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Abstract: The Aromascan A32S conducting polymer electronic nose was evaluated for the 

capability of detecting the presence of off-flavor malodorous compounds in catfish meat 

fillets to assess meat quality for potential merchantability. Sensor array outputs indicated 

that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly 

different as confirmed by a Principal Component Analysis (PCA) and a Quality Factor 

value (QF > 7.9) indicating a significant difference at (P < 0.05). The A32S e-nose 

effectively discriminated between good-flavor and off-flavor catfish at high levels of 

accuracy (>90%) and with relatively low rates (≤5%) of unknown or indecisive 

determinations in three trials. This A32S e-nose instrument also was capable of detecting 

the incidence of mild off-flavor in fillets at levels lower than the threshold of human 

olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest 

management of production and meat-quality downgrade problems associated with catfish 

off-flavor are discussed. 

Keywords: artificial olfaction; electronic aroma detection; fish meat quality; volatile 

organic compounds 
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1. Introduction 

The occurrence of off-flavor and off-odor in catfish meat is the most economically important 

problem affecting commercial catfish production in the southern United States [1]. Most pre-harvest 

and post-harvest off-flavor problems are caused by the presence of malodorous compounds, produced 

by naturally-occurring aquatic microorganisms (primarily blue-green and actinomycete-type bacteria) 

during the months of July to September, which are released into the water and then absorbed through 

the gills, skin or gastrointestinal tract of catfish [2]. These common off-flavor compounds impart a bad 

flavor and odor to catfish meat, often described as earthy, muddy, or musty to the taste, resulting in 

reduced flavor quality and a significant reduction in the commercial value (grade) of catfish meat. In 

many cases, off-flavor catfish meat is unpalatable and unmarketable. Since 1997, channel catfish 

(Ictalurus puncatus) has ranked as the most important pond-cultured catfish species raised for 

commercial production in the Southern U.S. in terms of total weight sold annually [3]. The incidence 

of off-flavor in channel catfish, produced during peak harvest months, can account for up to 70% of all 

harvestable fillets rejected by processors in this region [4]. 

The current method for detecting off-flavor in catfish meat usually involves quality control 

evaluations by expensive human inspectors (assessors). The training of assessors for sensory 

evaluation is necessary for almost all sensory (sight, taste, and smell) methods used to grade meat 

quality [5]. The degree and costs of training depends on the difficulty and complexity of the 

assessment. For example, the training of assessors for a large range of meat sample types requires 

more extensive training in the use of meat-grade scoring systems which vary with different meat types 

being graded. Sensory quality control also is done by experienced wholesale buyers at the fish market 

or at quality inspection sites. In addition, sensory assessment often involves taste tests of cooked fish to 

detect off-flavor and tainted meats. All of these steps in the meat-grading process are time-consuming 

and involve considerable expense that must be added to the price of the final meat product. A 

potentially far cheaper, more rapid and efficient method of quality-control screening of fish meats for 

the presence of off-flavor is to utilize electronic aroma-detection devices, such as electronic noses, that 

are not subject to human operator fatigue [6–9]. 

Most previous studies involving the e-nose evaluation of meat quality have been concerned with the 

detection of microbial and chemical contamination (particularly the presence of human pathogens and 

toxins in meat), meat age (freshness), spoilage, and authenticity of meat types to avoid fraud and 

adulterations with cheaper meats [7,10–19]. Electronic-nose devices have been used to assess meat 

quality in seafood products including fish species such as Mallotus villosus (capelin) [20], Merluccius 

hubbsi (Argentinean hake) [21], Thunnus albacares (yellowfin tuna) [22], Salmo salar (Atlantic 

salmon) [23,24], Gadus morhua (Atlantic cod) [25], Sardina pilchardus (Moroccan sardines) [26–29], 

Sparus aurata (sea bream) [30], and Trichiurus lepturus (hairtail or cutlassfish) [31]. Meat quality also 

has been assessed using metal oxide semiconductor (MOS) e-noses for pork [32] and octopus [33]. 

Previous studies have tested the capabilities of e-nose devices to assess meat quality in only a few 

freshwater fish species including Hypophthalmichthys molitrix (silver carp) [34], Oreochromis 

niloticus (tilapia) [35], and Ctenopharyngodon idellus (grass carp) [36]. 

We evaluated the efficacy of utilizing a conducting polymer (CP) electronic-nose (e-nose) device 

for the detection of off-flavor in catfish as a quality control for grading meat. The objectives of this 
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study were to determine the capabilities of the Aromascan A32S e-nose: (1) to detect the presence of 

off-flavor compounds in catfish meat; (2) to discriminate between good-flavor (on-flavor) and off-flavor 

meat samples; and (3) to assess the potential feasibility of using this or similar e-nose instruments for 

managing pre-harvest off-flavor problems in catfish ponds and for post-harvest assessments of catfish 

meat quality and merchantability based on the presence of off-flavor compounds in harvested fish. 

2. Materials and Methods 

The catfish meat samples, utilized for testing the efficacy of the Aromascan A32S e-nose for the 

detection of off-flavor in this study, were obtained from fresh catfish, randomly collected from several 

0.04 ha experimental catfish ponds of the Thad Cochran National Warmwater Aquaculture Center in 

the Mississippi Delta region located near Stoneville, Mississippi. The fish samples used in this study 

were all of one species, Ictalurus punctatus Rafinesque (channel catfish), the most numerous and 

abundant catfish species marketed in the southern United States. 

2.1. AromaScan A32S Electronic Nose 

The AromaScan 32S (Osmetech Inc., Wobum, MA, USA) is a conducting polymer (CP) electronic 

nose that contains an organic matrix-coated polymer-type 32-sensor array, designed for general use 

applications with 15 v across sensor paths. The sensor-array response of the A32S e-nose to VOCs 

from different chemical classes was tested and reported previously [37]. Sensors responses were 

measured as a percentage of electrical resistance changes to current flow in the sensors relative to 

baseline resistance (%∆R/Rbase). The sorption of headspace volatiles, composed of specific VOC 

mixtures, to the conducting polymer sensor surfaces induce a change in the electrical resistance to 

current flow which is detected by a transducer to produce the output from the sensor array. Sensor 

responses varied with the type of plastic polymer used in the sensor matrix coating, produced by 

electropolymerization of either polypyrrole, polyanaline or polythiophene derivatives, which have 

been modified with ring-substitutions of different functional groups and with the addition of different 

types of metal ions to the polymer matrix in order to improve and modulate sensor response. All 

measurements were statistically compared using normalized sensor outputs from the sensor array. The 

conducting polymer analysis (CPA) methods used with this instrument employ application-specific 

reference libraries for aroma pattern-recognition and neural-net training algorithms. 

2.2. Sample Preparation and Prerun Procedures 

Fresh catfish (approximately 18 months old and 570–900 g), were randomly sampled by netting 

from local research ponds after being stunned by a custom built, 40-volt electric pulse shocker 

(Sylvesters, Inc., Louisville, MS, USA). The heads were removed mechanically using a Baader Model 

166 Heading Machine (Baader, Lübeck, Germany), eviscerated manually, filleted and skinned by a 

Baader Model 184 fillet machine (Baader), and trimmed manually. The fish were immediately frozen 

at −20 °C for long-term storage prior to e-nose analysis of individual samples. Immediately prior to 

CPA tests, individual fish were removed from the freezer and thawed to room temperature on clean 

tissue paper to air dry. Small meat core samples (7 mm-diameter × 2–3 cm-long, depending on fillet 

thickness) were taken from individual fresh catfish using a sharp stainless steel coring tool, pressed 
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into the side flesh of each fish fillet at the thickest point, and the meat core was removed from the 

corer using a clean glass rod. Each meat core was blotted on tissue paper to remove free moisture and 

analyzed separately by placing individual meat cores into a 14.8 cm
3
 uncapped glass vial inserted into 

a 500 mL Pyrex glass sampling bottle no. 1395 (Corning Inc., Corning, NY, USA) fitted with 

reference air, sampling, and exhaust ports on a polypropylene bottle cap. Reference air entered the 

sampling bottle through a 3 mm-diameter polypropylene tube extending to just above the bottom of the 

sampling bottle. The sampling bottle was held in the sampling chamber within the instrument at a 

constant air temperature of 25 °C and purged with moisture-conditioned reference air for 2 min prior 

to building headspace. The sampling bottle was sealed and volatiles from each meat analyte were 

allowed to build headspace and equilibrate for 30 min prior to each run. Prerun tests were performed as 

needed to determine sample air relative humidity compared with that of reference air. Reference air 

was set at 4% relative humidity at 25 °C. The sampling bottle cap and exhaust port were opened 

between runs to purge the previous sample with conditioned reference air. A reference library 

(recognition file) for off-flavor vs. good flavor meat types was constructed using neural net training by 

defining aroma classes using reference databases of known sample types. This recognition file then 

was used to identify unknown samples. 

2.3. Instrument Configuration and Run Parameters 

Electronic-nose analyses of catfish off-flavor compounds in meat were conducted with an 

Aromascan A32S intrinsically conducting polymer (ICP) e-nose. Eight sensors, (including sensors 11, 

12, 21–26, 31 and 32) that did not respond or contribute to the discrimination of catfish volatiles, were 

turned off. The block temperature was maintained at a constant 30 °C. Reference air was 

preconditioned by passing room air sequentially through a carbon filter, silica gel beads, inline filter, 

and Hepa filter to remove organic compounds, moisture, particulates, and microbes, respectively, prior 

to humidity control and introduction into the sampling bottle. The flow rate of sampled air at the 

sampling port was maintained at 702 cm
3
/min using a ADM 3000 flow meter (Agilent Technologies, 

Wilmington, DE, USA). The instrument was interfaced with a personal computer via an RS232 cable 

controlled with Aromascan Version 3.51 software. The instrument plumbing (reference airflow route 

through the instrument) was altered from conventional architecture and configured for static sampling 

of the headspace by allowing air flow, maintained at 605 cm
3
/min flow rate, to be released out of the 

external vent port of the instrument during analytical runs, and closing the exhaust port on the 

sampling bottle so that headspace volatiles were taken by suction from a homogeneous static air mass 

within the sampling bottle. 

2.4. Data Acquisition Parameters and Run Schedules 

Data from the sensor array were collected at 1 s intervals using a 0.2 detection threshold (y-units), 

a 15–20 y-max graph scale, and with a pattern average of five data samples taken per run during data 

acquisition. A uniform run schedule was used consisting of reference air 20 s, sampling time 90 s, and 

wash 20 s, followed by 90 s of reference air for a total run time of 220 s. A 2 min reference air purge 

was completed between runs after each sample was removed from the sampling bottle. Sensors were 
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rinsed between runs with a 2% isopropanol solution to remove any residual analyte compounds that 

had adsorbed to the surface of individual sensors from the previous analysis. 

2.5. Construction of Reference Libraries and Validation 

A catfish-specific aroma signature reference library was constructed from ten separate meat 

samples from separate catfish. All database files were linked to specific (designated) aroma classes 

defining each sample type or category. All databases were constructed from sensor-array output data 

collected during a 20 s interval, 85–105 s into the run cycle, immediately prior to the closing of the 

reference air valve to the sensor array. The following recognition network options (neural net training 

parameters) were used for each training session: training threshold = 0.60, recognition threshold = 0.60, 

number of elements allowed in error = 5, learning rate = 0.10, momentum = 0.60, error goal = 0.010  

(P = 0.01), hidden nodes = 5, maximum iterations (epochs) = 10,000, using normalized input data, not 

actual intensity data. Some parameters were modified for improvement of recognition accuracy. A 

typical training required 2–35 min, depending on the size of the database applied, using an  

IBM-compatible personal computer with a minimum of 64 Mb of RAM and 350 MHz run speed. 

Artificial neural net (ANN) trainings were validated by examining training results that compare 

individual database files for compatibility or by similarity matches to each specific odor classes by 

test-assigned odor class distributions among related odor classes included in each library. The specific 

detailed analytical methods used for identification of unknowns, data processing, and statistical 

determinations followed the procedures and specifications indicated by Wilson et al. [37]. 

2.6. Statistical Analysis of Sensor-Output Data 

Individual sensor output values from the sensor array were normalized using bell-shaped curve 

statistical analysis algorithms within the data-processing module of the Aromascan Version 3.51 

software. Sensor output values from different samples and replications of each sample type (aroma 

class) were used to determine mean percentage change in electrical resistance values ± one standard 

deviation (SD) for each sensor within the aroma signature pattern (aroma profile) of each aroma class. 

2.7. Principal Component Analysis 

Detailed comparisons of relatedness of odor classes (meat types) were determined using principal 

component analysis (PCA) algorithms provided by the Aromascan 3.51 software. Three-dimensional PCA 

was used to distinguish between headspace volatiles of good-flavor vs. off-flavor catfish meat samples. 

The mapping parameters for three-dimensional PCA were: iterations = 30, units in Eigen values (%), 

and use of normalized input data. The degree of relatedness between meat aroma types was determined 

using three-dimensional PCA of headspace volatiles with each axis (x, y, and z) of the aroma map 

representing a separate principal component of headspace volatiles within sample-analyte mixtures. 

3. Results 

The utilization of filleted meat core samples from fresh pond-raised catfish provided sufficiently 

strong sensor-responses from the A32S e-nose sensor array for effective detections of off-flavor 
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because any additional moisture added to the analyzed headspace was derived from the sample. 
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equilibration methods controlled the sample size releasing volatiles and headspace accumulation. 
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because any additional moisture added to the analyzed headspace was derived from the sample. 
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equilibration methods controlled the sample size releasing volatiles and headspace accumulation. 
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3.2. Detection and Analysis of Off-Flavor in Catfish 

Two distinct aroma classes, good-flavor and off-flavor, were identified from catfish meat samples 

based on electronic aroma signature patterns (aroma profiles) derived from the A32S e-nose sensor 

array. Significant differences in sensor-response intensities were found between good-flavor and  

off-flavor meat samples types (aroma classes) for most sensors used in the analyses (Table 1). 

Individual sensor responses to good-flavor vs. off-flavor aroma classes varied widely within the 2 to 8 

sensor-intensity range with very good precision as indicated by low standard deviations (SD) of mean 

values. Among both sample types, the lowest sensor intensities were recorded for sensors 4–6 and the 

highest intensities occurred for sensors 27–29. Sensors 30 had no response to headspace volatiles of 

meats from either aroma class. Sensor 20 could only detect headspace volatiles from off-flavor meat 

samples. Thus, twenty sensors provided response outputs for both aroma classes. 

Comparisons of the sensor-intensity responses of individual sensors in the sensor array were 

further analyzed using “difference mode” to indicate the intensity differences between good-flavor vs. 

off-flavor sample types, identified as separate aroma classes (Figure 2). Normalized sensor-intensity 

responses (Figure 2A) were greater than raw sensor-intensity values (Figure 2B) measured as 

percentage changes in electrical resistance relative to baseline resistance. Positive differences in 

individual sensor-output intensities, resulting from sensor-output comparisons in “difference mode”, 

indicated that the sensor recorded a higher intensity for good-flavor meat samples than for the  

off-flavor meat samples. Negative differences indicated the opposite result in which the sensor 

recorded a lower intensity for the good-flavor meat samples than for off-flavor samples. Negative 

differences were recorded for sensors 10, 20, and 27 in the sensor array, but these were rare exceptions 

in the data. The largest negative difference between good-flavor and off-flavor sensor outputs in 

“difference mode” occurred for sensor 20 as a result of no output response for this sensor to  

good-flavor headspace volatiles. All other sensors had positive differences in “difference mode”. 

The vast majority (90%) of the differences recorded between good-flavor and off-flavor sensor 

outputs in “difference mode” were positive for 18 out of 20 sensors producing an output, including 

sensors 1–9, 13–19, 28, and 29. The percentage difference in sensor intensities for all positive outputs 

in “difference mode” were less than 0.5%, indicating relatively low variations among individual 

sensors, although cumulative differences between all twenty sensors provided a high level of overall 

difference in the aroma signature patterns (profiles) of good-flavor vs. off-flavor samples types. The 

differences for individual sensors outputs, although small, nevertheless are highly significant given 

that the standard deviations of sensor output responses to headspace volatiles are very low. 
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Table 1. Sensor outputs from the A32S electronic-nose sensor array comparing headspace volatiles released from meat core samples of  

good-flavor and off-flavor catfish based on conducting polymer (CP) analyses. 

 Sensor Number† 

Meat type 1 2 3 4 5 6 7 8 9 10 13 

Off-flavor 4.99 ± 0.04 4.56 ± 0.04 5.18 ± 0.03 2.80 ± 0.01  2.76 ± 0.01 2.81 ± 0.01 5.80 ± 0.01 5.66 ± 0.01 4.87 ± 0.03 4.85 ± 0.05 4.01 ± 0.01 

Good-flavor 5.38 ± 0.01 4.89 ± 0.02 5.52 ± 0.02 2.84 ± 0.01 2.83 ± 0.01 2.84 ± 0.01 5.96 ± 0.01 5.95 ± 0.01 5.00 ± 0.01 4.66 ± 0.01 4.29 ± 0.01 

 Sensor Number† 

Meat type 14 15 16 17 18 19 20 27 28 29 30 

Off-flavor 3.58 ± 0.00 4.25 ± 0.02 3.83 ± 0.01 5.23 ± 0.01 5.33 ± 0.01 5.09 ± 0.01 3.82 ± 0.05 7.40 ± 0.02 6.81 ± 0.03 6.36 ± 0.02 NR 

Good-flavor 3.96 ± 0.01 4.42 ± 0.01 4.15 ± 0.01 5.37 ± 0.01 5.51 ± 0.01 5.25 ± 0.01  NR 7.32 ± 0.02 7.00 ± 0.03 6.83 ± 0.03 NR 

† 
Each sensor in the sensor array was coated with a different intrinsically conducting polymer, (composed of polypyrrole, polyanaline, or polythiophene 

derivatives), modified by proprietary ring-substitutions with different functional groups to impart unique conductive properties (resistance responses to 

VOCs). All conducting polymers were doped with specific metal ions to improve and modulate polymer conductivity and sensor sensitivity. Values for 

each sensor are mean normalized data (transformed from raw data of sensor intensities) expressed as mean ∆R/Rbase% ± SD, derived from ten sample 

replications per sensor type. NR indicates no sensor response was produced or recorded for this meat type (aroma class). All sensor values for off-flavor vs. 

good-flavor meat types (for each sensor) were significantly different at the P < 0.001 level of significance, except for numbered sensors with NR. 
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Figure 2. Aroma sensor responses of the A32S sensor array in difference mode. Sensor 

response percentage differences in e-nose sensor output intensities of individual numbered 

sensors are indicated for headspace volatiles of good-flavor minus off-flavor catfish meat 

samples presented as (A) bar graph (indicating differences in normalized sensor values) 

and (B) line-graph (indicating percent changes in sensor resistance responses relative to 

baseline resistance). Sensor element numbers represent individual numbered sensors in the 

e-nose sensor array. 

 

Three separate trials (batches) of catfish meat samples were run to test the efficacy of aroma class 

discrimination between the good-flavor and off-flavor meat sample types. The Aromascan A32S 

electronic nose provided consistent correct identifications for the majority of the samples tested in 

three trials based on differences in sensor-array responses to headspace volatiles (Table 2). The 

instrument correctly identified individual catfish meat cores at rates ranging from 90.7%–98.8% for 

off-flavor samples and 95.3%–98.5% for good-flavor samples among the three trials. Only one  

off-flavor sample from trial 3 could not be identified. For these unidentified samples, the ANN 

algorithm could not assign the aroma profile to a majority aroma class present in the reference library. 

Other samples that were not conclusively identified, consisting of 20% of the good-flavor samples in 

trial 2 and 15% of off-flavor samples in trial 3, were classified as indeterminant or inconclusive due to 

unexplained variations in aroma profile patterns between replications, resulting in only a 65.8% to 

67% match with the correct aroma class. Generally, a good statistically valid aroma class determination 
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with good confidence (P < 0.10) requires that an unknown sample has an aroma class match of at least 

90% with the aroma elements of a known aroma class in the reference library. 

Table 2. Conducting polymer analysis tests of the capability of the AromaScan A32S  

e-nose to identify and discriminate between good-flavor vs. off-flavor catfish meat cores. 

Trial Meat Type n 
Correctly 

Identified 
1 Indeterminant 

2
 

Unknown 

Determination 
3 

Aroma Class 

Match 
4
 

1 Off-flavor 10 100.0 0.0 0.0 98.2 

 Good-flavor 10 100.0 0.0 0.0 98.5 

2 Off-flavor 10 100.0 0.0 0.0 98.8 

 Good-flavor 10 80.0 20.0 (65.8) 0.0 95.3 

3 Off-flavor 20 80.0 15.0 (67.0) 5.0 (51.2) 90.7 

 Good-flavor 10 100.0 0.0 0.0 97.3 
1
 Percentage of catfish meat samples that were correctly identified. 

2
 Percentage of unknown catfish meat 

samples for which a percentage match to a single aroma class was not high enough to make a clear 

identification. Values in parentheses indicate the mean percentage match determined from among all samples 

placed into this determination category. 
3
 Percentage of unknown catfish meat samples for which data from 

the sensor array could not assign a match to any aroma class. Values in parentheses indicate the mean 

percentage match determined from among all samples placed into this determination category. 
4
 Mean 

percentage match of unknown catfish meat core samples to the correct aroma class identity. 

A large proportion (91.4%) of all catfish fillet unknowns from three trials was correctly identified to 

the proper aroma class. The lowest level (90.7%) of correct identifications that occurred with off-flavor 

meat samples (in trial 3) were above the statistical level required for a confident determination. All 

other trial tests for both good-flavor and off-flavor meat types were well above the statistical level 

necessary for confident determinations. These levels of discriminations were achieved with a sampling 

rate of ten to twenty replications per unknown meat type in each trial. 

3.3. Principal Component Analysis 

The analysis of headspace volatiles from good-flavor vs. off-flavor catfish samples using  

3-dimensional PCA indicated significant differences between these two sample groups based on 

sensor-response patterns (aroma profiles). The differences between the aroma profiles of off-flavor vs. 

good flavor catfish (aroma classes) based on PCA, was graphed in the form of an aroma map  

(Figure 3).Three separate data clusters were identified on the PCA aroma map for trial 1. Data clusters 

A and B were clearly identified as belonging to the off-flavor catfish aroma class. Data cluster C was 

identified as members of the good-flavor catfish aroma class. Samples belonging to data cluster A had 

a very strong earthy, off-flavor odor, whereas samples in data cluster B exhibited a weak off-flavor 

aroma. Samples from data cluster C had no noticeable off-flavor aroma that could be easily detected 

by the human nose. There was only one out-lying good-flavor sample that did not fit within data 

cluster C. Very similar data-clustering groups and results were found for trials 2 and 3 analyses. 

The percentages of the total variance for this analysis, accounting for the variability explained by each 

orthogonal principal component (PC), were as follows: PC 1 = 89.9%; PC 2 = 8.8%; and PC 3 < 0.5%, 

representing the x-, y-, and z-axis of the aroma map, respectively. Thus, a high proportion (98.7%) of 
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the variation was explained by the first two principal components (PC 1 and PC 2). Almost all of the 

data points for individual samples of each aroma class (good-flavor and off-flavor) were closely 

clustered for most sample replicates on the aroma map. 

Figure 3. Aroma map of headspace volatiles from good-flavor vs. off-flavor catfish meat 

samples (aroma classes) based on principal component analysis (PCA). The percentages of 

the total variance, accounting for the variability explained by each orthogonal principal 

component (PC), are as follows: PC 1 = 88.9%, PC 2 = 8.8%, and PC 3 < 0.5%. The 

Quality Factor (QF) value of significant difference between the aroma profiles of good-flavor 

vs. off-flavor catfish meat samples was QF = 7.922, indicating a significant statistical 

difference between these two aroma classes at P < 0.05. 

 

The statistical level of difference between sensor array output pattern of headspace volatiles from 

good-flavor vs. off-flavor aroma classes were determined using a statistical algorithm called Quality 

Factor (QF) analysis that determines statistical distances between aroma profiles of aroma classes, 

measured using Euclidean distance units. The greater the QF value determined from headspace 

volatiles, the greater the difference (or distance) between the aroma signature profiles of the two 

aromas being compared. A QF value of 2.0 is roughly equivalent (in statistical terms) to a statistical 

difference at P = 0.10 level of significance. The QF value determined between the headspace volatiles 

of the off-flavor vs. the good flavor aroma class was 7.92, indicating good discrimination between the 

two classes at a statistical difference of P < 0.05 level of significance. This QF value indicates that 

these two aroma classes were distinguished with a high level of confidence and that some of the 

chemical components of the headspace mixtures of these two aroma classes are not chemically related. 

Even though cluster groups B (off-flavor) and cluster group C (good-flavor) are in close proximity, 

there is still sufficient differences among some of the compounds present in the headspace of the  

off-flavor aroma class that are not present in the good-flavor aroma class. 
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4. Discussion and Conclusions 

The Aromascan A32S e-nose provided strong sensor responses to headspace volatiles from fresh 

catfish meat samples. These results suggest that the time allowed for building headspace volatiles prior 

to analytical runs might be significantly reduced from 30 min without an appreciable loss of signal 

strength. Individual sensor outputs derived from CP-analysis of headspace volatiles from catfish core 

samples were diffuse and well separated, similar to those produced from analyses of headspace volatile 

metabolites from bacteria, but at lower relative intensities [37]. This divergence of signal outputs from 

individual sensors suggests the presence of complex mixtures of oxidized polar compounds, such as 

carboxylic acids and phenolic compounds, characteristic of accumulated metabolic products common 

in dead animal tissues such as meats [38]. 

The most likely chemical compounds responsible for differences in aroma profiles between  

good-flavor and off-flavor catfish aroma classes have been identified previously. The two  

chemical compounds most frequently associated with off-flavor in catfish meat are geosmin  

(1,10-trans-dimethyl-trans-(9)-decanol) and 2-methylisoborneol (MIB) [39,40]. Geosmin and MIB are 

secondary metabolic products of certain species of bluegreen and filamentous actinomycete-type 

bacteria (prokaryotes), originally believed to be algae and primitive fungi (eukaryotes) [41]. These 

compounds are extremely potent and can be tasted in water by humans at concentrations of 0.01 and 

0.03 parts per billion (ppb), respectively [4]. The human gustatory (taste) and trigeminal sensory 

threshold concentrations for the detection of these compounds in channel catfish meat was previously 

reported as 8.5 ppb for geosmin and 0.8 ppb for MIB [42,43]. The human olfactory (smell) threshold 

for detection of off-flavor apparently is somewhat higher, precluding the consistent detection of low to 

moderate levels of off-flavor by trained assessors before processing [41]. This human limitation makes 

olfactory detection subjective, prone to error, and more difficult to quantify than for more sensitive 

electronic sensor devices. 

Previous studies utilizing electronic-nose devices in catfish meat analyses have been very limited. 

Korel et al. [41] tested the capability of the e-Nose 4000 (EEV Inc., Elmsford, NY, USA) in 

combination with meat color changes to detect the presence of bacterial spoilage of catfish fillets 

during cold storage. Most other electronic-nose studies of fish spoilage have involved analysis of 

various seafood meats to detect the presence of specific types of strong off-odor and off-flavor VOCs 

resulting from the degradation of particular meat chemical components. Many of these analyses have 

been described in excellent reviews [5,44]. Total volatile basic amines (TVBAs) are among the most 

widely used chemical indicators of seafood quality. These include trimethylamine and dimethylamine 

produced by the autolytic enzymes of spoilage bacteria during frozen storage, ammonia produced by 

the deamination of amino-acids and nucleotide catabolites, and other volatile basic nitrogenous 

compounds associated with seafood spoilage [5]. Pacquit et al. [45] developed a volatile amine e-nose 

sensor to monitor fish spoilage. Ammonia is formed by the bacterial degradation/deamination of 

proteins, peptides and amino acids, and by the autolytic breakdown of adenosine monophosphate 

(AMP) in chilled seafood products. Ammonia has been found to be an excellent indicator of squid 

quality [46]. Trimethylamine is a pungent volatile amine associated with the typical “fishy” odor  

of spoiling seafood and results from the bacterial reduction of trimethylamine oxide (TMAO), 

naturally present in the living tissues of many marine fish species [5]. The enzyme TMAO dimethylase 
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(TMAO-ase) converts TMAO into equimolar quantities of DMA and formaldehyde (FA). DMA is 

produced with FA in the meat of fish in the cod (gadoid) family during frozen storage. Dimethylamine 

is produced autolytically during frozen storage. Fish muscle tissue supports bacterial formation of a 

wide variety of amine compounds which result from the direct decarboxylation of amino acids. Most 

spoilage bacteria produce decarboxylase enzymatic activity in response to acidic pH conditions in 

meats. TVBAs presumably are formed by these spoilage microbes to raise the pH in order to create 

more favorable conditions for microbial growth. Other volatile amines include histamine, putrescine, 

cadaverine and tyramine, produced from the decarboxylation of histidine, ornithine, lysine and 

tyrosine amino acids, respectively. Histamine has received most of the attention since it has been 

associated with incidents of scombroid poisoning in conjunction with the ingestion of tuna, mackerel, 

mahi-mahi (dolphin fish) in Hawaii [47–49]. The unsaturated fatty acids found in fish lipids also are 

highly susceptible to oxidation to produce primarily lipid hydroperoxide oxidation products. The 

capability of e-noses to detect toxins and other detrimental microbial metabolites in foods provides 

another useful application for food safety and disease prevention [50,51]. 

The use of PCA to generate an aroma map of good-flavor vs. off-flavor aroma classes revealed 

three separate data clusters based on differences in aroma profiles with most of the variation 

represented by only two principal components represented by the x- and y-axes. The occurrence of the 

strongly off-flavor data cluster A at significant Euclidean distances from the strongly good-flavor data 

cluster B showed well separation of samples types at the extremes of aroma class sample types. 

However, the occurrence of data cluster B was interpreted as indications of catfish fillets that 

contained mostly good flavored aroma elements, but were contaminated by low-levels of off-flavor 

compounds that rendered the e-nose determination of off-flavor due to sufficient differences generated 

by the apparent detection of these abnormal malodorous compounds at low concentrations in the meat. 

Low-level detections of off-flavor compounds in some fillets are viewed as equivalent to incipient 

detections when off-flavor compounds are just beginning to accumulate in the meat tissue. These data 

provide evidence that the e-nose has the capability of detecting off-flavor in catfish meat at early 

stages of contamination. Such samples found in cluster B data were not the same as in-determinant 

samples because the e-nose clearly distinguished these samples as off-flavored at good levels of 

statistical confidence. 

There are at least two major potential applications of e-nose instruments to help manage and 

mitigate off-odor and off-flavor meat problems associated with commercial catfish production. First, 

portable e-nose instruments could be useful to detect and manage the preharvest occurrences of  

off-flavor in live fish within catfish ponds. The e-nose monitoring of off-flavor incidence in catfish by 

the periodic random sampling of catfish in individual ponds could be used for the early detection of  

off-flavor before it builds up to unmanageable levels. Early detection of off-flavor in catfish ponds 

allows the application of water-management methods to control the build-up of aquatic microbes 

causing off-flavor before off-flavor compounds began to accumulate within the meat of preharvest 

catfish. Once the treatment of pond water resources are maintained at sufficient levels of quality, the 

fish could then be continuously monitored over to time to determine when all traces of off-flavor have 

disappeared from the fish population in each pond prior to harvest. This process could minimize 

economic losses to the fish producer by reducing the incidence of catfish off-flavor in the final harvest. 

Secondly, e-nose devices could be used in the post-harvest meat-production and processing steps for 
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quality control to effectively screen individual fresh catfish fillets for the presence of off-flavor 

compounds that essentially render affected fish fillets unmerchantable. This screening protocol could 

facilitate the culling of unsalable meats to assure that only the highest quality product is sold to fish 

suppliers in commercial meat markets. The use of effective quality assurance and quality control  

(QA-QC) procedures using e-nose devices could help maintain a producer’s high-quality product and 

associated buyer’s brand recognition. 

The current study has provided evidence to demonstrate that the CP Aromascan A32S e-nose has 

the capability to effectively discriminate between good-flavor and off-flavor in catfish fillets. 

However, the application of similar e-nose instruments to commercial production of catfish fillets 

would require the use of portable devices with much shorter analysis and recovery times in order to 

screen fillets with sufficient speed for rapid modern meat-production lines when fish are not 

prescreened in cultivation ponds prior to harvest. This could be achieved with the use of MOS sensors 

that not only provide faster recovery times, but also have much longer sensor lives than CP e-nose 

devices [7]. Once additional research has solved logistic problems associated with these technologies, 

e-nose instruments ultimately may serve as very effective tools for the screening and quality control 

(QC) of catfish fillet production. These methods should be equally applicable to other fish species and 

for screening for other parameters of fish quality controls such as age of meats (shelf-life), presence of 

human pathogens, contaminations with toxic chemicals, assurance of fish species being sold, and other 

aroma-based measures of meat quality. The detection of VOCs from biota sources associated with 

decaying strawberries [52], a fungal biological control agent [53], and components affecting feedstuff 

quality [54] were reported recently. 
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