
Sensors 2013, 13, 15290-15306; doi:10.3390/s131115290 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Violin Bridge Mobility Analysis under In-Plane Excitation 

Cheng-Zhong Zhang 
1,2

, Guang-Ming Zhang 
3,

*, Bang-Yan Ye 
1
 and Li-Dong Liang 

1
  

1
 School of Mechanical and Automotive Engineering, South China University of Technology,  

No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China;  

E-Mails: zcz_505@163.com (C.-Z.Z.); byye@scut.edu.cn (B.-Y.Y.);  

grups1988@163.com (L.-D.L.) 
2 

School of Software Engineering, South China Normal University, Nanhai Campus, Foshan, 

Guangdong 528225, China 
3
 General Engineering Research Institute, Liverpool John Moores University, Byrom Street, 

Liverpool L3 3AF, UK  

* Author to whom correspondence should be addressed; E-Mail: g.zhang@ljmu.ac.uk;  

Tel.: +44-151-231-2113; Fax: +44-151-231-2158.  

Received: 19 September 2013; in revised form: 28 October 2013 / Accepted: 30 October 2013 /  

Published: 8 November 2013 

 

Abstract: The vibration of a violin bridge is a dynamic contact vibration with two 

interfaces: strings-bridge, and bridge feet-top plate. In this paper, the mobility of an 

isolated bridge under in-plane excitation is explored using finite element modeling based 

on the contact vibration model. Numerical results show that the dynamic contact stiffness 

in the two contact interfaces has a great impact on the bridge mobility. A main resonance 

peak is observed in the frequency range of 2–3 kHz in the frequency response of the 

isolated bridge when the contact stiffness is smaller than a critical threshold. The main 

resonance peak frequency is affected by the contact stiffness as well. In order to verify the 

numerical findings, a novel experimental system is then designed on the basis of a 

piezoelectric dynamometer for bridge mobility analysis. Experimental results confirm the 

impact of the dynamic contact stiffness on the bridge mobility.  

Keywords: violin bridge; frequency response; contact stiffness; dynamic contact  

vibration; dynamometer 
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1. Introduction 

Measuring and studying the violin bridge mobility is not a new topic. Numerous experimental 

studies of bridge motion have been carried out in the past. For example, in [1], the bridge motility was 

measured when a bridge is in isolation and in a violin. The experimental results showed that the string 

resonances excite the violin body resonances at low frequencies, and the main bridge resonance at 

higher frequencies. At the resonance frequency the admittance of the bridge may become 

approximately as large as the specific string admittance, implying that complex phenomena such as 

coupling between the bridge and the string resonances may occur. In [2], the experimental results 

based on the plate solid bridges show that the distance between the bridge feet has a profound effect on 

the overall response of a violin. A diminished distance will lower the bridge hill frequency, but 

increase the bridge hill level. In [3], the effect of the chemical treatments of the bridge on the vibration 

mode frequency and damping changes was studied. Some theoretical models have also been developed 

to predict the bridge mobility in the literature [4,5]. In [4], a theoretical model has been developed to 

investigate the bridge hill. Parameter studies were presented which reveal how the bridge hill is 

affected by the properties of the bridge and violin body. The model prediction is in fairly good 

agreement with the experimental findings published in the literature. In [6], a comprehensive study of 

the violin bridge filter role has been carried out through modal and acoustic measurements. A brief 

review on the major findings of previous research work can be found in [6]. Finite element analysis 

was used for modal analysis of violin bridges for investigating the effect of wood removal on the 

bridge in-plane and out-of-plane vibrating modes [7]. In the literature, the dynamic response of a violin 

is often divided into a deterministic region and a statistic region [5,8]. The deterministic region is a range 

of low frequencies in which easily separable natural frequencies can be examined deterministically, and 

the statistic region is the higher frequencies at which only statistical statements are possible in the 

frequency domain. In the statistic region, modes overlap significantly, and mode tracking becomes 

problematical. In this paper the mobility of an isolated bridge is studied numerically and experimentally 

on the basis of the dynamic contact vibration model. The impact of the contact stiffness on the bridge 

mobility is investigated. 

2. Dynamic Contact Vibration Model of the Violin Bridge 

The vibration of the bridge when it is mounted in a violin is a dynamic contact vibration with two 

interfaces: strings-bridge, and bridge feet-top plate. According to the Hertzian contact vibration theory, 

the contact stiffness changing can cause the bridge resonance frequency shift and the resonance 

amplitude changing for each vibration mode. The influence of the dynamic contact stiffness on the 

bridge mobility has not been studied comprehensively up to now. 

The dynamic contact vibration of a rigid punch on an elastic medium has been studied by many 

researchers [9–12]. Most researchers considered the contact to be equivalent to an elastic-spring 

support and adopted the Hertzian static-contact stiffness. Different dynamic Hertzian contact models 

based on a nonlinear mass-spring-damping system have been presented to investigate its nonlinear 

vibration theoretically and experimentally. In [11], an analytical model based on a linear-elastic theory 

for dynamic contact stiffness of a vibrating rigid sphere contacting a semi-infinite viscoelastic solid 
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was proposed. The dynamic contact-pressure distribution at the interface between the rigid sphere and 

the viscoelastic solid was deduced first. Then, the dynamic contact stiffness at the interface was 

deduced from the approximate dynamic contact boundary conditions for displacements. In [12], 

experimental results showed that the contact stiffness not only affects the resonance frequency 

position, but also the amplitude of the resonance. 

When a bridge is fitted in a violin, the contact stiffness in the two contact interfaces of strings-bridge 

and bridge feet-top plate is affected by a variety of factors such as the force generated by the strings, 

the materials and the surface roughness of both the bridge and the top plate, and the area of the contact 

surfaces. Moreover, the violin top plate dynamic vibration and the string dynamic vibration will 

change the contact stiffness dynamically. Thus, the contact stiffness is affected by the interaction 

between the string, bridge and top plate. In addition, some of the plate structure changes may be very 

sensitive to the bridge-corpus interaction, for example the cutting of the slot-like f-holes which are 

close to the bridge feet. Thus, the dynamic contact stiffness is sensitive to such structure changes.  

Evidently, in this paper the term isolated bridge does not mean the bridge is completely independent 

of the strings and the corpus. In fact, the bridge is linked to the strings and corpus through the dynamic 

contact stiffness. However, the dynamic contact stiffness is difficult to determine analytically. 

Moreover, the violin bridge vibration is very complicated with many vibration modes. An accurate 

analytical dynamic contact vibration model is difficult to deduce to predict the bridge mobility. The 

impact of the dynamic contact stiffness on the bridge mobility is studied through finite element 

modeling and experimental measurements in this paper.  

3. Finite Element Modeling of a Violin Bridge under the Contact Vibration Model  

Frequency response analysis of a violin bridge is carried out using ANSYS Workbench 12. The 

bridge geometric model in Figure 1a was built using the CAD software SOLIDWORKS according to 

the physical parameters of a real violin bridge. The maximum length, height and thickness of the 

bridge are 49.5, 34.5 and 4.5 mm, respectively. The top edge width of the bridge is 2 mm. The bridge 

material is maple. The material properties of ‗maple red‘ published in [13] were used in the simulation 

as listed in Table 1, where the X, Y, Z directions are as defined in Figure 1. No pre-stress has been 

considered in any of the simulations of this paper. 

Figure 1. Geometrical models. (a) A real bridge; (b) A plate solid bridge. 

  

(a) (b) 
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Table 1. Material properties of the violin bridge used in the simulation. 

Material 
Density in 

Kg/m
3 

Young’s  

Modulus in MPa 

Shear  

Modulus in MPa 
Poisson’s Ratio 

X Y Z XY YZ XZ XY YZ XZ 

Maple red 540 12,430 833 1,740 920 311 1,106 0.509 0.354 0.434 

Elastic supports (elastic support B in Figure 2) were applied to the bottom surfaces of the two 

bridge feet, which are the contact surfaces between the two bridge feet and violin top plate, and the 

elastic foundation contact stiffness in this contact interface is denoted as EFS1. Elastic supports were 

also applied to the groove/notch surfaces of the bridge top, which are the contact surfaces between the 

bridge and four strings. In a violin the strings are just placed on the arched notches of the bridge top. 

Thus, the elastic supports in the notch surfaces are appropriate to model the constraints exerted by the 

strings. According to the contact mechanics theory [14,15], which studies the deformation of solids 

that touch each other at one or more points, the contact vibration involves compressive and adhesive 

forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. 

These interface forces act on the bridge notch surfaces, constraining the bridge dynamic motion.  

Figure 2. The configuration of the elastic supports and driving force used for numerical 

analysis of the bridge contact vibration. 

 

The elastic foundation contact stiffness in the contact interface between the strings-bridge top is 

denoted as EFS2. The elastic supports at the G, D, A, and E strings are indicated as elastic support C, 

D, E, and F, respectively, in Figure 2. This configuration is equivalent to the violin bridge sitting on a 

violin with four strings fitted. However, the string and the corpus resonances have been isolated to the 

frequency response analysis of the isolated bridge, facilitating the study of the bridge behaviour. No 

constraints were applied to any other surfaces of the bridge, such as the side of the bridge feet.  

A sine driving force of 1N was applied to the bridge G-corner in its plane in the bass-bar side as shown 

in Figure 2 (red arrow A). The Y-directional acceleration response was measured on the bridge foot (using 
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average) in the sound-post side in all the simulation results in this paper except in Section 4.1. The damping 

ratio was set as 0.7% of critical according to the experimental measurements published in [3]. 

EFS is defined in ANSYS as spring stiffness per unit area that only acts in the direction normal to 

the face of the element. When the surface is planar and the loading acts normal to the direction, EFS is 

defined as:  

EFS = F/(Area·Ydisp) (1) 

where ‗Area‘ is the area of the contact surface, and Ydisp is the displacement at the location of EFS due 

to the loading force F. From Equation (1), it can be seen that the dynamic contact stiffness is affected 

by a variety of factors, as discussed in Section 2.  

4. Bridge Mobility Analysis 

4.1. Mobility Analysis of an Isolated Bridge Based on the Fixed Support Model 

For comparison purposes, before we explore the bridge mobility under the contact vibration model, 

we first study the bridge mobility based on the fixed support model. In this case, fixed supports are 

applied to the bottom surface of the two bridge feet. No other constraints are applied to the bridge. 

This configuration is equivalent to the isolated bridge being clamped at the two bridge feet, which is a 

configuration often used to measure the mobility of an isolated bridge experimentally in the literature [6]. 

The driving force is the same as described in Section 3. Notice that with the fixed supports, 

acceleration responses cannot be measured from the bridge feet. The Y-directional acceleration 

responses measured on the bridge G-corner in the sound-post side are shown in Figure 3 with the 

damping ratio set as 0.017% critical and 0.7% critical, respectively. From Figure 3, it can be seen if we 

use the damping ratio of 0.7% critical measured experimentally in [3], the minor resonances disappear 

but the overall shape is the same. For the fixed support model, no peaks in the bridge mobility are 

observed in the frequency range of 1.5–4 kHz when the damping ratio is 0.7% critical.  

Figure 3. Frequency responses of an isolated bridge with the bridge feet clamped. Top: 

damping ratio 0.017% critical; Bottom: damping ratio 0.7% critical. The two peak 

frequencies in the bottom plot are 1,417 Hz and 4,084 Hz, respectively. 
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In order to understand the bridge mobility, modal analysis was carried out under the same 

configuration. The first ten-order natural resonant frequencies of the bridge with the bridge feet 

clamped are listed in Table 2. In Table 2, ‗O‘ indicates the mode is out-of-plane vibration, and ‗I‘ is  

an in-plane vibration. It was found that most of the resonance modes are out-of-plane vibration modes 

although the driving force in the simulation is in-plane. This is due to the fact that the violin bridge is 

not truly symmetrical. We then examined the motion of the resonance modes in Table 2. Figure 4 

shows the motion of six vibration modes. Each vibration mode is visualized by two images extracted 

from the animation in ANSYS modal analysis in order to intuitively show the bridge movement of that 

mode. The two images for each mode show the bridge motion with the maximum displacement in two 

opposite positions, respectively. From Figure 4 and Table 2, it can be seen that the main resonance 

peak at 1.4 kHz in Figure 3 is mainly attributed to the in-plane rocking mode 3.  

Table 2. The first ten-order natural resonant frequencies of the isolated bridge with the 

bridge feet clamped. O: out-of-plane vibration; I: in-plane vibration. 

 Frequency (Hz) 

Mode number 1 2 3 4 5 6 7 8 9 10 

Fixed constraint 
515 

(O) 

1,080 

(O) 

1,441 

(I) 

1,629 

(O) 

2,771 

(O) 

4,166 

(I) 

4,384 

(O) 

5,195 

(O) 

5,697 

(I) 

6,822 

(O) 

Figure 4. Bridge motion of different resonance modes in Table 2. (a) and (b): mode 2;  

(c) and (d): mode 3; (e) and (f): mode 4; (g) and (h): mode 5; (i) and (j): mode 7. Note that 

we attach no significance to the amplitude of the motion.  

 

4.2. Bridge Mobility Analysis Based on the Contact Vibration Model 

In this paper we do not intend to simulate a real dynamic contact vibration process of the bridge. 

The dynamic contact vibration process is studied by changing the elastic foundation contact stiffness. 

Each frequency response is obtained based on the contact vibration model. Figure 5 shows the 

acceleration responses versus different elastic foundation contact stiffness using the simulation 
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configuration described in Section 3. EFS1 is changed from 0.001 to 5,000 N/mm
3
. We denote the 

elastic foundation contact stiffness at the G, D, A, and E string positions as EFS2_G, EFS2_D, 

EFS2_A, and EFS2_E, respectively. In a real violin, EFS1 and EFS2 are correlated to each other 

according to Equation (1). The area for all the contact surfaces can be assumed to be approximately 

constant and the force in Equation (1) is the main factor that affects EFS1 and EFS2 dynamically. The 

sum of the forces exerted on the strings–bridge contact interface by the strings will pass to the bridge 

feet-top plate contact interface. Thus, in the simulation of Figure 5, EFS2 was set on the basis of EFS1 

as, EFS2_G = CG·EFS1, EFS2_D = CD·EFS1, EFS2_A = CA·EFS1, and EFS2_E = CE·EFS1. Suppose 

the static forces generated by the G, D, A, and E strings are 22.05, 20.68, 21.85 and 26.75 N, and their 

diameters are 0.75, 0.72, 0.48, 0.26 mm respectively. The contact area in Equation (1) is calculated 

using the geometrical model in Figure 1a. Assume Ydisp to be the same at all the contact surfaces. The 

ratios CG = 11, CD = 10.8, CA = 17.1 and CE = 38.7 were then estimated using Equation (1). In the 

estimation, the dynamic force (about 1 N) was ignored because it is much smaller than the static forces.  

Figure 5. Frequency responses of the bridge in Figure 1a under different contact stiffness 

with the damping ratio 0.7% critical. EPS1 was set as (a) 0.001; (b) 0.01; (c) 0.1; (d) 1;  

(e) 10; (f) 100; (g) 1,000; (h) 5,000 N/mm
3
. The peak frequencies in the frequency range of  

2–3 kHz in Figure 5a–c are 2,570, 2,576, and 2,630 Hz, respectively. 

 

From Figure 5, it can be seen that the elastic foundation contact stiffness has a significant impact on 

the bridge mobility. This can be explained by the contact vibration model and modal model described 

in [16]. As described in Section 2, the contact stiffness not only affects the resonance frequency 

position but also the amplitude of the resonance. Moreover, the bridge mobility is the superposition of 

the modal amplitudes. 

In order to observe the minor resonances in the bridge mobility, the acceleration responses when the 

damping ratio is set as 0.017% critical are plotted in Figure 6. From Figures 5 and 6, it can be seen that 

when EFS1 is smaller than a threshold (here 0.1 N/mm
3
), the frequency response is fairly stable, 
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except in the very low frequency range, and a main resonance peak in the frequency range of 2–3 kHz 

is observed. Our simulation results also indicate that if EFS1 is small enough (here 0.001 N/mm
3
), the 

main peak frequency becomes almost constant (2,570 Hz here). Between 0.001 to 0.1 N/mm
3
, the main 

peak frequency changes slightly. When EFS is between 0.1 to 1,000 N/mm
3
, the bridge mobility is 

very unstable. When EFS1 is bigger than 5,000 N/mm
3
, the bridge mobility seems tending to be stable 

as well in Figure 6, although without a main resonance peak in the 2–3 kHz frequency range.  

Figure 6. Frequency responses of the bridge in Figure 1a under different contact stiffness 

with the damping ratio 0.017% critical. EPS1 was set as (a) 0.001; (b) 0.01; (c) 0.1; (d) 1; 

(e) 10; (f) 100; (g) 1,000; (h) 5,000 N/mm
3
.  

  

Notice that during violin playing, the contact stiffness will change dynamically. Assume the EFS1 

will change from 0.001 to 0.1 N/mm
3
. The dynamic response of the bridge will be a mixture of the 

frequency responses obtained by EFS1 changing from 0.001 to 0.1 N/mm
3
. Since the main resonance 

peak frequency in the frequency range of 2–3 kHz changes slightly in these instant frequency 

responses, as seen in Figures 5a–c, the dynamic response of the bridge will most likely exhibit as a 

broader resonance peak than as the main resonance peak observed in any instant frequency response in 

Figure 5a–c. Furthermore, if all the dynamic EFS1 values are small enough (smaller than 0.1 N/mm
3
 

here), the main resonance peak is more predictable. However, if the dynamic EFS1 ranges from 0.1 to 

1,000 N/mm
3
, the dynamic response of the bridge will be very difficult to predict because the instant 

frequency responses are very unstable, as seen in Figures 5 and 6. As a result, the broad peak in the 

dynamic response of the bridge is difficult to predict deterministically because of the dynamic contact 

stiffness. It might be interesting to explore in the future if there is a link between the phenomena 

observed here and the statistic region in the violin dynamic response.  



Sensors 2013, 13 15298 

 

 

In order to further understand the bridge mobility, modal analysis was carried out under the same 

configuration as in Figure 5. The vibration modes close to 2.6 kHz are listed in Table 3. When EFS1 is 

smaller than 0.1 N/mm
3
 or larger than 1,000 N/mm

3
, the vibration modes are quite stable, except at 

very low frequency. From Figure 6 and Table 3, it can also be seen that the bridge mobility is linked to 

the bridge vibration modes. However, the main resonance peak frequency, for example 2,570 Hz in  

Figure 5a, is not exactly equal to the natural resonance mode frequency of 2,616 Hz since the main 

resonance peak in the bridge mobility is affected by the neighbouring natural resonance modes as well.  

Table 3. Modal analysis of the bridge in Figure 1a under the configuration of Figure 5.  

O: out-of-plane vibration mode; I: in-plane vibration mode. 

EFS1 (N/mm
3
) Resonances in Hz 

0.001 
14 

(I) 

41 

(I) 

46 

(I) 

1,654 

(O) 

1,720 

(O) 

2,616 

(I) 

2,775 

(O) 

4,241 

(O) 

5,195 

(O) 

0.01 45 129 144 1,654 1,720 2,621 2,775 4,241 5,195 

0.1 143 406 450 1,655 1,720 2,675 2,775 4,244 5,196 

1 439 1,234 1,285 1,667 1,724 2,776 3,213 4,273 5,196 

10 472 1,190 1,711 1,767 2,772 2,824 3,297 4,502 5,202 

100 27 191 812 1,739 1,967 2,685 2,933 5,065 5,250 

1,000 79 439 1,055 1,804 2,133 2,941 4,636 5,354 5,519 

5,000 157 605 1,157 1,876 2,206 3,095 5,141 5,469 5,695 

We further examined the motion of the resonance modes for the case of EFS1 = 0.001 N/mm
3
 in 

Table 3. It can be observed that most of the resonance modes are out-of-plane vibration modes.  

Figure 7a–j shows the motion of the five vibration modes at 1,654 Hz, 1,720 Hz, 2,616 Hz, 2,775 Hz, and 

4,241 Hz for the case of EFS1 = 0.001 N/mm
3
 in Table 3. Like in Figure 4, each vibration mode is 

intuitively visualized by two images extracted from its vibration animation in the ANSYS modal 

analysis. From Figure 6a, we can see that the five vibration modes have a major contribution to the 

bridge mobility. Figure 7e,f shows the motion of the resonance mode at 2,616 Hz, which is an in-plane 

rocking vibration. From Figure 6a, it can be seen that the main resonance peak in the frequency range 

of 2–3 kHz is mainly attributed to this in-plane rocking vibration. From the rocking motion, it is 

observed that the upper part and lower part of the bridge behave like two seesaws rocking in opposite 

directions with the bridge waist as the central axis. Due to the bridge cut-outs, the thin waist makes this 

rocking mode easier to be excited by the string vibration. Moreover, it can be observed that all five 

vibration modes in Figure 7 are linked to the cut-outs. Therefore the cut-outs in a bridge are important. 

In addition, it can be seen that for the same motion in Figures 4 and 7, its natural resonance frequency 

may be very different. For example, the natural resonance frequency of in-plane rocking motion in 

Figure 4 is 1,441 Hz, but it is 2,616 Hz in Figure 7. However, the natural resonance frequency of the 

mode 7 in Figure 4 is 4,384 Hz, while for the same bridge motion in Figure 7 it is 4,241 Hz, and the 

difference is much smaller. This means that some vibration motions are heavily affected by the 

dynamic contact stiffness. Thus, the dynamic contact vibration model is more suitable to study the 

bridge mobility than the fixed support model.  
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Figure 7. Bridge motion of the five major resonance modes at 1,654 Hz (a,b), 1,720 Hz  

(c,d), 2,616 Hz (e,f), 2,775 Hz (g,h), and 4,241 Hz (i,j) in the case of EFS1 = 0.001 N/mm
3
 

in Table 3. Note that we attach no significance to the amplitude of the motion. 

 

From Figures 5 and 6, it is also observed that the frequency responses in the very low frequency 

region are very unstable. All the resonance modes in this region (for example, the resonance modes 

lower than these modes shown in Figure 7 for the case of EFS1 = 0.001 N/mm
3
 in Table 3) are rocking 

as a rigid body as shown in Figure 8. The results in Figure 7 and Figure 8 are consistent with the 

concept that ‗in the deterministic region the bridge rocked approximately as a rigid body, while in the 

statistical region bridge motions can be characterized as quiet-feet/rocking-wiggling top‘ [6]. The 

impact of these low frequency resonance peaks on the violin acoustic performance needs further 

investigation in the future.  

Figure 8. Bridge motion of the four lower frequency resonance modes at 6 Hz (a,b),  

14 Hz (c,d), 41 Hz (e,f), and 46 Hz (g,h) in the case of EFS1 = 0.001 N/mm
3
 in Table 3. 

Note that we attach no significance to the amplitude of the motion. 
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Finally, additional simulations were carried out to examine the effect of the inaccuracy of the 

estimated ratios CG = 11, CD = 10.8, CA = 17.1 and CE = 38.7. We redid all the simulations of Figure 5 

using the averaged ratio to replace the estimated ratios, i.e., CG = CD = CA = CE = 19.4, and almost the 

same results were obtained. It seems that the frequency responses are not very sensitive to these ratios. 

Further simulations were carried out to verify this finding. Figure 9 presents the results when keeping 

EFS1 = 0.01 N/mm
3
 and changing the ratios CG, CD, CA, CE to set EFS2. Figure 9a shows the result of 

CG = 1.1, CD = 1.08, CA = 1.71 and CE = 3.87. Figure 9b shows the result of using the estimated ratios. 

Figure 9c shows the result of CG = 110, CD = 108, CA = 171 and CE = 387. The additional simulations 

confirms that the main resonance peak in the frequency range of 2–3 kHz is not very sensitive to these 

ratios when EFS1 < 0.1. In other words, the main resonance peak can be generated in relative flexible 

conditions for the bridge in Figure 1a. 

Figure 9. Frequency responses of the bridge in Figure 1a under different contact stiffness 

with the damping ratio 0.7% critical when EPS1 = 0.01 and (a) CG = 1.1, CD = 1.08,  

CA = 1.71, CE = 3.87; (b) CG = 11, CD = 10.8, CA = 17.1 and CE = 38.7; (c) CG = 110,  

CD = 108, CA = 171 and CE = 387. 

 

4.3. Mobility Analysis of a Plate Solid Bridge Based on the Contact Vibration Model 

In Section 4.2, we have seen that the cut-outs in the bridge are important. In order to further 

examine this, the mobility analysis of a plate solid bridge as shown in Figure 1b was carried out under 

the same simulation configuration in Section 3. The plate solid bridge in Figure 1b has the same 

outline shape of the original bridge in Figure 1a. A few Y-directional acceleration responses measured 

at the bridge foot (using an average) in the sound-post side are presented in Figure 10, in which the 

damping ratio is set as 0.7% critical. These frequency responses are significantly different from the 

responses in Figure 5. Figure 11 shows the corresponding responses when the damping ratio is set as 

0.017% critical. Our simulation results shows that no main resonance peak exists in the frequency 

range of 2–3 kHz if EFS1 > 0.01 N/mm
3
. Even if EFS1 ≤ 0.01 N/mm

3
, if we set EFS2 at the estimated 

ratios as used in Figures 5 and 6, no main resonance peak is observed as well in the frequency range of 
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2–3 kHz. A main resonance peak is only observed in the frequency range of 2–3 kHz when all  

the three of the following conditions are satisfied simultaneously through our trial-and-error:  

(1) EFS1 ≤ 0.01 N/mm
3
; (2)

 
EFS2_G, EFS2_D, EFS2_A and EFS2_E are equal or very close; and  

(3) EFS2 in between 1,000 to 2,000 N/mm
3
. When EFS2 = 1,600 N/mm

3
 the peak is 2,569 Hz as shown 

in Figure 10c.  

Figure 10. Frequency responses of the plate solid bridge in Figure 1b with the  

damping ratio 0.7% critical when EFS1 = 0.01 N/mm
3
 and (a) EFS2 using the estimate 

ratios; (b) EFS2 = 1,000 N/mm
3
; (c) EFS2 = 1,600 N/mm

3
; (d) EFS2 = 2,000 N/mm

3
. 

 

Figure 11. Frequency responses of the plate solid bridge with the damping ratio  

0.017% critical when EFS1 = 0.01 N/mm
3
 and (a) EFS2 using the estimate ratios;  

(b) EFS2 = 1,000 N/mm
3
; (c) EFS2 = 1,600 N/mm

3
; (d) EFS2 = 2,000 N/mm

3
. 
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Notice that in Figure 10c, the ratio EFS2/EFS1 = 160,000 is much bigger than the estimated ratios 

in Figure 5. This condition seems difficult to achieve if fitting the plate bridge in a real violin because 

EFS1 and EFS2 are correlated each other as mentioned in Section 4.2. In addition, as shown in  

Figure 10b,d, this peak is very sensitive to the changing of EFS2. Thus, for the plate bridge, a main 

resonance peak in the frequency range of 2–3 kHz may exist but only EFS1 and EFS2 are under very 

strict conditions. 

In order to understand this finding, modal analysis was carried out for the plate solid bridge as 

shown in Table 4. Table 4 shows the modal analysis results when the contact stiffness EFS1 and EFS2 

are set as in Figure 10. Comparing Tables 3 and 4, it can be seen that there are few resonance modes 

for the plate solid bridge. We then examined the motions of the resonance modes in Table 4. Figure 12 

shows the motion of the resonance mode at 2,569 Hz in Table 4, which is an out-of-plane vibration 

mode. It can be seen that although the plate bridge could generate a main resonance peak in the 

frequency range of 2–3 kHz, the bridge motion is not the rocking motion.  

Table 4. Modal analysis of the plate solid bridge. 

EFS Resonances in Hz 

In Figure10a 0.02 2.7 3.6 30 45 66 3,134 4,047 6,759 

In Figure10b 1.6 189 273 2,217 3,192 3,770 4,207 6,099 6,823 

In Figure10c 2.0 233 321 2,569 3,233 4,089 4,522 6,850 7,178 

In Figure10d 2.2 255 344 2,722 3,265 4,139 4,763 6,866 7,636 

Figure 12. Bridge motion of the resonance mode at 2,569 Hz in Table 4. Note that we 

attach no significance to the amplitude of the motion.  

 

5. Experimental Verification of EFS Impact on Bridge Mobility 

In the literature, the mobility of an isolated bridge is normally measured with the bridge feet 

clamped in a vise [6,8]. However, in a real violin, the bridge is just put on top of the violin top plate 

with the string fitting on top of the bridge. Obviously, the bridge feet are not clamped when the bridge 

is fitted in a violin, so the mobility of a bridge measured with clamped feet is not accurate.  

In order to verify the impact of the elastic foundation contact stiffness on bridge mobility,  

an experimental setup as shown in Figure 13 was built up. A KISTLER 9256C multi-component 

dynamometer was used to measure the 3D dynamic forces acted on the violin plate by the bridge feet. 
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We disassembled a real violin and removed the body of the violin. The retained part of the violin was 

fixed on a wood board support, and the bridge was put on top of the dynamometer. The KISTLER 

9256C dynamometer is designed for cutting force measurements in ultraprecise machining with a small 

design. It can measure the three orthogonal components of a force with high sensitivity (<0.002 N). The 

dynamometer has high natural frequency (fn(x) ≈ 5.1 kHz; fn(y) ≈ 5.5 kHz; fn(z) ≈ 5.6 kHz). Thus, this 

dynamometer is a good choice for our experimental measurement. Inside the dynamometer, four 

sensors are located underneath its top titanium plate in the four corners, and each sensors record the 

X-, Y-, and Z-components of the force. The dynamometer has 12 output channels. According to the 

experimental setup in Figure 13, we can obtain the three components of the force exerted to each 

bridge foot, the three components of the total forces exerted to the dynamometer by the bridge, and 

two moments of the force. Details refer to the user manual of the dynamometer. A sampling frequency 

of 20 kHz was used for data acquisition in the experiment.  

Figure 13. Experimental setup. 

 

In the experiment, the pitches of four steel strings were firstly tuned to the open string natural 

resonant frequencies, i.e., G 196 Hz, D 294 Hz, A 440 Hz, and E 659 Hz. Then the dynamic forces 

exerted to the dynamometer by the bridge were collected when bowing a string. In order to obtain the 

frequency response of the bridge, we slide the finger in the fingerboard from the top nut down to the 

bridge continuously while bowing a string. Without finger slurring, the frequencies in the frequency 

spectrum of the recorded force consists of the natural resonant frequency and its harmonic series, i.e., 

for the G-string 196 Hz, 392 Hz, 588 Hz,…, so that the frequency spectrum is discrete, as seen in 

Figure 5 of [16]. In such a discrete frequency spectrum, the resonances of the bridge mobility are 

difficult to observe. The finger slurring changes the fundamental resonance frequency continuously, and 

is equivalent to frequency sweeping in the frequency response analysis.  

In the experimental setup of Figure 13, the violin bridge is equivalent to being mounted in a ‗rigid‘ 

violin since the dynamometer can be treated as a rigid body. This setup facilitates the analysis of the 

dynamic forces exerted on the violin front plate by the bridge. In order to investigate the impact of 

dynamic contact stiffness on bridge mobility experimentally, we loosen or tighten the four strings 

simultaneously and then recorded the dynamic forces. Loosening the strings reduces the force F in 

Equation (1), thus reducing the EFS1 and EFS2. Tightening the strings increases EFS1 and EFS2. The 

force responses were further obtained by applying out the Fast Fourier Transform to these recorded 

dynamic forces. 
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Figure 14 shows the Y-directional force responses of the bridge under different contact stiffness, 

respectively. The four strings were loosened simultaneously by one tone lower, two tones lower, and 

three tones lower. In order to not break the strings, we only tested the case of tightening the strings one 

tone higher. For each contact stiffness case, we record the dynamic forces when bowing the  

A-string with finger slurring. The force responses in Figure 14 were measured in the bridge foot close 

to the sound post. From Figure 14, it can be seen that, when loosening the strings the broad peak in the 

frequency range of 2–3 kHz becomes clearer than the string in tune. When tightening the string, the 

broad peak almost disappeared. Moreover, the broad-peak frequency is downshifted as EFS decreases. 

This experimental observation is in consistent with the simulation prediction in Section 4, confirming 

the impact of EFS on the bridge mobility.  

Figure 14. Y-directional force responses of the bridge. From upper to lower: lower 3, 2, 

and 1 tones, in tune, and higher 1 tone. 

 

6. Discussion and Conclusions   

The bridge mounted in a violin has two contact interfaces: strings-bridge, and bridge feet-violin top 

plate. According to the Hertzian contact vibration theory, the changing contact stiffness in these 

interfaces can cause the bridge resonance frequency to shift and the resonance amplitude to change for 

each vibration mode. The mobility of an isolated bridge under in-plane excitation is first explored 

using the finite element method on the basis of the dynamic contact vibration model. Simulation 

results show that the contact stiffness has a significant impact on the bridge mobility. A novel 

experiment setup is then designed for the bridge mobility analysis. The experimental results confirmed 

the impact of the contact stiffness on the bridge mobility. The dynamic contact vibration model-based 

finite element method is demonstrated to be a powerful tool to study the bridge mobility.  
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It seems of interest to further explore in the future what is the impact of the dynamic contact 

stiffness on the overall dynamic response of a violin, particularly the bridge hill [17,18]. This can 

probably be done by modifying the finite element model to incorporate the violin corpus.  

Moreover, the proposed experimental setup can be further modified, for example by removing the 

violin back plate and putting the dynamometer underneath the top plate, to study the effect of the 

contact vibration boundaries, such as the string tension, the roughness of the contact surfaces, and the 

area of the contact surfaces on the violin acoustical quality.  

In addition, the Woodhouse model described in [4] provides a theoretical guidance for violin 

makers on how to trim the bridge in order to achieve the desired frequency, height and bandwidth of 

the bridge hill. It might be interesting as well to see if there is any link between the Woodhouse model 

and the dynamic contact vibration model.  
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