in every case tested. However, we have presented a relatively small standard

deviation of the results concerning the message processing time. Thus, the variability must be provoked

in the transmission of the packets through a given link. In particular, we have further observed that the

time spent for the simulated bridge in Cooja has huge variability while forwarding messages from the

Cooja environment to the computer and back (The same problem has also been noticed by other Contiki

users [43]).

In summary, by means of simulation in Cooja, we have tested variables concerning real deployments,

such as the number of nodes and the packet loss ratio. However, the results produced by Cooja are on

a different scale than real world values. This is inherent to the Cooja mode of working as a simulator.

In particular, while in our real hardware deployment, the (re-)authentication time has been measured

in terms of milliseconds, the corresponding Cooja-based results are in seconds. On the other hand, it

Sensors 2013, 13 14912

is worth noting that our Cooja-based simulation results are a good approach to compare the general

behavior of our development in terms of a range of users authenticated to network access at the same

PAA with communications simulated over constrained networks with different packet loss ratios.

Finally, it is worth noting that a PANA (re-)authentication process in constrained devices implies a

PaC and a PRE separated by one hop, which is why our simulations only involve a PaC, a PRE, a bridge

and the PAA. Moreover, with the inclusion of additional nodes simulating a multi-hop network, the

Cooja bridge implementation causes a huge variability in transmission times.

6. Conclusion and Future Work

The network access control solution based on the Extensible Authentication Protocol (EAP) and the

Protocol for Carrying Authentication for Network Access (PANA) is being adopted by Zigbee IP and

ETSI Machine-to-Machine (M2M) for constrained environments. Therefore, forthcoming Zigbee sensor

devices will include an implementation of EAP/PANA protocols. However, to the best of our knowledge,

there are no previously available research studies of the suitability of EAP/PANA solution for these

constrained environments. We firmly believe that, although some of the constraints that currently must

be handled will disappear as soon as more powerful devices appear, our research work on this current

problem area will greatly help researchers to better understand the need for a solution for the current

state of constrained networks.

The general purpose definition of EAP/PANA shows a network access control solution proven to work

for general purpose computers. In particular, there are open source projects [20,21] implementing these

specifications. However, the current specification does not fit the constraints in sensor networks.

In this article, we have analyzed the issue of providing network access control in IoT devices and the

use of the standard protocol, PANA, as a promising alternative to transport EAP to allow constrained

devices to get authenticated when requiring the sending of information to the Internet.

We have analyzed both the PANA and EAP protocols and propose simplifications without affecting

the mandatory parts of the standard. We have focused these analyses on the parts that will be deployed

in constrained devices: the PANA client, the EAP peer and the PANA Relay (PRE) function.

In our proposed simplifications, some optional functionalities have been omitted. This may have

some implications in terms of operability. In particular, the PAA, which forwards messages between

a constrained PaC and the AAA server (i.e., it acts as border router), must follow the policies we have

defined in Section 4.7. However, it is worth noting that the PAA could potentially apply a different policy

to each PaC authentication, depending on the features available in the actual PaC. In particular, PAA

could apply our defined policy when a constrained PaC is being authenticated, while the full functionality

policy might be used for authentication of a PaC with more resources.

To corroborate the suitability of our proposed modifications, we deploy a small testbed with real

devices to obtain processing times and message sizes, which show some interesting conclusions about

the usage of PANA in networks of constrained devices. Furthermore, we set up Cooja-based simulations

showing interesting results regarding the variable number of users and different packet loss ratios.

Overall, authentication and re-authentication times without using a PRE and with the use of a PRE

in real and simulated deployments can be considered reasonable, in contrast to other studies about

typical PANA authentication time in non-constrained environments. This shows that PANA, with the

Sensors 2013, 13 14913

simplifications proposed in this paper, can be used for bootstrapping network access control with AAA

inter-networking in constrained devices. The major issue is related to message size. The limitations in

IEEE 802.15.4, in which the maximum physical layer packet size is 127 octets, means that certain PANA

messages (especially when PRE is involved) suffer from fragmentation. This fragmentation increases

the measured authentication and re-authentication times. Nevertheless, the impact of fragmentation

could be reduced by using some compression algorithm, as proposed in [44]. Furthermore, we ascertain

that IEEE 802.15.4g will increase the size of the maximum message length to ≈2 K. With this size,

the fragmentation we have observed would disappear, so improving the overall authentication and

re-authentication times.

In general, the way of compressing to avoid fragmentation is therefore still an open issue. The authors

in [7] already present certain alternatives to compress PANA message format, for example, by removing

some unused fields, like reserved fields or padding octets. This area of study will be part of our future

work in order to improve PANA deployment in constrained devices.

Acknowledgments

This work has been partially supported by the Ministry of Science and Innovation, through

the Walkie-Talkie project (TIN2011-27543-C03) and partially by the European Seventh Framework

Program, through the IPv6 ITS Station Stack (ITSSv6) Project (contract FP7-270519) and the European

Field Operational Test on Safe, Intelligent and Sustainable Road Operation (FOTsis) project (contract

FP7-270447).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. ZigBee Alliance. Available online: http://www.zigbee.org (accessed on 31 October 2013).

2. IEEE Computer Society. Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), 2006. IEEE Std

802.15.4.

3. Shelby, Z.; Bormann, C. 6LoWPAN. The Wireless Embedded Internet; WILEY: Chichester, UK,

2009.

4. Aboba, B.; Blunk, L.; Vollbrecht, J.; Carlson, J.; Levkowetz, H. Extensible Authentication Protocol

(EAP), 2004. IETF RFC 3748.

5. Forsberg, D.; Ohba, Y.; Patil, B.; Tschofenig, H.; Yegin, A. Protocol for Carrying Authentication

for Network Access (PANA), 2008. IETF RFC 5191.

6. Kaufman, C.; Hoffman, P.; Nir, Y.; Eronen, P. Internet Key Exchange Protocol Version 2 (IKEv2),

2010. IETF RFC 5996.

7. Kanda, M.; Ohba, Y.; Das, S.; Chasko, S. PANA Applicability in Constrained Environments,

2012. Available online: http://www.tschofenig.priv.at/sos-papers/MitsuruKanda.pdf (accessed on

31 October 2013).

Sensors 2013, 13 14914

8. ZigBee Alliance. HomePlug Powerline Alliance. Smart Energy Profile 2.0 Public Application

Protocol Specification, 2011.

9. ETSI. Machine-to-Machine Communications (M2M); Functional Architecture, 2011. ETSI Draft

Technical Specification 102 690.

10. Moreno-Sanchez, P.; Marin-Lopez, R. PANATIKI Sourceforge Project, 2013. Available online:

http://sourceforge.net/projects/panatiki (accessed on 31 October 2013).

11. Dunkels, A.; Gronval, B.; Voigt, T. Contiki—A Lightweight and Flexible Operating System for

Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE International Conference Local

Computer Networks: Tampa, FL, USA, 16–18 November 2004.

12. Garcia-Morchon, O.; Keoh, S.; Kumar, S.; Hummen, R.; Struik, R. Security Considerations in the

IP-Based Internet of Things. IETF Internet Draft, draft-garcia-core-security-05, 2013.

13. Sarikaya, B.; Ohba, Y.; Moskowitz, R.; Cao, Z.; Cragie, R. Security Bootstrapping Solution for

Resource-Constrained Devices. IETF Internet Draft, draft-sarikaya-core-sbootstrapping-05, 2012.

14. IEEE Computer Society. IEEE Standard for Local and Metropolitan Area Networks—Port-Based

Network Access Control; 2010. IEEE Standard 802.1X.

15. Moskowitz, R. HIP Diet EXchange (DEX). IETF Internet Draft, draft-moskowitz-hip-rg-dex-06,

2012.

16. Perelman, V.; Ersue, M. TLS with PSK for Constrained Devices, 2012. Available online:

http://www.tschofenig.priv.at/sos-papers/VladislavPerelman.pdf (accessed on 31 October 2013).

17. Meca, F.V.; Ziegeldorf, J.H.; Sanchez, P.M.; Morchon, O.G.; Kumar, S.S.; Keoh, S.L. HIP Security

Architecture for the IP-Based Internet of Things. In Proceedings of the 2013 27th International

Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain,

25–28 March 2013; pp. 1331–1336.

18. Garcia-Morchon, O.; Keoh, S.L.; Kumar, S.; Moreno-Sanchez, P.; Vidal-Meca, F.; Ziegeldorf, J.H.

Securing the IP-Based Internet of Things with HIP and DTLS. In Proceedings of the Sixth ACM

Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’13, Budapest,

Hungary, 17–19 April 2013; ACM: New York, NY, USA, 2013; pp. 119–124.

19. Toshiba Corporation. OpenDIAMETER Sourceforge Project, 2002. Available online:

http://sourceforge.net/projects/diameter (accessed on 31 October 2013).

20. Toshiba Corporation. CPANA Sourceforge Project, 2011. Available online: http://sourceforge.net/

projects/cpana (accessed on 31 October 2013).

21. Marin-Lopez, R.; Moreno-Sanchez, P.; Vidal-Meca, F. OpenPANA Sourceforge Project, 2011.

Available online: http://sourceforge.net/projects/openpana (accessed on 31 October 2013).

22. Bersani, F.; Tschofenig, H. The EAP-PSK Protocol: A Pre-Shared Key Extensible Authentication

Protocol (EAP) Method, 2007. IETF RFC 4764.

23. Rigney, C.; Willens, S.; Rubens, A.; Simpson, W. Remote Authentication Dial in User Service

(RADIUS), 2000. IETF RFC 2865.

24. Calhoun, P.; Loughney, J.; Guttman, E.; Zorn, G.; Arkko, J. Diameter Base Protocol, 2003. IETF

RFC 3588.

25. Dantu, R.; Clothier, G.; Atri, A. EAP methods for wireless networks. Comput. Stand. Interfaces

2007, 29, 289–301.

Sensors 2013, 13 14915

26. Aboba, B.; Simon, D.; Eronen, P. Extensible Authentication Protocol (EAP) Key Management

Framework, 2008. IETF RFC 5247.

27. Jayaraman, P.; Lopez, R.; Ohba, Y.; Parthasarathy, M.; Yegin, A. Protocol for Carrying

Authentication for Network Access (PANA) Framework, 2008. IETF RFC 5193.

28. Case, J.; Fedor, M.; Schoffstall, M.; Davin, J. Simple Network Management Protocol (SNMP),

1990. IETF RFC 1157.

29. Duffy, P.; Chakrabarti, S.; Cragie, R.; Ohba, Y.; Yegin, A. Protocol for Carrying Authentication

for Network Access (PANA) Relay Element. IETF RFC 6345.

30. Bormann, C.; Ersue, M.; Keranen, A. Terminology for Constrained Node Networks. IETF Internet

Draft, draft-ietf-lwig-terminology-05, 2013.

31. The OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS. Available online:

http://www.openssl.org (accessed on 31 October 2013).

32. Fajardo, V.; Ohba, Y.; Marin-Lopez, R. State Machines for the Protocol for Carrying

Authentication for Network Access (PANA), 2009. IETF RFC 5609.

33. Vollbrecht, J.; Eronen, P.; Petroni, N.; Ohba, Y. State Machines for Extensible Authentication

Protocol (EAP) Peer and Authenticator, 2005. IETF RFC 4137.

34. Song, J.; Poovendran, R.; Lee, J.; Iwata, T. The AES-CMAC Algorithm, 2006. IETF RFC 4493.

35. Clancy, T.; Tschofenig, H. Extensible Authentication Protocol—Generalized Pre-Shared Key

(EAP-GPSK) Method, 2009. IETF RFC 5433.

36. Simon, D.; Aboba, B.; Hurst, R. The EAP-TLS Authentication Protocol. IETF RFC 5216.

37. NXP. JN5139 Wireless Microcontroller, 2009. Available online: http://www.jennic.com (accessed

on 31 October 2013).

38. Dekok, A. FreeRadius: The World’s Most Popular RADIUS Server, 2008. Available online:

http://freeradius.org (accessed on 31 October 2013).

39. Österlind, F.; Dunkels, A.; Erikson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network

Simulation with COOJA. Swedish Institute for Computer Science.

40. Zolertia. Z1 Platform, 2010. Available online: http://www.zolertia.com/ti (accessed on 31 October

2013).

41. U. Lamping. Wireshark, 2000. Available online: http://www.wireshark.org (accessed on 31

October 2013).

42. Marin-Lopez, R.; Pereniguez-Garcia, F.; Ohba, Y.; Bernal-Hidalgo, F.; Gomez-Skarmeta, A.F. A

kerberized architecture for fast re-authentication in heterogeneous wireless networks. MONET

2010, 15, 392–412.

43. Contiki-developers. COOJA and Socket Serial Communication - TinyOS node, 2011.

Available online: https://groups. google.com/forum/?fromgroups=#!topic/osdeve mirror rtos -

contiki-developers/175txObyWJw (accessed on 31 October 2013).

44. Bormann, C. 6LoWPAN Generic Compression of Headers and Header-like Payloads. IETF

Internet Draft, draft-bormann-6lowpan-ghc-06, 2013.

Sensors 2013, 13 14916

Appendix

A. Light-Weight PANA State Machine

Table A1. Eliminated states in a PaC state machine.

State Transition Exit Condition Exit State

1 ANY Re-transmissions rtx timeout && rtx counter<rtx max num (no change)

2 ANY Reach maximum number of transmissions
(rtx timeout && rtx counter<rtx max num) ||

sess timeout

CLOSED

3 ANY except INITIAL Liveness test initiated by peer Rx:PNR[P] (no change)

4 ANY except WAIT-PNA-PING Liveness test response Rx:PNA[P] (no change)

5 INITIAL PAA-initiated handshake optim.

Rx:PAR[S] && PAR.exist avp(“EAP-Payload)

&& eap piggyback()

INITIAL

Rx:PAR[S] && PAR.exist avp(“EAP-Payload)

&& !eap piggyback()

WAIT-EAP-MSG

EAP-RESPONSE WAIT-PAA

6 WAIT PAA PAR-PAN exchange
Rx:PAR[] && !eap piggyback() WAIT-EAP-MSG

Rx:PAN[] WAIT-PAA

7 WAIT-EAP-MSG Return PAN/PAR from EAP
EAP-RESPONSE && !eap piggyback() WAIT-PAA

EAP-RESP-TIMEOUT && eap piggyback() WAIT-PAA

8 OPEN
Re-authentication initiated by PAA Rx:PAR[] WAIT-EAP-MSG

Session termination initiated by PAA Rx:PTR[] CLOSED

9 WAIT-PNA-REAUTH Session termination initiated by PAA Rx:PTR[] CLOSED

10 WAIT-PNA-PING
Re-authentication initiated by PAA Rx:PAR[] WAIT-EAP-MSG

Session termination initiated by PAA Rx:PTR[] CLOSED

11 SESS-TERM Session termination initiated by PaC Rx:PTA[] CLOSED

Sensors 2013, 13 14917

B. Light-Weight EAP Peer State Machine

Figure B1. Light-weight EAP peer state machine.

c© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Related Work
	Background
	Extensible Authentication Protocol (EAP)
	PANA

	Adapting PANA and EAP for Constrained Devices
	Preliminary Considerations
	EAP Peer State Machine
	PANA Client State Machine
	PANA Session Initiation Phase
	Piggybacking EAP Message
	PaC Retransmissions Avoided
	PANA Re-Authentication Phase and PANA Ping Message
	Session Termination Phase

	PANA Security Association
	EAP Method: EAP-PSK
	PANA Relay
	PANA Agent

	Evaluation and Result Analysis
	Deployed Testbed
	Results
	Results with Real Hardware
	Results with Simulations

	Conclusion and Future Work
	Acknowledgments
	Conflicts of Interest
	Appendix
	A. Light-Weight PANA State Machine
	B. Light-Weight EAP Peer State Machine

