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Abstract: In order to reduce the estimated errors of the inertial navigation system 

(INS)/Wireless sensor network (WSN)-integrated navigation for mobile robots indoors, 

this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS) 

utilizing inertial measuring units (IMUs) and an ultrasonic positioning system. In this 

mode, an iterated Extended Kalman filter (IEKF) is used in forward data processing of the 

Extended Rauch-Tung-Striebel smoothing (ERTSS) to improve the accuracy of the 

filtering output for the smoother. Furthermore, in order to achieve the on-line smoothing, 

IERTSS is embedded into the average filter. For verification, a real indoor test has been 

done to assess the performance of the proposed method. The results show that the proposed 

method is effective in reducing the errors compared with the conventional schemes. 

Keywords: inertial navigation systems (INS); integrated navigation; iterated extended 

Kalman filter (IEKF); extended Rauch-Tung-Striebel smoother (ERTSS); average filtering 

 

1. Introduction 

Autonomous mobile robots have increasingly been used in a wide range of applications [1]. One 

key issue for mobile robots is the ability to obtain their navigation information (such as position, 

velocity and so on). In order to obtain accurate navigation information indoors, a number of methods 
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for localization with various sensors and different degrees of precision were proposed over the past 

few decades [1–3]. 

The main research approaches for indoor localization include beacon-based solutions and  

beacon-free solutions [4]. Beacon-based solutions employ reference nodes (RNs) with known location 

to complete the localization of blind nodes (BNs). Its principle is similar to that of global positioning 

systems (GPS), but the communication technology used is short-range radio, such as WiFi, UWB, 

RFID, ZigBee, ultrasound, etc. Many researchers have attempted to employ beacon-based solutions for 

indoor localization. For instance, Shirehjini et al. proposed an RFID-based position and orientation 

measurement system for mobile objects in [5]; Park et al. employed ZigBee for an indoor location 

system [6]. Most of the abovementioned attempts employ the measurement of one or several physical 

parameters of the radio signal transmitted between the RNs and BNs to complete the wireless 

localization. Due to the influence of the building structures in indoor environments, the accuracy is 

about one meter. In order to obtain higher accuracy, some researchers employ ultrasonic waves, and 

the time of arrival (TOA) mode to complete the distance measurement. For instance, Minami et al. 

proposed a fully distributed localization system based on ultrasound, where the localization accuracy 

was about 20 cm with 24 devices [7], and Saad et al. proposed high-accuracy reference-free ultrasonic 

location estimation in [2]. Ultrasonic sensors have been shown to be a simple but powerful system for 

this mode, however, it needs has a high density of RNs to maintain the localization accuracy, which is 

not practical for large localization areas. Differing from beacon-based solutions relying on RNs,  

beacon-free ones are a self-contained system capable of providing positioning information 

independently [8]. Some attempts using inertial navigation system (INS)-based beacon-free solutions 

have been used in integrated outdoor navigation [9]. For example, a GPS/INS navigation system for 

launchers and re-entry vehicles was described by Boulade et al. in [10], and Xu et al. proposed a novel 

hybrid of least squares support vector machine (LS-SVM) and Kalman filter for GPS/INS integration 

in [11]. Like the integration navigation mentioned above, several approaches also employ INS-based 

beacon-free solutions for indoor navigation. For example, Ruiz et al. employed inertial measuring 

units (IMUs)/radio frequency identification (RFID) integrated navigation for pedestrian indoor 

navigation in [4]. Evennou et al. proposed a WiFi/INS integration navigation system for indoor mobile 

positioning in [12]. However, it should be pointed out that beacon-free solutions are poor in long-term 

self-contained navigation since the accuracy deteriorates with time [13,14], thus it is just a short-term 

compensation and therefore, it is not suitable for the precision control of indoor mobile robots. 

In the data fusion for the integrated navigation system, the integration filter plays an important role 

in the navigation accuracy. One of the most popular information fusion algorithms is the Kalman filter 

(KF). However, its optimality heavily depends on linearity [15]. In order to overcome this problem, the 

extended KF (EKF) is used [14], but the linearization of a nonlinear system by Taylor series expansion 

and neglection of the truncated high-order terms will introduce a truncation error [15]. Then, the 

unscented KF (UKF) and iterated Extended Kalman filter (IEKF) are proposed. Although the UKF is 

able to overcome the shortcomings of the EKF, it needs more time to compute large numbers of 

samples [16]. The IEKF is able to reduce the bias and the estimation errors by adding only a few 

simple iterative operations. In order to obtain high accuracy, smoothing algorithms have been 

effectively applied for integrated navigation systems [17]. The Rauch-Tung-Striebel smoothing 

(RTSS) is one of the most popular methods [18]. RTSS was first proposed in [19], and it includes one 
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forward data processing and one backward data processing step. Due to its robustness and 

effectiveness, it is widely used in navigation applications. However, it is only suitable for linear 

systems. In order to overcome this problem, some researchers employ the so-called Extended RTSS 

(ERTSS). In this mode, the forward data processing of ERTSS is implemented by EKF instead of KF, 

such as in [20]. In order to reduce the estimated error of the INS/WSN navigation indoors for mobile 

robots, this work proposes the design and implementation of an on-line iterated ERTSS (IERTSS). The 

IEKF is used to improve the filtering output accuracy of the ERTSS algorithm. Then, in order to 

achieve the on-line smoothing, the IERTSS is used in an average filter to smooth the errors of the INS 

during the output period. A real indoor test is used to evaluate the performance of the proposed 

method. The remainder of the paper is organized as follows: Section 2 gives the IERTSS embedded 

average filter design. The unbiased tightly-coupled integrated model for mobile robot navigation 

indoors is illustrated in Section 3. Section 4 gives the real indoor tests and performance. Finally, 

conclusions are given in Section 5. 

2. On-Line Iterated Extended Rauch-Tung-Striebel Smoothing 

In this section, a brief introduction to the IEKF and ERTSS will be given, and then, an on-line 

IERTSS will be proposed. 

2.1. Iterated Extended Kalman Filter 

It is assumed that a discrete-time model of a nonlinear system is given by Equations (1) and (2): 

( )1 1 1k k k k− − −= +X f X B ω  (1) 

( )k k kX= +y h υ  
(2) 

where 
k

X  is the state vector at time k, ( )kf X  is the system nonlinear function, 
k

B  is the process noise 

input matrix, 
k

y  is the observation vector, and ( )h kX  is the observation nonlinear function. 
k

ω  is the 

process noise, and 
k
υ  is the observation noise. It is assumed that 

k
ω  and 

k
υ  are independent zero-mean 

white Gaussian sequences with covariance Q  and R , respectively. The IEKF used in this paper 

involves the following recursive relations [17,19]: 

| 1 1 1| 1
ˆ ˆ

k k k k k− − − −=X A X  (3) 

| 1 1 1 1

T

k k k k k− − − −= +P A P A Q  
(4) 

where 
( )|

|

ˆ

ˆ

k k

k

k k

∂
=

∂

f X
A

X
. Compared with the EKF, the IEKF employs a few simple iterative operations to 

reduce the bias and the estimation error after getting | 1
ˆ

k k −X  in Equation (3) and | 1k k −P  in Equation (4). 

The corresponding recursive relations are: 

1

| | 1
ˆ ˆ

k k k k −=X X  (5) 

1

| | 1k k k k −=P P  (6) 
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( ) ( ) ( )
1

| 1 | | | 1 |
ˆ ˆ ˆ

T T
n n n n n n n

k k k k k k k k k k k

−

− −
 = +
  

K P H X H X P H X R  (7) 

( ) ( ) ( )1

| | | | | 1 |
ˆ ˆ ˆ ˆ ˆ ˆn n n n n n n n

k k k k k k k k k k k k k k

+

−
 = + − − × −
 

X X K y h X H X X X  
(8) 

( ) ( ) ( )| | | 1 |
ˆ ˆ

T T
n n n n n n n n n

k k k k k k k k k k k k−
   = − − +
   

P I K H X P I K H X K R K  (9) 

here, ( )
( )|

|

|

ˆ
ˆ

ˆ

n

k kn n

k k n

k k

∂
=

∂

h X
H X

X
, n  is the number of iteration and 1, 2, ,n j= … . Then: 

| |
ˆ ˆ j

k k k k=X X  (10) 

| |

j

k k k k=P P  
(11) 

2.2. Extended Rauch-Tung-Striebel Smoothing 

Consider the nonlinear system given by Equations (1) and (2), the forward data processing of 

ERTSS is utilizing a set of equations as follows: 

| 1 1 1| 1
ˆ ˆ

k k k k k− − − −=X A X  (12) 

| 1 1 1 1

T

k k k k k− − − −= +P A P A Q  
(13) 

1

| 1 | 1

T T

k k k k k k k k

−

− −
 = + K P H H P H R  (14) 

( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k− −
 = + −
 

X X K z h X  
(15) 

[ ]| | 1k k k k k k −= −P I K H P  
(16) 

where 
( )|

|

ˆ

ˆ

k k

k

k k

∂
=

∂

f X
A

X
, 

( )|

|

ˆ

ˆ

k k

k

k k

∂
=

∂

h X
H

X
. The backward data processing propagates the filtering outputs 

and achieves the smoothing results by using the R-T-S formulation. It is computed with the  

following equations: 

( )
1

| 1|

S T

k k k k k k

−

+=K P A P  (17) 

| | 1| 1 | 1
ˆ ˆ ˆ ˆS S S

k k k k k k k k k+ + −
 = + − X X K X X  

(18) 

( )( )| 1 | 1

T
S S S S

k k k k k k k k
K K+ −= + −P P P P  (19) 

where the superscript S denotes the smoothing, and the recursion [Equations (17)–(19)] is started from 

the filtering output at the final time. 

2.3. On-Line Iterated Extended Rauch-Tung-Striebel Smoothing 

As mentioned above, it can be seen that the filtering output accuracy of ERTSS is dependent on the 

EKF, however, the EKF will generate truncated errors since it employs Taylor series expansion to 
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linearize the nonlinear system. In this work, in order to obtain a higher accuracy solution, the IEKF 

mentioned above is used in the forward data processing part of ERTSS (called IERTSS). Moreover, in 

order to achieve on-line smoothing, this work proposes an on-line IERTSS. The flow chart of this  

on-line IERTSS is shown in Figure 1. In this mode, the IEKF is used for optimal state estimation. 

When the output periods are coming, firstly, the IERTSS is employed to smooth the filtering output of 

IEKF between two data output periods. Then, the average value of the INS state estimation is 

computed with the INS solution and IERTSS solution. 

Figure 1. The flow chart of the on-line IERTSS. 

 

3. Unbiased Tightly-Coupled Integrated Model for Mobile Robot Navigation Indoors 

The unbiased tightly-coupled integrated model proposed in [21] is employed in this work. The 

continuous-time state equation of the filter is illustrated in Equation (20): 
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where ( ), ,,
E k N k

P Pδ δ , ( ), ,,
E k N k

V Vδ δ  and ( ), ,,
E k N k

Acc Accδ δ  are the errors of position, velocity and 

acceleration measured by the INS in east and north direction at moment k. T is the sample time; *

k
W is 

the Gaussian process noise. Equation (20) can be transferred into a discrete-time state equation: 
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where 
k

W  is the Gaussian process noise. Here, the position of the robot measured by the INS is 

denoted as ( ),
INS INS

E NP P , and the position of the RN is denoted as ( ),x y . Thus, the distance between the 

robot and the RN measured by the INS can be expressed as Equation (22): 

( ) ( )
2 2

, 1, 2, ,INS INS INS

i E i N i
d P x P y i m= − + − = ⋯  (22) 

where m  is the number of the RN. Theoretically, the real distance between the robot and the RN is 

expressed as Equation (23): 

( ) ( )
2 2

Real Re Re , 1,2, ,al al

i E i N i
d P x P y i m= − + − = ⋯  (23) 

where Real

i
d  is the real distance between the robot and the RN, ( )Re Re,al al

E N
P P  is the real position of  

the robot. The difference between ( )
2

INS

i
d  and ( )

2
Real

i
d  is denoted as 2

i
d∆ , and it is expressed as  

Equation (24): 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

2 Re Re Re , 1,2, ,INS al INS INS al al

i i i E i N i E i N i
d d d P x P y P x P y i m ∆ = − = − + − − − + − =  

⋯  (24) 

The real robot position can be computed by Equation (25): 

Real INS

E E E
P P P= −δ , Re al INS

N N N
P P P= −δ  (25) 

Thus, the Equation (24) can be transferred to Equation (26): 

( ) ( ) ( ) ( )2 2 2, 2 2 , 1,2, ,
i

INS INS

d E N i E i E N i N E N
h P P d P x P P y P P P i m= ∆ = − + − − + = ⋯δ δ δ δ δ δ  (26) 

The final matrix of the measurement equation at k moment is illustrated in Equation (27): 

( )
( )

( )
( )

1

2

,,

,,

2
, ,1,

2

, ,2,

2

, , ,

,

,
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k
k

E kE k

N kN k

d E k N kk

k

d E k N kk

m k d E k N k

VV

VV

h P Pd

h P Pd

d h P P

 ∆ 
  

∆   
  ∆
 = + 

∆   
  
  

∆      
y

h X

υ

⋮ ⋮

����� ���������

δ

δ

δ δ

δ δ

δ δ

 
(27) 

where 
k
υ  is the Gaussian process noise, ( ),E NV V∆ ∆  are the differences between INS velocity and 

WSN velocity in the east and north direction respectively. It is assumed that 
k

ω  and 
k
υ  are 

independent zero-mean white Gaussian sequences with covariance Q  and R , respectively. 

The configuration of the data fusion for the integrated navigation in this work is shown in Figure 2. 

4. Indoor localization Tests and Performance 

4.1. Real Indoor Test Environment 

In this work, two real indoor tests were done to assess the performance of the proposed method. The 

testbed composes of one robot and six RNs. The prototype of the robot used in this work is shown in 
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Figure 3. The robot is composed of an IMU, an ultrasonic sender and a wireless communication board. 

Its size is 380 mm × 380 mm × 400 mm (length × width × height). The performance characteristics of 

the IMU used in this work are listed in Table 1. The robot is the carrier of the IMU and the ultrasonic 

sender. It is able to collect the IMU datum and the distances between the robot and the RNs by  

using the PC fixed on the robot. Figure 4 shows the implemented prototype of the RN. Its size is  

120 mm × 60 mm × 80 mm (length × width × height). Here, the RN is used to receive the ultrasonic 

ranging signal sent by the ultrasonic sender and the distance between the RNs and robot can be 

calculated. It is also able to send the sensor data to the ultrasonic sender when it gets the command. 

The real indoor test environment is shown in Figure 5, and the positions of the RNs are also marked in 

Figure 5. 

Figure 2. The configuration of the data fusion for the integrated navigation. 
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Figure 3. The prototype of the robot. 
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Figure 4. The prototype of the RN. 

Antenna

Ultrasonic receiver

Wireless module

(RMF12B)

 

Figure 5. Real indoor test environment. 

 

Figure 6 displays the trajectory of the real test. The robot runs from the beginning point (denoted by 

a black square) to the end point (denoted by a black circle) at a speed of 0.33 m/s. Meanwhile, the RNs 

are denoted by yellow circles in Figure 6. 
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Figure 6. The trajectory of the real test. 

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

 East [m]

 N
o

rt
h

 [
m

]

 

 

 Reference path

 RN

 

Table 1. The performance parameters for the IMU used in this work. 

Parameters Description Data 

Angular Rate 

Input Range: Yaw, Pitch, Roll ±300 deg/s 

Bias 0.02 deg/s RMS 

Scale Factor Accuracy 0.2% 

Non‐Linearity 0.1% FS 

Random Walk 6 deg/sqrt (h) 

Linear 

acceleration 

Input Range: X/Y/Z ±2 g 

Bias 0.3 mg RMS 

Scale Factor Accuracy <0.1% 

Non‐Linearity 0.2% FS 

Random Walk 0.06 deg/sqrt (h) 

4.2. Algorithm Implementation 

The pseudocode of the main program is presented in Table 2. In the pseudocode, the percentage 

symbol, “%,” is used to mark the comments. The software methodology is implemented in the Matlab 

programming language. The data refresh rate of the netbook computer is 50 Hz. Sensor data can be 

stored at the end of each test for subsequent analysis. 

4.3. The Performance of the Off-Line IERTSS 

In this section, the experimental results when the off-line IERTSS works are discussed. In Figure 7, 

the position errors for INS-only and WSN in the east direction and north direction are shown in  

Figure 7a,c, respectively. The position errors for the WSN, EKF, ERTSS and off-line IERTSS in the 

east direction and north direction are shown in Figure 7b,d, respectively. Furthermore, the root mean 

square errors (RMSE) of position and velocity for the INS-only, WSN, EKF, ERTSS and off-line 

IERTSS are shown in Tables 3 and 4, respectively. 
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Table 2. The pseudocode of the proposed algorithm. 

State ( S ), Covariance ( Cov ), Position ( Po ), Velocity ( Ve ), Probability ( PP ) 

1. procedure MAIN % Main program 

2.   [ S , Cov , Po , Ve , PP ] ← Initialize(); 

3.   Start IMU & ultrasonic measurements (); 

4.   loop % 50 Hz rate 

5.         WaitNextIMUSample; 

6.         [ b
ω , b

f , Yaω ] ← GetIMUData(); 

7.         [ ,INS INS

E N
V V ] ← IMUattitudesolution( b

ω , bf ); 

8.         [ ,INS INS

E N
P P ] ← DeadReckoning( ,INS INS

E N
V V ); 

9.         DataUltrasonic ← GetUltrasonicData(); 

10.        ( )
Ultrasonic

1, ,n
TOA

…
← MeanTOA(DataUltrasonic); 

11.        ( )
WSN

1, ,n
d
…

← TOAtoDistanceModel( ( )
Ultrasonic

1, ,n
TOA

…
); 

12.       ( )
INS

1, ,n
d
…

← INSPositionToDistanceModel( ,INS INS

E N
P P ); 

13.         WSN

e
V  ← GetVelFromCodeWheel(); 

14.        [ ,WSN WSN

E N
V V ] ←GetNorth&EastVel( ,WSN

e
V Yaω ); 

15.         z ← [ , 2
δVe δd ]; % Measurements 

16.         
zCov  ← GetCovZ( z ); 

17.         S ← [
1 1
,

i i

+ +

− −
Po Ve ]; 

18.         Cov ← [
1
, ,

i i z

+ −

−
PP PP Cov ]; 

19.         [ ,S Cov ] ← IEKF( , ,z S Cov ); 

21.         FilterData ← StoreFilterData( ,S Cov ); 

22.         if (OutputData = = 1) 

23.             [ , , ,E N E NδP δP δV δV ]IERTSS ← IERTSS( ,S Cov ); 

24.             [ , , ,E N E NP P V V ]IERTSS ←[ , , ,INS INS INS INS

E N E N
P P V V ] –[ , , ,E N E NδP δP δV δV ]IERTSS 

25.             [ , , ,E N E NP P V V ]Avg. IERTSS ←GetAverageValue([ , , ,E N E NP P V V ]IERTSS); 

26.             OutputData(); 

27.         endif 

28.  end loop 

29.  Stop IMU & ultrasonic measurements (); 

30.  StoreSession(All variables); % For ananlysis 

31. end procedure 

Figure 7a shows the east position error of the INS-only and WSN. From the figure, one can easily 

see that though the INS-only solution is continuous, and the east position INS error is accumulated 

since the DR-based current position has to depend on the previous moment. In Figure 7a, the east 

position INS error increases to about 190 m in 65 s without any correction. The RMSE of the INS-only 

solution is 85.89 m. Thus, it is necessary to correct the INS solution. Moreover, we can see that the 

WSN is able to maintain the east position error compared with the INS-only solution. Table 3 shows 

that its RMSE is 11.78 cm, which is lower than the INS solution. The east position errors for the WSN, 

EKF, ERTSS and off-line IERTSS are shown in Figure 7b. From the figure, it can be seen that the 

estimation accuracy in terms of east position for EKF is superior to that for WSN. The EKF reduces 

the RMSE in the east direction by about 41.17% compared with the WSN solution. Regarding the 

smoothing methods, it is evident that both the ERTSS and the off-line IERTSS are effective to reduce 
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the RMSE. Table 3 shows that the position RMSE for the off-line IERTSS is lower than that for 

ERTSS. The off-line IERTSS reduces the position RMSE by about 38.22% compared with ERTSS. 

Figure 7. The position error for the INS-only, WSN, EKF, ERTSS and off-line IERTSS. 

(a) and (b) East direction; (c) and (d) North direction. 
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Table 3. Comparison of five estimation strategies in terms of position error. 

Method 
RMSE (cm) 

East North Mean 

INS-only 8589.14 3625.92 6107.53 
WSN 11.78 7.71 9.74 
EKF 6.93 6.11 6.52 

ERTSS 5.73 5.55 5.64 
Off-line IERTSS 3.54 3.46 3.50 

The north position errors for the INS-only, WSN, EKF, ERTSS and off-line IERTSS are shown in 

Figure 7c,d, respectively. The trend in this figure is similar to that in Figure 7a,b. The north position 

error of INS is also accumulated. The WSN solution is also able to maintain the accuracy of the 

position. From Table 3, we can see that the RMSE of the north position for WSN remains at about 7.71 cm 
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since the WSN solution just depends on the current measurement. Like Figure 7b, the off-line IERTSS 

solution also has the lowest error. The RMSE of the north position for the off-line IERTSS is 3.46 cm. 

The improvement in RMSE is about 43.37% and 37.66% compared with the EKF and ERTSS, 

respectively. In summary, the off-line IERTSS is the most effective method to reduce the position error 

compared with the INS-only, WSN, EKF and ERTSS. 

The RMSE results of velocity for the INS-only, WSN, EKF, ERTSS and off-line IERTSS are 

shown in Table 4. From the table, it can be seen that the off-line smoothing-based methods are able to 

effectively reduce the velocity error of the filter. However, the ERTSS and off-line IERTSS solution 

are almost the same both in the east and north direction, respectively. 

Table 4. Comparison of five estimation strategies in terms of velocity error. 

Method 
RMSE (cm/s) 

East North Mean 

INS-only 343.49 131.48 237.48 

WSN 5.73 8.79 7.26 

EKF 4.07 6.12 5.10 

ERTSS 3.15 4.73 3.94 

Off-line IERTSS 2.77 2.79 2.78 

4.4. The Relationship between Smoothing Window Size and Accuracy for the On-Line IERTSS 

In this section, the relationship between smoothing window size and accuracy for the on-line 

IERTSS is discussed. The relation between the smoothing window size and the filtering period is 

shown in Figure 8. From the figure, we can see that the relation can be expressed by the  

following equation: 

( ) ( )Smoothing window size  = Filtering period  = n n T⋅ ⋅  (28) 

Tables 5 and 6 and Figure 9 show the testing results. From the results, we can see that both the 

RMSE of position and that of velocity reduce as the smoothing window size increases on the 

beginning, then the RMSE increases rapidly. 

Figure 8. The relation between the smoothing window size and the filtering period. 
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From Table 5, we can see that RMSE of position for the on-line IERTSS is lowest when the 

smoothing window size is 6, so for the velocity, the solution is 6. Table 5 displays the RMSE of 
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position in the east and north direction with the different smoothing window sizes, while, the average 

position RMSE in the east and north direction is also shown in the last line. The position RMSE in the 

east and north direction with the different smoothing window size is shown in Table 6, and the average 

position RMSE in the east and north direction is also shown in the last line. In order to obtain a high 

accuracy navigation solution, we take the average of the average RMSE for position and velocity, and 

the result is shown in Table 7. From that table, we can see when the smoothing window size is 6, the 

average value is lowest. 

Table 5. Relationship between smoothing window size and position RMSE (cm). 

Size East North Average 

1 T 4.37 4.16 4.27 

2 T 4.22 3.95 4.09 

3 T 4.07 3.84 3.96 

4 T 3.94 3.73 3.84 

5 T 3.83 3.75 3.79 

6 T 3.72 3.73 3.73 

7 T 3.71 3.77 3.74 

8 T 3.69 3.83 3.76 

9 T 3.65 3.97 3.81 

10 T 3.60 4.06 3.83 

20 T 4.30 5.92 5.11 

40 T 7.02 10.59 8.80 

60 T 15.56 10.01 12.78 

80 T 13.02 20.21 16.61 

100 T 15.06 25.47 20.26 

Table 6. Relationship between smoothing step and velocity RMSE (cm/s). 

Size East North Average 

1 T 3.94 4.21 4.07 

2 T 3.72 4.07 3.89 

3 T 3.78 3.92 3.85 

4 T 3.71 3.90 3.81 

5 T 3.61 3.98 3.79 

6 T 3.68 3.80 3.74 

7 T 3.93 3.81 3.87 

8 T 4.02 3.94 3.98 

9 T 4.52 3.98 4.25 

10 T 3.90 3.97 3.93 

20 T 4.59 5.24 4.92 

40 T 6.52 7.27 6.90 

60 T 8.10 7.11 7.61 

80 T 9.98 9.76 9.87 

100 T 12.35 9.30 10.83 
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Table 7. The average of average RMSEs for position and velocity. 

Size Position (cm) Velocity (cm/s) Average 

1 T 4.27 4.07 4.17 

2 T 4.09 3.89 3.99 

3 T 3.96 3.85 3.90 

4 T 3.84 3.81 3.82 

5 T 3.79 3.79 3.79 

6 T 3.73 3.74 3.73 

7 T 3.74 3.87 3.81 

8 T 3.76 3.98 3.87 

9 T 3.81 4.25 4.03 

10 T 3.83 3.93 3.88 

20 T 5.11 4.92 5.01 

40 T 8.80 6.90 7.85 

60 T 12.78 7.61 10.19 

80 T 16.61 9.87 13.24 

100 T 20.26 10.83 15.55 

4.5. Comparison of On-Line and Off-Line IERTSS 

In this section, the comparison of on-line and off-line IERTSS is discussed. The position errors for 

the off-line and on-line IERTSS are shown in Figure 10. The comparison of on-line and off-line mode 

in terms of position error is shown in Table 8. From the figures, one can see that both in the east 

direction and north direction, the position error of the on-line and the off-line IERTSS solutions are 

almost the same, and the off-line mode is a little better than the on-line mode. Table 9 displays the 

comparison of on-line and off-line mode in terms of velocity error. Like the position error, the on-line 

and the off-line IERTSS solutions are also almost the same, and the off-line mode is better than the  

on-line mode. However, the performance of on-line IERTSS is little better than the ERTSS. 

Figure 9. Relationship between smoothing window size and RMSE. (a) Position and (b) Velocity. 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 20 40 60 80 100

Smoothing window size

R
M

S
E

 o
f 

 p
o

si
ti

o
n

 [
c
m

].

East directionAverage valueNorth direction
 

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 20 40 60 80 100

Smoothing window size

R
M

S
E

 o
f 

v
el

o
ci

ty
 [

cm
/s

] 
 .

East directionAverage valueNorth direction
 

(a) (b) 



Sensors 2013, 13 15951 

 

 

Figure 10. The position error for the off-line IERTSS and on-line IERTSS. (a) East 

direction and (b) North direction. 
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Table 8. Comparison of on-line and off-line mode in terms of position error. 

Method 
RMSE (cm) 

East North Mean 

Off-line IERTSS 3.54 3.46 3.50 
On-line IERTSS 3.72 3.73 3.73 

Table 9. Comparison of on-line and off-line mode in terms of velocity error. 

Method 
RMSE (cm/s) 

East North Mean 

Off-line IERTSS 2.77 2.79 2.78 
On-line IERTSS 3.68 3.80 3.74 

5. Conclusions 

This work proposed an on-line IERTSS for tightly integrated INS/WSN mobile robot navigation 

indoors. In this mode, IEKF is employed instead of the EKF in forward data processing of the ERTSS. 

Then, IERTSS is embedded into average filter for on-line smoothing. The experimental results show 

that the proposed on-line smoothing outperforms the ERTSS. The performance of on-line smoothing is 

also comparable to that of off-line smoothing. The results show that the performance of the on-line and  

off-line mode is almost the same, and the off-line mode is a little better than the on-line mode. 
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