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Abstract: Long-term monitoring of regional and global environment changes often 

depends on the combined use of multi-source sensor data. The most widely used vegetation 

index is the normalized difference vegetation index (NDVI), which is a function of the red 

and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from 

different satellite sensor systems will not be directly comparable due to different spectral 

response functions (SRF), which has been recognized as one of the most important sources 

of uncertainty in the multi-sensor data analysis. This study quantified the influence of 

SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation 

satellite sensors. For this purpose, spectroradiometric measurements were performed for 

paddy rice grown under varied nitrogen levels and at different growth stages. The rice 

canopy reflectances were convoluted with the spectral response functions of various 
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satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. 

NDVI values were then calculated using the simulated red and NIR reflectances.  

The results showed that as compared to the Terra MODIS, the mean relative percentage 

difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to 

−0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute 

percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% 

for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for 

the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was 

observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR 

reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS 

and the other 30 satellite sensors was observed for IKONOS for the red reflectance, 

AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI.  

The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences 

than did the other sensors with respect to MODIS. A series of optimum models were 

presented for remote sensing data assimilation between MODIS and other sensors. 

Keywords: canopy reflectance; NDVI; spectral response function; sensor simulation; 

cross-calibration  

 

1. Introduction 

In the past several decades, satellite remote sensing has played a vital role in providing up-to-date and 

detailed information for monitoring atmospheric and terrestrial environments at the regional, 

continental, and global scales. Such information is typically generated based on remotely sensed images 

processed into spectral vegetation indices [1,2]. Among the various spectral vegetation indices derived 

from remotely sensed imagery, one of the most widely used vegetation indices is the normalized 

difference vegetation index (NDVI), which is defined as the difference between the red and 

near-infrared (NIR) reflectance divided by their sum [3,4]. Previous studies showed that NDVI is 

strongly related to the fraction of absorbed photosynthetically active radiation (FPAR) [5,6], leaf area 

index (LAI) [7], and net primary production (NPP) [8–11]. NDVI has also been used in a range of 

applications including the study of vegetation–climate interactions [12–14], detection of long-term 

vegetation changes [15,16], assessment of vegetation functional characteristics [17–19] and modeling of 

the global carbon balance [10,20]. Furthermore, NDVI time series data has been successfully used in a 

variety of applications, including global change investigations, phenological studies, crop growth 

monitoring and yield prediction, drought and desertification monitoring, wildfire assessment, and 

climatic and biogeochemical modeling. 

Since the launch of the National Oceanic and Atmospheric Administration (NOAA) satellites in 

1970s, a large amount of invaluable and irreplaceable data sets have been available for global vegetation 

monitoring [21]. The Advanced Very High Resolution Radiometer (AVHRR) sensors onboard the 

NOAA satellites have provided one of the most extensive time series of remotely sensed data and 

continue to produce daily information regarding surface and atmospheric conditions [22]. Recently, the 
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Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua, designed 

to succeed the AVHRR instrument, has been of great importance for monitoring ecosystem variability 

and responses to seasonal and inter-annual environmental changes due to the improvement of both the 

temporal and spectral resolution relative to AVHRR. Sensors of this type, such as NOAA-AVHRR and 

EOS-MODIS, are appropriate for obtaining time-series data and provide more opportunities for 

acquiring cloud-free images by the use of composite images collected within a short period, although 

they are unable to avoid the influence of frequent heavy cloud cover. Many studies have demonstrated 

the application of these sensors to obtain large-area land-cover information [2,23–29]. Sensors of the 

other type, such as the Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) onboard Landsat,  

the High Resolution Visible/High Resolution Geometric (HRV/HRG) onboard Satellite Pour 

l’Observation de la Terre (SPOT), the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) onboard Terra and the charge-coupled device (CCD) onboard the China Brazil 

Earth Resources Satellite (CBERS), have a relatively high spatial resolution, but small coverage and 

long revisit period. These instruments are appropriate for obtaining only detailed local information due 

to incomplete spatial coverage, infrequent temporal coverage with inevitable cloud contamination and 

the associated large data volumes or high costs that are not feasible for programs operating at a large 

geographical scale [2]. 

As a result of the ever-increasing number of Earth observation satellite systems, the user community 

now has access to an extensive global record of multi-sensor NDVI composites for application in 

biophysical monitoring and climate change modeling. Many users have found that often a combination 

of all available sources is more useful, as each imaging system has a different length of record as well as 

varied spatial, temporal, and radiometric characteristics [30]. Although the use of multi-sensor data can 

help to fill gaps in spatial and temporal coverage, differences between sensor characteristics can hinder 

the successful integration of multi-sensor datasets. Therefore, to make effective use of the long-term 

observation records, there has been an effort to investigate data continuity and compatibility due to 

drifts in calibration, filter degradation, and variations in band locations or bandwidths [31–34]. Despite 

these efforts, the inter-sensor VI continuity issue has remained critical and complicated. The main 

difficulties in the use of multi-sensor reflective spectra and NDVI time series for operational global 

vegetation studies arise from differences in the following: orbital overpass times [35], geometric, 

spectral, and radiometric calibration errors [36–41], atmospheric contamination [42,43], and directional 

sampling and scanning systems [44,45]. The combination of some of these factors can mitigate or 

exacerbate the resulting variations in solar reflective spectra [46].  

In addition to the aforementioned factors, one of the most important senor characteristics, the relative 

spectral response function (SRF), varied among different sensors. This variation has a significant effect on 

the continuity of multi-sensor monitoring of global vegetation [30,47–55]. Therefore, many studies have 

focus on this “spectral issue”. For example, Teillet et al. [38] demonstrated the effects of changes in the 

relative spectral response on NDVI derived from AVIRIS data for a forested region in southeastern 

British Columbia. The results indicated that the NDVI is significantly affected by differences in the 

spectral bandwidth, especially for the red band, and that changes in the spatial resolution lead to less 

influential but more specific land cover effects on NDVI. Trishchenko et al. [52,53] investigated the 

sensitivity of the surface reflectance and NDVI to variations in the relative spectral response functions 

for moderate resolution satellite sensors, including various AVHRRs, MODIS, Vegetation sensor 
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(VGT) and Global Imager (GLI). The results showed that the NDVI and reflectance were sensitive to the 

SRF. The significant difference in the reflectance can range from −25% to 12% for the red band and 

−2% to 4% for the NIR band among the “same type” AVHRR series sensors on various NOAA satellites, 

and even greater differences were observed for inter-comparisons of other sensor (AVHRR, MODIS, 

VEGETATION, and GLI). Gonsamo and Chen [46] evaluated the SRF cross-sensor comparability in the 

red, NIR, and SWIR reflectances, as well as the NDVI generated from large data sets representing a 

wide range of vegetation distributions and provided land cover independent SRF cross-sensor correction 

coefficients among 21 Earth observation satellite sensors. Agapiou et al. [56] compared the spectral 

sensitivity of different satellite images based on the relative spectral response function of each sensor, 

including ALOS, ASTER, IKONOS, Landsat 7-ETM+, Landsat 4-TM, Landsat 5-TM and SPOT 

5-HRV. The results have showed that all the other sensors showed similar results and sensitivities except 

IKONOS. This difference for IKONOS sensor might be a result of its spectral characteristics (i.e., the 

SRF). The results indicated that reflectances and NDVI from different satellite sensors cannot be 

regarded as directly equivalent. 

Previous studies have typically focused on specific sensors, such as MODIS, AVHRR and 

TM/ETM+, whereas considerably less attention has been given to sensors such as CBERS CCD and 

HJ1-A/B CCD. Furthermore, few inter-calibration studies have designed for some specific crop types, 

e.g., paddy rice for remote sensing of crop management. Paddy rice fields make up over 11% of global 

cropland area [57]. Since paddy rice is grown on flooded soils (irrigated and rained), water resource 

management is a major concern. Seasonally flooded rice paddies have also been recognized as an 

important source of methane emissions, contributing over 10% of the total methane flux to the 

atmosphere, which may have a major impact on world climate [58,59]. Therefore, we collected rice 

canopy spectra from field experiments so as to address the aforementioned need and quantify the 

influence of the sensor spectral response function on the red and NIR reflectances and NDVI  

derived from 31 Earth observation satellite sensors, including CBERS CCD and HJ1-A/B CCD. For this 

purpose, several rice canopy spectra were obtained from two field experiments using different nitrogen 

levels, different species, and different transplanting dates during the rice growing season. To simulate 

the red and near infrared reflectances, the rice canopy spectra were convoluted with the spectral response 

functions of 31 Earth observation satellite sensors. NDVI values were then calculated using the 

simulated red and NIR reflectances. We also characterized the differences in the red reflectance,  

NIR reflectance and NDVI between MODIS and the other aforementioned sensors and investigated 

cross-sensor relationships of the NDVI as well as the red and NIR reflectances relative to MODIS.  

The outcomes of this study will help users to understand the differences in spectral information and 

provide cross-sensor relationships for detecting spatial and temporal variations in rice crops based on 

the use of multi-sensor data. 

2. Materials and Methods 

2.1. Field Experiments 

The experiments were performed in 2002 and 2004 at a study site located at the Zhejiang University 

Experiment Farm, Hangzhou, Zhejiang Province, China (30°14'N, 120°10'E). The climate of this area is 

dominated by monsoon conditions with a hot summer and cool winter and with marked seasonal 
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variations in precipitation. The average annual rainfall was 1,374.7 mm, and the average annual 

temperature was 17.8 °C. The soil at the study site was sandy loam paddy soil with a pH of 5.7,  

an organic matter content of 16.5 g·kg
−1

, and a total N content of 1.02 g·kg
−1

.  

In 2002, the experiment field comprised 60 plots in which different rice cultivars (Xiushui 110, Jiayu 

293, Jiazao 312, Z00324 and Xieyou 9308) were sown on 2 June in a completely randomized block 

design with four replicates (Figure 1). The Xieyou 9308 cultivar was a hybrid rice, whereas the others 

were common rice. Jiayu 293, Jiazao 312, Z00324 and Xieyou 9308 were indicia rice, and Xiushui 110 

was japomica rice. The three different levels of N fertilization including no fertilizer (0 kg·ha
−1

),  

a normal application rate (120 kg·ha
−1

), and a superabundant dose of urea (240 kg·ha
−1

)were applied in 

the proportions of 45% base fertilizer, 35% tillering fertilizer, and 20% heading fertilizer for each 

cultivar. In addition, 533.3 kg of Ca(H2PO4)2 ha
−1 

was applied as a base fertilizer with 300 kg of  

KCl ha
−1

 as a heading fertilizer. 

Figure 1. Field plot configuration of the paddy rice experiment for different nitrogen levels 

and species in 2002. S1, S2, S3, S4, and S5 represent Xiushui 110, Jiayu 293, Jiazao 312, 

Z00324, and Xieyou 9308, respectively. N0, N1, and N2 represent 0 kg·ha
−1

, 140 kg·ha
−1

, 

and 240 kg·ha
−1

 of pure nitrogen, respectively. 

  

In 2004, the experiment field was consisted of 48 plots of size 4.6 m × 5.46 m. One half of the plots 

were used for the first experiment and the remaining plots were used for the second experiment  

(Figure 2). Each experiment involved four replicates of two rice cultivars (Xiushui 110 and Xieyou 

9308), and the plant density was 45 plants m
−2

. The first experiment was seeded on 30 May 2004 and the 

second experiment was seeded on 15 June 2004. Both seedling sets were transplanted to the field one 

month later. Nitrogen levels and all treatments were identical to the 2002 experiment. 
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Figure 2. Field plot configuration of the paddy rice experiment for different nitrogen levels, 

species and transplanting dates in 2004. S1, S2, S3, S4, and S5 represent Xiushui 110,  

Jiayu 293, Jiazao 312, Z00324, and Xieyou 9308, respectively. N0, N1, and N2 represent  

0 kg·ha
−1

, 140 kg·ha
−1

, and 240 kg·ha
−1

 of pure nitrogen, respectively. 

  

2.2. Canopy Reflectance Measurement 

Canopy reflectance measurements were performed under clear-sky conditions at approximately 

midday (10:00–14:00 LST) using an Analytical Spectral Devices Full Range Spectroradiometer 

(FieldSpec-FR, ASD, Boulder, CO, USA) during the growing stage, including the early tillering stage, 

peak tillering stage, gestation stage, heading stage, milky stage and ripening stage.  

The spectral range and the field of view of the sensor were 350–2,500 nm and 25°, respectively.  

The sampling interval over the 350–1,000 nm range is 1.4 nm with a resolution of 3 nm, and over the 

1,000–2,500 nm range the sampling interval is about 2 nm and the spectral resolution is 10 nm. Fieldspec 

can acquire both radiance and reflectance data. The reflectance factor of the target is automatically 

calculated by the instrument as the ratio between the incident radiation, reflected from the surface target, 

and the incident radiation reflected by a BaSO4 white reference, which is regarded as a Lambertian 

reflector (the reflectance factor will be called ‘reflectance’ throughout the whole present manuscript. 

Reflectance spectra were collected from a distance of 1.0 m vertically above the canopies with a field of 

view of 25°. A single reflectance measurement was obtained as the average of 10 scans to minimize 

instrumental noise. 

In 2002 spectra were collected on eight dates at distinctive growth stages (17, 23, 30 July, 5, 22, 31 

August, 20 September and 3 October) for all experimental field plots. In 2004 measurements were 

acquired using the same scheme described above on six dates (20 July, 8, 28 August, 22 September and 

5, 24 October) during the rice growth stages. For example, the spectral reflectances of the rice canopy at 
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the N1 level of N fertilization at different growth stages in 2002 are shown in Figure 3. As expected, the 

reflectance spectra of the canopy were significantly different among the various growth stages. 

Figure 3. Average reflectances of the rice canopy at the N1 level of N fertilization at 

different growth stages in 2002. 

 

2.3. Satellite Sensors and Their Relative Spectral Response Functions  

This study included the evaluation of both high and very high spatial resolution multispectral  

satellite sensors. Satellite images acquired from these sensors are often used for the detection of 

vegetation dynamics. Table 1 shows the spectral and spatial characteristics of the satellites sensors used 

in this study. 

Table 1. Characteristics of satellite sensors used in this study. 

Satellite  

Sensor 
Launch Date 

Revisit Time 

(Days) 

Spectral Range (µm) Spatial Resolution GSD 

at Nadir (Meters) Red  Near IR  

NOAA7 AVHRR2 1981/6/23 1 0.58–0.68 0.725–1.00 1,100 

NOAA8 AVHRR1 1983/3/28 1 0.58–0.68 0.725–1.10 1,100 

NOAA9 AVHRR2 1984/12/12 1 0.58–0.68 0.725–1.00 1,100 

NOAA10 AVHRR1 1986/9/17 1 0.58–0.68 0.725–1.10 1,100 

NOAA11 AVHRR2 1988/9/24 1 0.58–0.68 0.725–1.00 1,100 

NOAA12 AVHRR2 1991/5/13 1 0.58–0.68 0.725–1.00 1,100 

NOAA14 AVHRR2 1994/12/30 1 0.58–0.68 0.725–1.00 1,100 

NOAA15 AVHRR3 1998/5/13 1 0.58–0.68 0.725–1.00 1,090 

NOAA16 AVHRR3 2000/9/21 1 0.58–0.68 0.725–1.00 1,090 

NOAA17 AVHRR3 2002/6/24 1 0.58–0.68 0.725–1.00 1,090 

LANDSAT4 TM 1982/7/16 16  0.63–0.69 0.76–0.90 30 

LANDSAT5 TM 1984/3/1 16  0.63–0.69 0.76–0.90 30 

LANDSAT7 ETM+ 1999/4/15 16  0.63–0.69 0.76–0.90 30 

LANDSAT4 MSS 1982/7/16 16 0.60–0.70 0.70–0.80 82 

LANDSAT5 MSS 1984/3/1 16 0.60–0.70 0.70–0.80 82 
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Table 1. Cont. 

Satellite  

Sensor 
Launch Date 

Revisit Time 

(Days) 

Spectral Range (µm) Spatial Resolution GSD 

at Nadir (Meters) Red  Near IR  

SPOT1 HRV 1986/2/22 26 0.61–0.68  0.78–0.89  20 

SPOT4 HRVIR 1998/3/24 26 0.61–0.68  0.78–0.89  20 

SPOT5 HRG 2002/5/4 26 0.61–0.68 0.78–0.89 10 

CBERS02 CCD 2003/10/21 26 0.63–0.69 0.77–0.89 19.50  

CBERS02B CCD 2007/9/19 26 0.63–0.69 0.77–0.89 20 

HJ-1A CCD1 2008/9/6 4 0.63–0.69 0.76–0.90 30 

HJ-1A CCD2 2008/9/6 4 0.63–0.69 0.76–0.90 30 

HJ-1B CCD1 2008/9/6 4 0.63–0.69 0.76–0.90 30 

HJ-1B CCD2 2008/9/6 4 0.63–0.69 0.76–0.90 30 

IKONOS 1999/9/24 3–4 0.632–0.698  0.757–0.853 4 

QuickBird 2001/10/18 1–3.5 0.63–0.69 0.76–0.90 2.44  

Terra ASTER 1999/12/18 1–2 0.63–0.69 0.76–0.86 15 

ALOS AVNIR2 2006/1/24 46 0.61–0.69  0.76–0.89 10 

KOMPSAT2 2006/7/28 14 0.63–0.69 0.76–0.90 4 

GEOEYE_1 2008/9/6 2–3 0.655–0.690 0.78–0.92 1.65  

MODIS 1999/12/18 1–2 0.62–0.67 0.841–0.876 250–1,000 

The spectral characteristics of the sensor could be characterized by the relative spectral response 

function (SRF) for each band, which is defined as the ratio of the output signal to the incident flux as a 

function of wavelength, normalized to the peak value of unity [60]. The SRF indicates the relative 

sensitivity of a sensor to incoming energy at each wavelength. The relative spectral response function 

can be described by three key factors, i.e., the center wavelength (CWL), the full width at half the 

maximum (FWHM), and the shape. The entire set of band SRFs determines the spectral performance of 

the radiance data. The FWHM, also called bandwidth, indicates the spectral resolution capability of the 

detector. The SRF shape varies depending on the manner that the sensor disperses and detects the 

incident light. Sensor models characterize the process converting the spectral response of the land 

surface-atmosphere system into digital numbers, and the SRF is one of the most important components 

of sensor modeling system [61]. 

The relative spectral response functions of the red and NIR channels for the different sensors used in 

this study are shown in Figure 4 and Table 1. These sensors include NOAA7-17AVHRRs, SPOT HRV, 

Landsat TMs, ETM+, MSS, HJ1A/B CCDs, CBERS CCDs, IKONOS, QuickBird, and ALOS 

AVNIR2. The SRFs were obtained from the operator’s website or by personal communication.  

Though similar, these curves differ in their shape, central wavelength location, bandwidth, and degree of 

overlap between channels, especially with respect to the transition from the chlorophyll absorption band 

to the foliage reflection band (0.68–0.72 μm). The spectral response functions of the sensors vary from 

one another, especially in the NIR region. 
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Figure 4. Relative spectral response functions of the red and NIR channels for the sensor 

systems simulated in this study.  

 

 

A comparison of the spectrally matched bands between MODIS and other sensors indicated that the 

spectral ranges of the MODIS red and NIR channels are much narrower than those for the other sensors 

and have no overlap with each other over the vegetation transition band (Figure 4). It was clearly evident 

that the gap between the red and NIR band of MODIS was wider than the gap between the red and NIR 

band of the other sensors, even where an overlap exists. Thus, the other sensor bands are closer to the red 

edge relative to MODIS. It was noted that the Landsat TMs, SPOT HRVs and NOAA AVHRRs 

response curves varied depending on the version of the instrument that was employed. The bandwidths 

of the Landsat7 ETM+ channels are narrower than those of TM on Landsat4 and 5. A similar result was 
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also found for the new instrument AVHRR3 onboard NOAA15, 16 and 17. The channels of the new 

AVHRR3 instrument have narrower bandwidths and a much smaller overlap over the vegetation 

transition band than do the other AVHRRs. This indicated that a direct comparison of spectral 

reflectance or vegetation indices produced by various sensors should be performed with caution.  

2.4. Bandpass Target Reflectance Simulation 

Some sensor simulation methods take into account both the spectral and spatial differences of the 

sensor [62]. In this study, our objective was to assess the spectral band differences solely caused by 

different spectral response functions without considering atmospheric intervention. Moreover, the only 

variation in the simulation based on the same spectra was the spectral response function of the sensor, 

and this is the only parameter that enables us to compare the different sensors. 

To simulate the multiple bands from hyperspectral bands, the reflectance of the narrow hyperspectral 

bands must be convoluted with the spectral response function of each band that simulates the bands of 

the satellite sensors. Prior to simulation, each hyperspectral central wavelength was linked with the 

mean SRF value (in the range of the full width half maximum (FWHM) of the hyperspectral band) of the 

simulated band. This approach was similar to the method proposed by Franke et al. [63]. The equation 

for simulating the reflectance of the sensor can be expressed as follows: 

 
   

 

1

2

1

2

ρ λ R λ dλ
ρ λ =

R λ dλ












 (1) 

where       is the simulated reflectance value for a given sensor,      is the target reflectance 

observed at a specific wavelength   ,      is the spectral response function value at a specific 

wavelength  . The spectral response function was integrated with the target reflectance to generate the 

band pass value. A set of paddy rice spectra that encompassed a range of variability in the surface 

reflectance was used in this computation. The band average values for the red and NIR bands were 

computed using Equation (1). 

The normalized difference vegetation index was then calculated as follows: 

ρ - ρ
NDVI=

ρ ρ

NIR red

NIR red


  (2) 

where                  are the bandpass reflectances in the red and NIR channels, respectively.  

A comparison between the band average reflectance for various targets was performed to quantify the 

effect of different SRFs in various sensors.  

2.5. Comparison of Reflectance and NDVI between MODIS and Other Sensors 

A comparative analysis of the red/near-infrared reflectance and NDVI for various sensors was 

performed using two statistical measurements namely, the relative percentage difference (RPD) and 

absolute percentage difference (APD). The computations were conducted for different sensors with the 

MODIS sensor as a reference, and the following formula was used to compute the RPD and APD: 
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RPD= 100%i MODIS

MODIS

 



  (3) 

APD 100%i MODIS

MODIS

 




   (4) 

However, it was not clear whether the differences in the reflectance and NDVI between MODIS and 

the other sensors were statistically significant. Thus, a paired Student t test was used to compare the 

differences in the reflectance and NDVI between MODIS and the other sensors in this study.  

3. Results and Discussion 

The simulated reflectances for the 31 different satellite sensors were calculated to quantify the 

influence of the varying spectral response functions on the target reflectance in the red band, NIR band 

and NDVI. The effects of the SRF on the reflectance in the red and NIR channels and NDVI were then 

evaluated based on RPD and APD with respect to the MODIS values.  

3.1. The Effect of the SRF on the Reflectance in the Red Channel 

The minimum, maximum and mean values as well as the standard deviation of the red reflectance for 

various satellite sensors simulated using paddy rice canopy reflectance data are listed in Table 2.  

For Terra-MODIS, the simulated reflectance in the red channel ranged from 0.0128 to 0.1337, and the 

mean reflectance value was 0.0354. In this study, we used this instrument as a reference due to its high 

spatial and temporal coverage. The largest mean reflectance in the red was found for IKONOS at 0.0460, 

followed by the AVHRR2 onboard NOAA12 (0.0454), NOAA14 (0.0453) and NOAA11 (0.0441). The 

lowest mean reflectance was observed for GEOEYE-1 at 0.0313, followed by Landsat7-ETM+ (0.0336), 

KOMPAST2 (0.0343) and MODIS (0.0354). 

The RPDs for all other sensors in this study in the red band with respect to MODIS were between 

−21.02% and 77.73% (Table 2). The mean RPD between MODIS and various other sensors, averaged 

over 447 samples, ranged from −12.67% (GEOEYE-1) to 36.30% (IKONOS). Similar to GEOEYE-1, 

Landsat7 ETM+ and KOMPSAT2 showed negative RPDs of −5.6% and −3.58%, respectively. The 

comparison indicated that the red reflectances of GEOEYE-1, Landsat7 ETM+ and KOMPSAT2 were 

smaller than that of MODIS. With the exception of the above three sensors, the red reflectances of the 

other sensors were larger than that of MODIS. It was observed that AVHRR2 onboard NOAA7, 9, 11, 

14, and 12 (20.66%, 27.96%, 29.04%, 32.98%, 33.84%, respectively) had a higher mean RPD with 

respect to MODIS than did AVHRR1 and AVHRR3 onboard NOAA8 and 10 (18.11% and 17.10%, 

respectively) and NOAA15, 16, 17(10.93%, 9.07%, and 5.99%, respectively). The mean RPD for 

Landsat4 TM, Landsat5 TM, SPOT1 HRV, SPOT4 HRVIR and SPOT5 HTG were 1.11%, 0.95%, 

6.10%, 14.13% and 3.75%, respectively. The mean RPD for CCD1 onboard HJ1-A and HJ1-B were 

6.27% and 2.81%, respectively, whereas the values for CCD2 onboard HJ1-A and HJ1-B were 13.25% 

and 11.27%, respectively. The ASTER and ALOS AVNIR2 sensors having a high spatial resolution 

showed small RPDs of 3.91% and 4.25%, respectively, as compared to QuickBird and IKONOS. 

  

app:ds:calculate


Sensors 2013, 13 16034 

 

 

Table 2. Statistical description of the simulated red reflectance, the relative percentage 

difference (RPD) and the absolute percentage difference (APD) with respect to Terra 

MODIS. N = 447. 

Sensor 
Reflectance 

 
Relative Percentage Difference (%) 

  
Absolute Percentage Difference (%) 

t P-value 
MIN MAX Mean SD   MIN MAX Mean SD MIN MAX Mean SD 

NOAA7  AVHRR2 0.0169  0.1405  0.0415  0.0175  
 

1.12  41.95  20.66  8.65  
 

1.12  41.95  20.66  8.65  –79.28  0.000  

NOAA8  AVHRR1 0.0158  0.1403  0.0409  0.0177  
 

1.20  34.96  18.11  7.00  
 

1.20  34.96  18.11  7.00  –76.79  0.000  

NOAA9  AVHRR2 0.0180  0.1433  0.0438  0.0178  
 

2.18  54.56  27.96  10.79  
 

2.18  54.56  27.96  10.79  –87.05  0.000  

NOAA10  AVHRR1 0.0157  0.1399  0.0405  0.0176  
 

0.97  33.61  17.10  6.92  
 

0.97  33.61  17.10  6.92  –71.78  0.000  

NOAA11  AVHRR2 0.0185  0.1432  0.0441  0.0176  
 

2.18  57.70  29.04  11.57  
 

2.18  57.70  29.04  11.57  –89.34  0.000  

NOAA12  AVHRR2 0.0204  0.1438  0.0454  0.0174  
 

2.49  68.32  33.84  14.07  
 

2.49  68.32  33.84  14.07  –93.21  0.000  

NOAA14  AVHRR2 0.0193  0.1445  0.0453  0.0177  
 

2.85  64.55  32.98  12.75  
 

2.85  64.55  32.98  12.75  –93.03  0.000  

NOAA15  AVHRR3 0.0150  0.1370  0.0386  0.0173  
 

0.40  22.35  10.93  4.79  
 

0.40  22.35  10.93  4.79  –71.57  0.000  

NOAA16  AVHRR3 0.0143  0.1367  0.0381  0.0174  
 

–0.02  17.82  9.07  3.84  
 

0.02  17.82  9.07  3.84  –64.27  0.000  

NOAA17  AVHRR3 0.0136  0.1357  0.0372  0.0175  
 

–0.43  11.68  5.99  2.53  
 

0.11  11.68  5.99  2.53  –56.16  0.000  

LANDSAT4  TM 0.0131  0.1335  0.0357  0.0173  
 

–2.81  3.80  1.11  1.19  
 

0.01  3.80  1.36  0.90  –13.13  0.000  

LANDSAT5  TM 0.0131  0.1334  0.0357  0.0173  
 

–3.04  3.65  0.95  1.22  
 

0.00  3.65  1.28  0.87  –10.59  0.000  

LANDSAT7  ETM+ 0.0120  0.1315  0.0336  0.0171  
 

–9.73  0.19  –5.60  2.03  
 

0.09  9.73  5.61  2.03  49.60  0.000  

LANDSAT4  MSS 0.0144  0.1371  0.0387  0.0177  
 

1.21  19.29  10.72  3.45  
 

1.21  19.29  10.72  3.45  –85.51  0.000  

LANDSAT5  MSS 0.0139  0.1361  0.0378  0.0176  
 

0.87  13.67  7.66  2.37  
 

0.87  13.67  7.66  2.37  –80.65  0.000  

SPOT1  HRV 0.0135  0.1361  0.0373  0.0177  
 

1.20  10.28  6.10  1.90  
 

1.20  10.28  6.10  1.90  –61.00  0.000  

SPOT4  HRVIR 0.0157  0.1373  0.0396  0.0174  
 

1.06  28.13  14.13  5.58  
 

1.06  28.13  14.13  5.58  –90.74  0.000  

SPOT5  HRG 0.0134  0.1344  0.0365  0.0174  
 

–0.08  7.57  3.75  1.47  
 

0.03  7.57  3.75  1.47  –61.51  0.000  

CBERS02  CCD 0.0150  0.1362  0.0387  0.0174  
 

0.57  21.89  10.97  4.37  
 

0.57  21.89  10.97  4.37  –77.88  0.000  

CBERS02B  CCD 0.0180  0.1400  0.0427  0.0176  
 

2.39  46.21  24.07  9.15  
 

2.39  46.21  24.07  9.15  –88.26  0.000  

HJ–1A  CCD1 0.0147  0.1344  0.0372  0.0171  
 

–2.85  15.65  6.27  3.68  
 

0.01  15.65  6.32  3.59  –43.63  0.000  

HJ–1A  CCD2 0.0153  0.1373  0.0395  0.0177  
 

1.39  25.42  13.25  4.71  
 

1.39  25.42  13.25  4.71  –79.21  0.000  

HJ–1B  CCD1 0.0135  0.1339  0.0362  0.0173  
 

–1.63  6.62  2.81  1.55  
 

0.01  6.62  2.85  1.48  –37.94  0.000  

HJ–1B  CCD2 0.0150  0.1363  0.0388  0.0175  
 

0.98  21.63  11.27  4.24  
 

0.98  21.63  11.27  4.24  –82.23  0.000  

IKONOS 0.0221  0.1421  0.0460  0.0169  
 

2.13  77.73  36.30  16.66  
 

2.13  77.73  36.30  16.66  –87.07  0.000  

QuickBird 0.0165  0.1362  0.0393  0.0170  
 

0.19  30.98  13.76  6.85  
 

0.19  30.98  13.76  6.85  –11.24  0.000  

Terra   ASTER 0.0134  0.1346  0.0366  0.0175  
 

–0.68  7.68  3.91  1.53  
 

0.22  7.68  3.92  1.51  –46.13  0.000  

ALOS  AVNIR2 0.0134  0.1346  0.0367  0.0175  
 

0.32  8.14  4.25  1.43  
 

0.32  8.14  4.25  1.43  –75.25  0.000  

KOMPSAT2 0.0123  0.1322  0.0343  0.0172  
 

–6.54  1.20  –3.58  1.57  
 

0.02  6.54  3.62  1.47  36.62  0.000  

GEOEYE_1 0.0111  0.1283  0.0313  0.0166  
 

–21.02  –0.88  –12.67  4.12  
 

0.88  21.02  12.67  4.12  50.73  0.000  

MODIS 0.0128  0.1337  0.0354  0.0174    ~ ~ ~ ~   ~ ~ ~ ~ ~ ~ 

The minimum APD between MODIS and the other sensors was observed for Landsat5 TM with a 

value of 0.0013%, and the maximum APD was observed for IKONOS with a value of 77.73%. The 

smaller difference was identified for Landsat5-TM with a mean APD value of 1.28%, followed by 

Landsat4-TM (1.36%), HJ-1B(CCD1) (2.85%) and KOMPSAT2(3.62%). The largest difference was 

observed for IKONOS with a mean APD value of 36.30%, followed by AVHRR2 onboard NOAA12 

(33.84%), 14 (32.98%) and 11 (29.04%). AVHRR2 onboard NOAA7, 9, 11, 14, and 12 had higher 

mean APD with respect to MODIS than did the AVHRR1 and AVHRR3 onboard NOAA8, 10 and 

NOAA15, 16, 17. With the exception of Landsat5 TM, Landsat4 TM, HJ-1B CCD1, KOMPSAT2, 

Terra ASTER and Landsat7 ETM+, the mean APD value of the other sensors were equivalent to the 

RPD with respect to MODIS (Table 2). 

Further analysis of the significance based on paired t tests indicated that the differences in the red 

reflectance between MODIS and the other sensors were highly significant (p < 0.0001). The analysis of 

difference indicated that it is important to apply the spectral correction when using combined data from 

MODIS and the other sensor. The discrepancies caused by different SRFs may be corrected using the 

second-degree polynomial functions and exponential functions, as shown in Figure 5. The curves were 

produced by fitting the data points. Figure 5 shows that the RPD in the red reflectance for all other 

sensors in this study increased with increasing target NDVI values, excluding KOMPSAT2, Landsat7 

ETM+ and GEOEYE-1. The value of the mean absolute difference for KOMPSAT2, Landsat7 ETM+ 
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and GEOEYE-1 was negative. Thus, the direction of the curves for these three sensors was opposite that 

of the other sensors. The coefficients of the quadratic and exponential functions that best fit the data and 

correlation coefficient of the fit for each sensor for the red reflectance are shown in Table 3. The quality 

of the fit was high for AVHRRs, IKONOS and CBERS02B CCD, whereas data for the TM and ASTER 

sensors were more scattered. 

Figure 5. Relative percentage differences in the red channel reflectances with respect to 

Terra MODIS. All data points are plotted versus the NDVI of a particular sensor. Parameters 

of the fitting curves are given in Table 3. 
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Table 3. Parameters of the exponential and quadratic fit to the relative spectral correction for 

simulated reflectance in the red channel. Quadratic equation: y = c + b1x + b2x
2
; Exponential 

equation: y = c·exp(b1x), y denotes RPD in the red reflectance, x denotes NDVI for 

particular sensor.  

Sensor 

Equation 

Model Summary   Parameter Estimates 

R Square F df1 df2 Sig.   c b1 b2 

NOAA7  AVHRR2 Exponential 0.765 1,445.053 1 445 0.000 
 

0.016 3.384 
 

NOAA8  AVHRR1 Exponential 0.727 1,186.784 1 445 0.000 
 

0.018 3.015 
 

NOAA9  AVHRR2 Exponential 0.810 1,898.691 1 445 0.000 
 

0.027 3.134 
 

NOAA10  AVHRR1 Exponential 0.678 935.802 1 445 0.000 
 

0.015 3.137 
 

NOAA11  AVHRR2 Exponential 0.838 2,294.369 1 445 0.000 
 

0.025 3.308 
 

NOAA12  AVHRR2 Exponential 0.892 3,657.223 1 445 0.000 
 

0.024 3.615 
 

NOAA14  AVHRR2 Exponential 0.858 2,680.440 1 445 0.000 
 

0.031 3.201 
 

NOAA15  AVHRR3 Exponential 0.730 1,201.323 1 445 0.000 
 

0.006 3.695 
 

NOAA16  AVHRR3 Quadratic 0.723 578.057 2 444 0.000 
 

0.100 –0.384 0.478 

NOAA17  AVHRR3 Quadratic 0.619 360.566 2 444 0.000 
 

0.057 –0.207 0.270 

LANDSAT4  TM Quadratic 0.259 77.709 2 444 0.000 
 

0.010 –0.062 0.080 

LANDSAT5  TM Quadratic 0.201 56.011 2 444 0.000 
 

0.007 –0.051 0.069 

LANDSAT7  ETM+ Quadratic 0.520 240.495 2 444 0.000 
 

-0.051 0.146 –0.188 

LANDSAT4  MSS Exponential 0.865 2,841.229 1 445 0.000 
 

0.012 2.801 
 

LANDSAT5  MSS Exponential 0.830 2,177.267 1 445 0.000 
 

0.010 2.645 
 

SPOT1  HRV Exponential 0.576 605.598 1 445 0.000 
 

0.010 2.280 
 

SPOT4  HRVIR Exponential 0.940 6,976.599 1 445 0.000 
 

0.008 3.729 
 

SPOT5  HRG Quadratic 0.741 635.947 2 444 0.000 
 

0.025 –0.098 0.145 

CBERS_02  CCD Exponential 0.850 2,521.980 1 445 0.000 
 

0.006 3.793 
 

CBERS-02B  CCD Exponential 0.901 4,038.328 1 445 0.000 
 

0.017 3.475 
 

HJ-1A  CCD1 Quadratic 0.775 765.162 2 444 0.000 
 

0.115 –0.513 0.565 

HJ-1A  CCD2 Exponential 0.783 1,603.250 1 445 0.000 
 

0.012 3.069 
 

HJ-1B  CCD1 Quadratic 0.646 404.794 2 444 0.000 
 

0.030 –0.142 0.176 

HJ-1B  CCD2 Exponential 0.880 3,254.515 1 445 0.000 
 

0.008 3.457 
 

IKONOS Exponential 0.962 11,172.667 1 445 0.000 
 

0.013 4.514 
 

QuickBird Exponential 0.963 11,614.356 1 445 0.000 
 

0.003 5.059 
 

Terra    ASTER Quadratic 0.474 199.887 2 444 0.000 
 

0.011 –0.027 0.081 

ALOS    AVNIR2 Exponential 0.817 1,983.879 1 445 0.000 
 

0.004 2.977 
 

KOMPSAT2 Quadratic 0.348 118.723 2 444 0.000 
 

–0.036 0.101 –0.126 

GEOEYE_1 Quadratic 0.469 196.459 2 444 0.000   –0.103 0.242 –0.332 

3.2. The Effect of the SRF on the Reflectance in the NIR Channel 

The descriptive statistics of the NIR reflectances for various satellite sensors simulated using paddy 

rice canopy reflectance are listed in Table 4. For Terra MODIS, the simulated reflectance in the NIR 

channel ranged from 0.0927 to 0.5023, and the mean reflectance value was 0.3019. The highest mean 

reflectance value in the NIR channel was 0.3019 for MODIS, followed by SPOT5 HRG (0.3008), 

CBERS02B CCD (0.3006) and GEOEYE-1 (0.3005). The lowest mean reflectance was observed for 

NOAA8 AVHRR1 with a value of 0.2757, followed by IKONOS (0.2782), AVHRR2 onboard 

NOAA-11 (0.2784) and NOAA-9 (0.2787). 
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Table 4. Statistical description of the simulated NIR reflectance, the relative percentage 

difference (RPD) and the absolute percentage difference (APD) with respect to Terra 

MODIS. N = 447.  

Sensor 
Reflectance   Relative Percentage Difference (%) 

 

Absolute Percentage Difference (%) 
t P-value 

MIN MAX Mean SD   MIN MAX Mean SD MIN MAX Mean SD 

NOAA7  AVHRR2 0.0838  0.4614  0.2793  0.0674  
 

–11.79  43.94  –7.42  2.73  
 

3.72  43.94  7.61  2.12  66.22  0.000  

NOAA8  AVHRR1 0.0851  0.4542  0.2757  0.0659  
 

–11.88  41.75  –8.52  2.79  
 

4.02  41.75  8.71  2.13  62.69  0.000  

NOAA9  AVHRR2 0.0852  0.4601  0.2787  0.0669  
 

–10.53  43.54  –7.56  2.74  
 

3.54  43.54  7.76  2.12  63.76  0.000  

NOAA10  AVHRR1 0.0858  0.4687  0.2830  0.0684  
 

–9.71  46.27  –6.17  2.70  
 

2.81  46.27  6.38  2.17  65.50  0.000  

NOAA11  AVHRR2 0.0853  0.4596  0.2784  0.0668  
 

–10.69  43.37  –7.66  2.74  
 

3.56  43.37  7.86  2.12  63.48  0.000  

NOAA12  AVHRR2 0.0854  0.4624  0.2798  0.0673  
 

–10.29  44.29  –7.20  2.73  
 

3.29  44.29  7.39  2.13  63.86  0.000  

NOAA14  AVHRR2 0.0833  0.4647  0.2809  0.0681  
 

–12.29  44.95  –6.93  2.75  
 

3.51  44.95  7.14  2.17  67.86  0.000  

NOAA15  AVHRR3 0.0864  0.4754  0.2864  0.0695  
 

–8.71  48.30  –5.08  2.68  
 

2.22  48.30  5.30  2.22  67.33  0.000  

NOAA16  AVHRR3 0.0854  0.4755  0.2863  0.0697  
 

–9.70  48.28  –5.15  2.70  
 

2.41  48.28  5.36  2.24  69.75  0.000  

NOAA17  AVHRR3 0.0857  0.4765  0.2868  0.0699  
 

–9.38  48.62  –4.98  2.69  
 

2.33  48.62  5.19  2.25  70.20  0.000  

LANDSAT4  TM 0.0964  0.5003  0.3003  0.0728  
 

–2.44  56.66  –0.40  2.85  
 

0.00  56.66  0.98  2.71  16.60  0.000  

LANDSAT5  TM 0.0967  0.5003  0.3002  0.0727  
 

–2.57  56.64  –0.42  2.87  
 

0.00  56.64  1.02  2.71  16.45  0.000  

LANDSAT7  ETM+ 0.0972  0.5000  0.3000  0.0726  
 

–2.93  56.62  –0.47  2.91  
 

0.00  56.62  1.12  2.73  15.91  0.000  

LANDSAT4  MSS 0.0972  0.4998  0.2997  0.0726  
 

–3.17  56.53  –0.58  2.93  
 

0.00  56.53  1.20  2.74  17.30  0.000  

LANDSAT5  MSS 0.0969  0.5001  0.2999  0.0727  
 

–2.91  56.58  –0.53  2.90  
 

0.00  56.58  1.12  2.73  17.33  0.000  

SPOT1  HRV 0.0995  0.4977  0.2983  0.0718  
 

–4.83  55.98  –0.99  3.20  
 

0.01  55.98  1.79  2.83  18.10  0.000  

SPOT4  HRVIR 0.0968  0.4996  0.2998  0.0726  
 

–2.95  56.45  –0.57  2.90  
 

0.00  56.45  1.15  2.72  18.31  0.000  

SPOT5  HRG 0.0972  0.5013  0.3008  0.0728  
 

–2.33  56.94  –0.23  2.88  
 

0.01  56.94  0.94  2.73  11.99  0.000  

CBERS02  CCD 0.0963  0.4915  0.2955  0.0711  
 

–4.46  53.95  –1.92  2.92  
 

0.00  53.95  2.28  2.65  36.72  0.000  

CBERS02B  CCD 0.0960  0.5005  0.3006  0.0729  
 

–1.95  56.67  –0.33  2.80  
 

0.00  56.67  0.84  2.69  17.87  0.000  

HJ-1A  CCD1 0.0973  0.4962  0.2978  0.0719  
 

–4.09  55.47  –1.20  2.98  
 

0.01  55.47  1.70  2.73  25.66  0.000  

HJ-1A  CCD2 0.0976  0.4967  0.2980  0.0719  
 

–4.23  55.64  –1.11  3.02  
 

0.03  55.64  1.68  2.75  23.09  0.000  

HJ-1B  CCD1 0.0975  0.4971  0.2982  0.0720  
 

–4.14  55.74  –1.06  3.01  
 

0.00  55.74  1.62  2.75  22.44  0.000  

HJ-1B  CCD2 0.0969  0.4965  0.2979  0.0720  
 

–4.07  55.52  –1.17  2.97  
 

0.02  55.52  1.65  2.73  25.11  0.000  

IKONOS 0.0961  0.4610  0.2782  0.0656  
 

–12.12  44.60  –7.46  3.52  
 

0.08  44.60  7.69  2.98  50.97  0.000  

QuickBird 0.0965  0.4733  0.2852  0.0678  
 

–9.31  48.41  –5.23  3.29  
 

0.07  48.41  5.50  2.83  13.74  0.000  

Terra   ASTER 0.0999  0.4923  0.2952  0.0708  
 

–6.81  54.41  –1.97  3.43  
 

0.00  54.41  2.64  2.93  24.30  0.000  

ALOS  AVNIR2 0.0983  0.4959  0.2974  0.0717  
 

–4.98  55.42  –1.29  3.14  
 

0.01  55.42  1.92  2.80  22.39  0.000  

KOMPSAT2 0.0950  0.4932  0.2964  0.0717  
 

–4.40  54.49  –1.67  2.91  
 

0.01  54.49  1.99  2.70  32.76  0.000  

GEOEYE_1 0.0963  0.5009  0.3005  0.0729  
 

–2.25  56.78  –0.34  2.84  
 

0.00  56.78  0.91  2.71  15.76  0.000  

MODIS 0.0927  0.5023  0.3019  0.0737    ~ ~ ~ ~   ~ ~ ~ ~ ~ ~ 

Among the studied sensors, the minimum RPD with respect to MODIS in the NIR band was 

−12.29% for NOAA14 AVHRR2, and the maximum RPDs was 56.94% for SPOT5 HRG. The mean 

RPD of the NIR reflectance varied from −8.52% (NOAA8 AVHRR1) to −0.23% (SPOT5 HRG). The 

mean RPD for all of the sensors with respect to MODIS was negative. The mean RPD was within 

−7.66% to −6.93%, −5.15% to −4.98%, −1.20% to −1.06% and −0.47% to −0.40% for the AVHRR2s, 

AVHRR3s, HJ-1A/B CCDs and Landsat TMs sensors, respectively. The mean RPDs for SPOT1 HRV, 

SPOT4 HRVIR and SPOT5 HRG were −0.99%, −0.57% and −0.23%, respectively. 

The largest mean APD in the NIR channel was observed for NOAA8 AVHRR1 with a value of 

8.71%, followed by AVHRR2 onboard NOAA11 (7.86%), NOAA9 (7.76%) and IKONOS (7.69%). 

For the AVHRR2 instruments, the mean APDs ranged from 7.14% to 7.86%. AVHRR3 had a little 

smaller APD than did AVHRR1s and AVHRR2s at 5.19%, 5.30% and 5.36% for NOAA17, NOAA15 

and NOAA16, respectively. The smallest difference was identified for CBERS02B CCD with the 

mean APD value of 0.84%, followed by GEOEYE-1 (0.91%), SPOT5 HRG (0.94%) and 

Landsat4-TM (0.98%). The mean APD for Landsat TMs, MSSs, and SPOT4 HRVIR ranged from 

0.98% to 1.20%, whereas the values ranged from 1.62% to 1.70% for the HJ CCDs. 

The analysis using paired t tests indicated that the differences in the NIR reflectance between 

MODIS and other sensors were significant at the p < 0.0001 level. The discrepancies caused by 

different SRFs may be corrected using second-degree polynomial functions, as shown in Figure 6 and 

Table 5.  
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Figure 6. Relative percentage differences in the NIR channel reflectances with respect to 

Terra MODIS. All data points are plotted versus the NDVI of a particular sensor. Parameters 

for the fitting curves are given in Table 5.  
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These curves were produced by fitting the data points. The RPDs for AVHRRs onboard NOAA7-17 

showed two distinct trends with increasing target NDVI values. Specifically, the difference increased 

as the target NDVI value increased from 0 to 0.5; however, as the target sensor NDVI value increased 

above 0.5, the RPD began to decrease. The observed trends in the NIR reflectance differences are 

likely due to the inclusion of either the red edge or leaf liquid water absorption regions in the broad 

bandpass of AVHRR channel 2. The coefficients of the quadratic functions that best fit the data and 

correlation coefficient of the fit for each sensor for NIR reflectance were given in Table 5. The quality of 

the fits was higher for AVHRRs, IKONOS and QuickBird than other sensors. 

Table 5. Parameters of polynomial fit to the relative spectral correction for simulated 

reflectance in NIR channel. Equation: y = c + b1x + b2x
2
, y denotes RPD in the NIR 

reflectance, x denotes NDVI for particular sensor. 

Sensor 
Equation 

Model Summary   Parameter Estimates 

R Square F df1 df2 Sig.   c b1 b2 

NOAA7  AVHRR2 Quadratic 0.524 244.409 2 444 0.000 
 

–0.127 0.256 –0.246 

NOAA8  AVHRR1 
Quadratic 0.688 489.556 2 444 0.000 

 
–0.108 0.197 –0.223 

NOAA9  AVHRR2 
Quadratic 0.637 390.357 2 444 0.000 

 
–0.105 0.203 –0.219 

NOAA10  AVHRR1 
Quadratic 0.499 221.154 2 444 0.000 

 
–0.104 0.205 –0.197 

NOAA11  AVHRR2 
Quadratic 0.640 393.833 2 444 0.000 

 
–0.106 0.203 –0.222 

NOAA12  AVHRR2 
Quadratic 0.590 319.582 2 444 0.000 

 
–0.106 0.209 –0.223 

NOAA14  AVHRR2 
Quadratic 0.455 185.492 2 444 0.000 

 
–0.134 0.284 –0.264 

NOAA15  AVHRR3 
Quadratic 0.413 156.106 2 444 0.000 

 
–0.096 0.190 –0.170 

NOAA16  AVHRR3 
Quadratic 0.371 131.143 2 444 0.000 

 
–0.110 0.223 –0.189 

NOAA17  AVHRR3 Quadratic 0.359 124 2 444 0.000 
 

–0.106 0.213 –0.178 

LANDSAT4  TM 
Quadratic 0.214 60.374 2 444 0.000 

 
0.053 –0.151 0.096 

LANDSAT5  TM 
Quadratic 0.213 59.909 2 444 0.000 

 
0.056 –0.161 0.102 

LANDSAT7  ETM+ 
Quadratic 0.198 54.916 2 444 0.000 

 
0.064 –0.181 0.114 

LANDSAT4  MSS 
Quadratic 0.204 57.047 2 444 0.000 

 
0.063 –0.188 0.122 

LANDSAT5  MSS 
Quadratic 0.205 57.289 2 444 0.000 

 
0.058 –0.172 0.111 

SPOT1  HRV 
Quadratic 0.208 58.236 2 444 0.000 

 
0.094 –0.275 0.174 

SPOT4  HRVIR 
Quadratic 0.208 58.321 2 444 0.000 

 
0.057 –0.172 0.111 

SPOT5  HRG 
Quadratic 0.222 63.487 2 444 0.000 

 
0.059 –0.164 0.104 

CBERS_02  CCD 
Quadratic 0.319 104.165 2 444 0.000 

 
0.057 –0.185 0.106 

CBERS-02B  CCD 
Quadratic 0.244 71.667 2 444 0.000 

 
0.043 –0.129 0.084 

HJ-1A  CCD1 
Quadratic 0.223 63.772 2 444 0.000 

 
0.071 –0.219 0.138 

HJ-1A  CCD2 
Quadratic 0.213 59.943 2 444 0.000 

 
0.071 –0.218 0.139 

HJ-1B  CCD1 
Quadratic 0.202 56.161 2 444 0.000 

 
0.071 –0.213 0.134 

HJ-1B  CCD2 
Quadratic 0.207 58.105 2 444 0.000 

 
0.062 –0.196 0.123 

IKONOS 
Quadratic 0.411 154.853 2 444 0.000 

 
0.084 –0.386 0.220 

QuickBird 
Quadratic 0.376 133.838 2 444 0.000 

 
0.079 –0.306 0.167 

Terra    ASTER 
Quadratic 0.199 55.035 2 444 0.000 

 
0.108 –0.332 0.208 

ALOS    AVNIR2 
Quadratic 0.200 55.513 2 444 0.000 

 
0.083 –0.250 0.157 

KOMPSAT2 
Quadratic 0.193 52.950 2 444 0.000 

 
0.042 –0.142 0.080 

GEOEYE_1 
Quadratic 0.198 54.767 2 444 0.000   0.054 –0.150 0.094 

3.3. The Effect of the SRF on the NDVI  

Table 6 showed the minimum, maximum and mean values as well as the standard deviation of the 

NDVI for various satellite sensors. For Terra MODIS, the NDVI ranged from 0.177 to 0.9237, and the 

mean NDVI value was 0.7756. The lowest mean NDVI was observed for KONOS at 0.7043, followed 

by the AVHRR2 onboard NOAA12 (0.7071), 14 (0.7081), and 11 (0.7131). The largest mean 

reflectance was observed for GEOEYE-1 at 0.7973, followed by Landsat7 ETM+ (0.7845), 

KOMPAST2 (0.7788) and MODIS (0.7756). 
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Table 6. Statistical description of the simulated NDVI, the relative percentage difference 

(RPD) and the absolute percentage difference (APD) with respect to Terra MODIS. N = 447.  

Sensor 
NDVI 

 
Relative Percentage Difference (%) 

 

Absolute Percentage Difference (%) 
t P-value 

MIN MAX Mean SD   MIN MAX Mean SD MIN MAX Mean SD 

NOAA7   AVHRR2 0.1268  0.8900  0.7271  0.1372  
 

–28.39  2.11  –6.72  3.13  
 

2.11  28.39  6.73  3.11  127.31  0.000  

NOAA8   AVHRR1 0.1289  0.8943  0.7284  0.1380  
 

–27.19  2.51  –6.56  3.05  
 

2.51  27.19  6.57  3.02  124.86  0.000  

NOAA9   AVHRR2 0.1259  0.8826  0.7147  0.1370  
 

–28.87  0.85  –8.37  3.31  
 

0.85  28.87  8.37  3.30  149.47  0.000  

NOAA10  AVHRR1 0.1334  0.8984  0.7354  0.1375  
 

–24.67  3.19  –5.61  2.80  
 

2.74  24.67  5.62  2.77  109.36  0.000  

NOAA11  AVHRR2 0.1252  0.8788  0.7131  0.1360  
 

–29.31  0.52  –8.56  3.18  
 

0.52  29.31  8.56  3.17  170.66  0.000  

NOAA12  AVHRR2 0.1240  0.8686  0.7071  0.1341  
 

–29.94  –0.39  –9.29  2.99  
 

0.39  29.94  9.29  2.99  225.79  0.000  

NOAA14  AVHRR2 0.1147  0.8762  0.7081  0.1374  
 

–35.24  0.08  –9.29  3.79  
 

0.08  35.24  9.29  3.79  157.31  0.000  

NOAA15  AVHRR3 0.1402  0.9047  0.7481  0.1362  
 

–20.81  4.48  –3.85  2.09  
 

2.06  20.81  3.87  2.05  114.52  0.000  

NOAA16  AVHRR3 0.1365  0.9086  0.7506  0.1376  
 

–22.90  4.91  –3.57  2.37  
 

1.63  22.90  3.59  2.34  83.79  0.000  

NOAA17  AVHRR3 0.1385  0.9132  0.7559  0.1379  
 

–21.76  5.56  –2.87  2.21  
 

1.13  21.76  2.89  2.18  70.05  0.000  

LANDSAT4  TM 0.1821  0.9210  0.7735  0.1317  
 

–2.79  7.07  –0.21  0.87  
 

0.00  7.07  0.59  0.67  10.97  0.000  

LANDSAT5  TM 0.1824  0.9211  0.7737  0.1316  
 

–2.92  7.10  –0.18  0.92  
 

0.00  7.10  0.60  0.71  9.42  0.000  

LANDSAT7  ETM+ 0.1874  0.9274  0.7845  0.1312  
 

–1.59  8.16  1.28  1.28  
 

0.01  8.16  1.34  1.22  –32.04  0.000  

LANDSAT4  MSS 0.1746  0.9129  0.7571  0.1329  
 

–5.46  5.62  –2.44  0.84  
 

0.36  5.62  2.47  0.76  85.76  0.000  

LANDSAT5  MSS 0.1759  0.9163  0.7621  0.1331  
 

–4.39  6.15  –1.79  0.73  
 

0.55  6.15  1.82  0.65  74.04  0.000  

SPOT1  HRV 0.1766  0.9175  0.7637  0.1328  
 

–4.18  6.40  –1.55  0.85  
 

0.02  6.40  1.62  0.69  56.02  0.000  

SPOT4  HRVIR 0.1749  0.9059  0.7526  0.1310  
 

–5.75  4.78  –3.00  0.79  
 

0.36  5.75  3.02  0.70  96.30  0.000  

SPOT5  HRG 0.1811  0.9191  0.7694  0.1319  
 

–2.94  6.71  –0.77  0.76  
 

0.01  6.71  0.92  0.56  34.46  0.000  

CBERS02  CCD 0.1753  0.9081  0.7548  0.1317  
 

–5.99  5.10  –2.71  0.92  
 

0.34  5.99  2.73  0.85  77.44  0.000  

CBERS02B  CCD 0.1687  0.8932  0.7375  0.1312  
 

–9.65  3.12  –5.03  1.22  
 

3.12  9.65  5.05  1.16  114.15  0.000  

HJ-1A  CCD1 0.1815  0.9108  0.7644  0.1300  
 

–4.88  5.86  –1.37  1.11  
 

0.01  5.86  1.59  0.77  36.50  0.000  

HJ-1A  CCD2 0.1730  0.9069  0.7523  0.1324  
 

–7.29  4.90  –3.07  1.10  
 

0.47  7.29  3.09  1.03  72.48  0.000  

HJ-1B  CCD1 0.1806  0.9179  0.7696  0.1314  
 

–3.81  6.69  –0.72  0.96  
 

0.00  6.69  0.97  0.70  24.87  0.000  

HJ-1B  CCD2 0.1737  0.9088  0.7556  0.1319  
 

–6.24  5.25  –2.62  0.93  
 

0.53  6.24  2.64  0.86  74.00  0.000  

IKONOS 0.1579  0.8571  0.7043  0.1265  
 

–15.21  –1.19  –9.32  1.47  
 

1.19  15.21  9.32  1.47  132.43  0.000  

QuickBird 0.1715  0.8947  0.7447  0.1296  
 

–7.62  3.69  –4.00  0.94  
 

0.85  7.62  4.01  0.87  13.00  0.000  

Terra    ASTER 0.1787  0.9166  0.7658  0.1321  
 

–6.15  6.49  –1.24  1.27  
 

0.01  6.49  1.43  1.04  27.85  0.000  

ALOS  AVNIR2 0.1784  0.9178  0.7665  0.1323  
 

–4.14  6.55  –1.16  0.88  
 

0.05  6.55  1.27  0.71  39.41  0.000  

KOMPSAT2 0.1794  0.9240  0.7788  0.1323  
 

–2.89  7.67  0.48  1.00  
 

0.00  7.67  0.75  0.82  –11.99  0.000  

GEOEYE_1 0.1981  0.9326  0.7973  0.1288  
 

–0.56  14.16  3.10  2.31  
 

0.01  14.16  3.11  2.31  –45.04  0.000  

MODIS 0.1770  0.9237  0.7756  0.1332    ~ ~ ~ ~   ~ ~ ~ ~ ~ ~ 

 

Table 6 showed that the RPDs in the NDVI for all studied sensors range from −35.24% to 14.16%. 

IKONOS showed the lowest mean RPD of −9.32% with respect to MODIS. Similar to IKONOS, 

AVHRR2 onboard NOAA12, 14, 11, 9 and 7 had RPDs of −9.29%, −9.29%, −8.56%, −8.37%, and 

−6.72%, respectively. However, AVHRR1 onboard NOAA8 and 10 and AVHRR3 onboard NOAA15, 

16, and 17 showed slightly higher mean RPDs of −6.56%, −5.61%, −3.85%, −3.57%, and −2.87%, 

respectively. The largest mean RPD was observed for GEOEYE-1 at 3.10%, followed by  

Landsat7 ETM+ (1.28%), KOMPSAT2 (0.48%), Landsat5 TM (−0.18%) and Landsat4 TM (−0.21%). 

The mean RPDs for SPOT1 HRV, SPOT4 HRVIR and SPOT5 HTG were −1.55%, −3.0% and 0.77%, 

respectively. The mean RPD for CCD1 onboard HJ1-A and HJ1-B was −1.37% and −0.72%, 

respectively, whereas the values for CCD2 onboard HJ1-A and HJ1-B were −3.07% and −2.62%, 

respectively. The sensors having a high spatial resolution, such as ASTER and ALOS AVNIR2, showed 

larger RPDs of −1.24% and −1.16%, respectively. 

The minimum mean APD in the NDVI between MODIS and the other sensors was observed for 

Landsat4 TM with a value of 0.59%, followed by Landsat5 TM (0.60%), KOMPSAT2(0.75%) and 

SPOT HRG (0.92%). The mean APDs were 1.27%, 1.34%, 1.43%, 1.59%, 1.62% and 1.82% for ALOS 

AVNIR2, LANDSAT7 ETM+, Terra ASTER, HJ-1A CCD, SPOT1 HRV and LANDSAT5 MSS, 

respectively. Compared to Landsat5 MSS and HJ-1A CCD1, the mean APD was 2.47%, 2.64% and 

3.09% for LANDSAT4 MSS, HJ-1B CCD2 and HJ-1A CCD2, respectively. The maximum mean APD 

between MODIS and the other sensors was observed for IKONOS with a value of 9.32%, followed by 
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AVHRR2 onboard NOAA12 (9.29%), NOAA 14 (9.29%) and NOAA 11 (8.56%). AVHRR2  

onboard NOAA7, 9, 11, 14, and 12 showed higher mean APDs with respect to MODIS than did the 

AVHRR1 and AVHRR3 onboard NOAA8 and 10 (6.57% and 5.62%) and NOAA15, 16, 17 (3.87%, 

3.59%, and 2.89%). 

The paired t tests confirmed that there were significant differences (p < 0.0001) in NDVI between 

MODIS and the other sensors. The discrepancies caused by different SRFs may be corrected using 

second-degree polynomial functions, as shown in Figure 7. The curves were produced by fitting the data 

points. It was observed that the RPDs in the NDVI with respect to MODIS for AVHRRs increased with 

increasing target NDVI values. The coefficients of the quadratic functions that best fit the data, as well 

as the correlation coefficient of the fit for each sensor for the NDVI, are provided in Table 7.  

The quality of the fit was high for the AVHRRs, whereas the data for the KOMPSAT2 sensors were 

more scattered. 

Table 7. Parameters of the polynomial fit to the relative spectral correction for the  

NDVI. Equation: y = c + b1x + b2x
2
, y denotes RPD in the NDVI, x denotes NDVI for 

particular sensor.  

Sensor 
Equation 

Model Summary   Parameter Estimates 

R 

Square 
F df1 df2 Sig.   c b1 b2 

NOAA7  AVHRR2 Quadratic 0.879 1,616.536 2 444 0.000 
 

–0.324 0.604 –0.333 

NOAA8  AVHRR1 Quadratic 0.898 1,961.791 2 444 0.000 
 

–0.299 0.515 –0.258 

NOAA9  AVHRR2 Quadratic 0.888 1,767.126 2 444 0.000 
 

–0.324 0.525 –0.255 

NOAA10  AVHRR1 Quadratic 0.870 1,479.434 2 444 0.000 
 

–0.282 0.516 –0.274 

NOAA11  AVHRR2 Quadratic 0.890 1,793.728 2 444 0.000 
 

–0.322 0.524 –0.261 

NOAA12  AVHRR2 Quadratic 0.892 1,840.831 2 444 0.000 
 

–0.321 0.518 –0.267 

NOAA14  AVHRR2 Quadratic 0.895 1,888.605 2 444 0.000 
 

–0.381 0.666 –0.353 

NOAA15  AVHRR3 Quadratic 0.863 1,400.234 2 444 0.000 
 

–0.227 0.448 –0.254 

NOAA16  AVHRR3 Quadratic 0.869 1,473.320 2 444 0.000 
 

–0.251 0.516 –0.295 

NOAA17  AVHRR3 Quadratic 0.874 1,537 2 444 0.000 
 

–0.234 0.492 –0.282 

LANDSAT4  TM Quadratic 0.447 179.534 2 444 0.000 
 

0.079 –0.220 0.146 

LANDSAT5  TM Quadratic 0.444 176.978 2 444 0.000 
 

0.084 –0.233 0.154 

LANDSAT7  ETM+ Quadratic 0.535 255.479 2 444 0.000 
 

0.120 –0.250 0.140 

LANDSAT4  MSS Quadratic 0.640 394.503 2 444 0.000 
 

0.026 –0.210 0.184 

LANDSAT5  MSS Quadratic 0.603 336.802 2 444 0.000 
 

0.031 –0.191 0.161 

SPOT1  HRV Quadratic 0.518 238.856 2 444 0.000 
 

0.060 –0.260 0.206 

SPOT4  HRVIR Quadratic 0.548 269.560 2 444 0.000 
 

0.037 –0.241 0.196 

SPOT5  HRG Quadratic 0.523 243.138 2 444 0.000 
 

0.072 –0.237 0.167 

CBERS_02  CCD Quadratic 0.437 172.178 2 444 0.000 
 

0.040 –0.248 0.204 

CBERS-02B  CCD Quadratic 0.551 272.206 2 444 0.000 
 

–0.014 –0.206 0.205 

HJ-1A  CCD1 Quadratic 0.410 154.517 2 444 0.000 
 

0.093 –0.300 0.204 

HJ-1A  CCD2 Quadratic 0.488 211.672 2 444 0.000 
 

0.038 –0.276 0.237 

HJ-1B  CCD1 Quadratic 0.422 162.398 2 444 0.000 
 

0.086 –0.268 0.186 

HJ-1B  CCD2 Quadratic 0.419 160.089 2 444 0.000 
 

0.037 –0.237 0.197 

IKONOS Quadratic 0.580 307.056 2 444 0.000 
 

–0.026 –0.332 0.325 

QuickBird Quadratic 0.448 180.278 2 444 0.000 
 

0.041 –0.286 0.231 

Terra    ASTER Quadratic 0.346 117.496 2 444 0.000 
 

0.105 –0.368 0.272 

ALOS    AVNIR2 Quadratic 0.441 175.009 2 444 0.000 
 

0.074 –0.272 0.203 

KOMPSAT2 Quadratic 0.244 71.633 2 444 0.000 
 

0.068 –0.160 0.099 

GEOEYE_1 Quadratic 0.568 291.870 2 444 0.000   0.193 –0.313 0.133 
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Figure 7. Relative percentage differences in NDVI with respect to Terra MODIS.  

All data points are plotted versus NDVI of particular sensor. Parameters of fitting curves are 

given in Table 7. 
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Figure 8. Interrelationships between the NDVIs from selected pairs of sensors. 

  

 

A comparison of the NDVIs simulated for different sensors showed that the relationship between 

MODIS and other the instrument NDVI values can be evaluated using a linear regression model  

(Figure 8). The linear regression relationships between the NDVI values of the various sensor 

combinations presented in Figure 8 were all significant at p < 0.0001. Additionally, the coefficient of 

determination was higher than 0.99 in almost every case. However, the relationships were not 1:1. The 

intercept values for all sensors ranged from −0.047 (GEOEYE-1) to 0.090 (NOAA14). The slope values 

varied from 0.965 (NOAA8) to 1.051 (IKONOS), and the r
2
 values varied from 0.995 (IKONOS) to 

0.999 (SPOT5/HRV). The results showed substantial differences between the sensor systems, which if 

http://www.sciencedirect.com/science/article/pii/S0034425703002256#FIG3
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uncorrected, would significantly bias the estimates of any biophysical parameters derived from these 

sensors. Even for a nominally continuous system, the NDVIs from the Landsat-ETM+ sensor differed 

from the values from the earlier TM sensor; therefore, the relationship between MODIS and each sensor 

varies. The results indicated that the relationships between the NDVIs were sufficiently robust in all 

cases to allow for corrections between one system relative to MODIS. 

3.4. Comparison with Previous Studies  

The results of the current study were consistent with the previous research by Trishchenko et al. [53].  

The study investigated the effect of the SRF on reflectance and NDVI of the moderate resolution satellite 

sensors, including MODIS and AVHRRs. They found differences in the red band reflectance between 

MODIS and other sensors were relatively higher than that in the NIR band reflectance. This 

phenomenon of higher relative red band differences was observed in this study. In addition, the findings 

of comparison of MODIS and AVHRR NDVI data included in our study were identical with other 

studies. The MODIS NDVI data were found to be greater than the AVHRR NDVI data in an analysis 

over Senegal [64], South Florida [65], the Southern Great Plains of the United States [53] and simulation 

of MODIS and AVHRR data [48]. 

Our results also agreed well with the findings of other studies [30,46,48] related to the NDVI 

cross-sensor correction. The simulations by Steven et al. [48] were based on measurements of a full 

range of sugar beet and maize canopies. Whereas the study by van and Gonsamo et al. [30,46] included 

large sets of measured backgrounds as input to radiative transfer models (i.e., SAIL, PROSPECT and 6S) 

to simulate canopy spectra for a large range of possible global vegetation conditions. They used simple 

linear regression models for cross-sensor correction. The slope and intercept values of the linear 

regression relationships between the NDVI values of the various sensor combinations for SPOT, MSS, 

TM, ETM+, IKONOS and QuickBird with an MODIS reference were almost identical to those in the 

present study.  

This study indicated that reflectance and NDVI derived from different sensors cannot be considered 

as directly equivalent and NDVI based on surface reflectance can be corrected for spectral band effects. 

Our study was based on simulating the spectral band responses of different satellite sensors from field 

reflectance data. The advantages of this method are that the results are not affected to any extent by 

calibration errors or atmospheric interactions and the simulations can be performed for any combination 

of sensors for direct comparisons. However, it should be noted that other instrumental effects, such as 

spatial sampling and the radiometric resolution, and atmospheric corrections are not accounted for by 

this approach. Miura concluded that the MODIS versus AVHRR3 and AVHRR2 cross-sensor NDVI 

relationships were subject to larger difference due to the NIR bands which showed differential sensitivities 

to the atmospheric water vapor effects between sensors [66]. Therefore, accurate calibrations and 

atmospheric corrections are also essential for combination of data from different satellite systems. 

4. Conclusions 

Long-term monitoring of the Earth’s environment using multi-source satellite sensors requires 

consistent and comparable measurements. However, the combined use of the multi-source satellite data 

sets requires a detailed evaluation of their compatibility and consistency to avoid artifacts. In this study, 
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rice canopy spectra were collected from field experiments so as to quantify the effect of the sensor 

spectral response function on the red and NIR reflectances and NDVI derived from 31 Earth observation 

satellite sensors, including CBERS CCD and HJ1-A/B CCD. This study not only included sensors 

having a coarse spatial resolution, such as AVHRRs from NOAA-7 to NOAA-17 and MODIS, but also 

included sensors having a medium spatial resolution, such as Landsat TMs and MSSs, SPOT HRV, 

HRVIR and HRG, CBERS CCDs, and HJ CCDs. Moreover, we also showed sensors having a relatively 

high spatial resolution, such as IKONOS, QuickBird, KOMPSAT2 and GEOEYE-1. All of the sensors 

were compared to the Terra MODIS, which was chosen as a reference. Based on field reflectance data, 

we simulated the spectral band responses of different satellite sensors. 

The results showed that the mean RPD in the red reflectance for all other sensors with respect to 

MODIS ranged from −12.67% (GEOEYE-1) to 36.30% (IKONOS). For GEOEYE-1, Landsat7  

ETM+ and KOMPSAT2, the negative RPD indicated that red reflectance of MODIS was larger than that 

of these sensors. The mean APD in red reflectance varied from 1.28% (Landsat5-TM) to 36.30% 

(IKONOS). AVHRR2 onboard NOAA7, 9, 11, 14, and 12 showed a higher mean APD with respect to 

MODIS than the AVHRR1 and AVHRR3 onboard NOAA8 and 10 (18.11% and 17.10) and NOAA15, 

16, and 17(10.93%, 9.07%, and 5.99%). 

The mean RPD in the NIR reflectance for all other sensors with respect to MODIS ranged from 

−8.52% (NOAA8 AVHRR1) to −0.23% (SPOT5 HRG). It was observed that the mean RPD for all 

sensors with respect to MODIS was negative. The mean RPD ranged from −7.66% to −6.93%, −5.15% 

to −4.98%, −1.20% to −1.06% and −0.47% to −0.40% for the AVHRR2s, AVHRR3s, HJ CCDs and 

Landsat TMs, respectively. The largest mean APD was observed for NOAA8 AVHRR1 at 8.71%,  

and the smallest difference was observed for CBERS02B CCD at 0.84%. For the AVHRR2 instruments, 

the mean APDs were within the range of 7.14% to 7.86%. The AVHRR3 showed slightly smaller APD 

than did AVHRR1s and AVHRR2s, which were 5.19%, 5.30% and 5.36% for NOAA17, 15, and 16, 

respectively. The mean APD for the Landsat TMs, MSSs, and SPOT4 HRVIR was 0.98% to 1.20% and 

was 1.62% to 1.70% for the HJ CCDs. 

With respect to MODIS, the mean RPDs in the NDVI for all sensors in this study ranged from 

−9.32% to 3.10%. The mean APDs in the NDVI varied from 0.59% (Landsat5-TM) to 9.32% 

(IKONOS). The mean APD was 1.27%, 1.34%, 1.43%, 1.59%, 1.62% and 1.82% for ALOS AVNIR2, 

Landsat7 ETM+, Terra ASTER, HJ-1A CCD, SPOT1 HRV and LANDSAT5 MSS, respectively. 

Comparison with Landsat5 MSS and HJ-1A CCD1, the mean APD was 2.47%, 2.64%, 3.09% for 

LANDSAT5 MSS, HJ-1B CCD2 and HJ-1A CCD2. AVHRR2 onboard NOAA7, 9, 11, 14, 12 has 

higher mean APD with respective to MODIS than the AVHRR1 and AVHRR3 onboard NOAA8, 10 

(6.57%, 5.62%) and NOAA15, 16, and 17 (3.87%, 3.59%, and 2.89%). 

The results of paired t tests showed that there were significant differences (p < 0.0001) between 

MODIS and all the other sensors regarding the red reflectance, NIR reflectance and NDVI. A series of 

optimum models were provided for spectral corrections between MODIS and other sensors. This result 

offers improved opportunities for monitoring crops through the growing season and the prospects of 

better continuity of long-term monitoring of vegetation responses to environmental change. 
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