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Abstract: Structural health monitoring (SHM) has become a viable tool to provide owners 

of structures and mechanical systems with quantitative and objective data for maintenance 

and repair. Traditionally, discrete contact sensors such as strain gages or accelerometers 

have been used for SHM. However, distributed remote sensors could be advantageous 

since they don’t require cabling and can cover an area rather than a limited number of 

discrete points. Along this line we propose a novel monitoring methodology based on video 

analysis. By employing commercially available digital cameras combined with efficient signal 

processing methods we can measure and compute the fundamental frequency of vibration 

of structural systems. The basic concept is that small changes in the intensity value of a 

monitored pixel with fixed coordinates caused by the vibration of structures can be 

captured by employing techniques such as the Fast Fourier Transform (FFT). In this paper 

we introduce the basic concept and mathematical theory of this proposed so-called virtual 

visual sensor (VVS), we present a set of initial laboratory experiments to demonstrate the 

accuracy of this approach, and provide a practical in-service monitoring example of an  

in-service bridge. Finally, we discuss further work to improve the current methodology. 

Keywords: structural health monitoring; video analysis; natural vibrations; virtual visual 

sensors; Eulerian specification 
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1. Introduction 

Video-based methods have recently been introduced for a variety of applications in structural health 

monitoring (SHM). Patsias and Staszewski [1] analyzed digital videos for edge detection and to 

approximate the mode shape of a cantilever in a laboratory experiment. By applying a wavelet 

transform to the mode shape they were able to detect the location of damage which was introduced by 

cutting a groove with increasing depth into the cross-section. Lee et al. [2] devised a real-time method 

to measure in-plane displacements and rotations using feature tracking techniques based on a 

Lagrangian approach, and applied it to a target bridge. Zaurin and Catbas [3–7] developed a method 

using digital video data to locate and measure applied loads on a bridge and devised an index called 

unit influence line (UIL) as a measure of the health of bridges. Elgamal et al. [8] developed a framework 

to integrate different data types including computer vision data to create a ―decision-support system‖ 

for bridges and other lifelines. In a SHM review on wind turbines by Ciang et al. [9], it is noted that 

digital image correlation (DIC) techniques can also be used for these structures, but the 3-D version of 

these methods should be investigated in more depth if they are to be applied. Song et al. [10] modified 

the Hough Transform to track numerous markers on a beam with a computationally efficient algorithm 

and fitted a spline curve to the tracked shape in order to detect the location of the damage. 

To conclude, the use of digital videos for SHM is only in the beginning stage. With the availability 

of inexpensive yet high-quality digital video cameras we believe there is great potential that has not 

been fully explored yet. The methodology we present in this paper uses commercially available camera 

technology combined with an efficient and simple methodology to capture and compute structural 

vibration data from digital videos. 

2. Motivation 

The objective of this study was to evaluate a novel sensing approach for structural health 

monitoring (SHM) purposes which is contactless, inexpensive, and flexible in its application. Vibration 

data are important in a number of disciplines such as mechanical and structural engineering. A 

comprehensive review on structural health monitoring (SHM) shows the efforts put forth to estimate 

damage and damage location based on observed changes in natural frequencies of vibration [11]. The 

literature contains different resources addressing vibration-based SHM as well [12–18]. Finally, natural 

frequencies from in-service structures are often used to calibrate finite element (FE) models [19,20]. 

3. Proposed Sensing Approach 

3.1. Background 

In a recent inspiring paper on Eulerian video magnification, Wu et al. [21] present an innovative yet 

beautifully simple approach to magnify subtle motions in digital videos so that they become visible to 

the naked eye. This was done using an Eulerian specification where a pixel with a fixed coordinate is 

selected and its value monitored in time. In contrast, in a Lagrangian specification one would attempt 

to track a specific feature in a video in time and space. One of the examples presented, which may 

have great potential for application in the medical field, measures the pulse of a person by analyzing a 
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video taken from the person. The inventors found that the minute change in intensity in the red content, R, 

of the person’s skin was significant enough to be analyzed to accurately compute the person’s pulse. 

Another example was a video of a person’s wrist where the expansion and contraction of the veins 

were amplified to be clearly visible. The advantage is that this approach is contactless and can be 

performed continuously without interfering with the person. Motivated by this article we introduce 

here a methodology based on the same fundamental idea for potential use in the field of structural 

health monitoring (SHM) for structures and mechanical systems. 

3.2. Methodology 

We propose that every pixel in a digital video taken from a structure represents a candidate virtual 

visual sensor (VVS) that may be used for SHM purposes (first suggested by Patsias and Staszewskiy [1]). 

The term ―VVS‖ follows the terminology suggested by Song, Bowen et al. [10]. Although the 

approach presented in the latter paper may appear similar, it is fundamentally different as they were 

employing a Lagrangian specification where a target (or feature) is tracked in space and time. 

Our proposed methodology uses an Eulerian specification where a specific pixel is selected and 

monitored which is illustrated in Figure 1; the intensity of the pixel at location xp and yp is monitored 

over time and analyzed using the Fast Fourier Transform (FFT) [22,23] to reveal the fundamental 

frequency of vibration. Note that the pixel value in the time domain represents gray-scale intensity and 

does not directly correspond to the amplitude of vibration, i.e., displacement. As a result, at this  

point we are not able to estimate the amplitude but only the frequency of the motion which represents  

a limitation. 

Figure 1. Proposed methodology of a virtual visual sensor (VVS) to measure structural 

vibrations. xp and yp represent fixed coordinates of the monitored pixel, P. 

 

3.3. Theoretical Basis 

Digital videos are a sequence of digital images captured at a specified frame rate. Typical frame 

rates of commercially available cameras are 25, 30, or 60 fps (=frames per second). In this study  

we used a range of cameras, including two inexpensive point-shoot cameras with 25 and 30 fps, 

respectively, and a new high-speed camera mainly used in the adventure sports community that can 
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capture videos up to 240 fps. Video frames are typically stored in RGB (red-green-blue) color mode as 

measured by the camera’s image sensor [24]. A single grey-scale value, called intensity, I, is assigned 

to each pixel where 0 and 255 represent black and white, respectively. MATLAB uses a linear 

combination to calculate I based on RGB values that eliminates hue and saturation information while 

retaining the luminance [25,26]: 

0.2989 0.5870 0.1140  I R G B  (1) 

An example of experimental data extracted from a VVS and the resulting intensity curves are 

shown in Figure 2. If the intensity value is smoothed using a 5-point moving average as shown in 

Figure 2e, the quantization effects that exist in the raw brightness values (Figure 2c) and the computed 

grey-scale intensity curve (Figure 2d) can effectively be removed to reveal a relatively harmonic 

motion. For this study, only raw intensities (example shown in Figure 2d) were used for the 

computation of frequencies. 

Figure 2. Example of experimental data extracted from a VVS: brightness of (a) red;  

(b) green; and (c) blue; (d) computed intensity (used for subsequent analyses); I,  

and (e) smoothed intensity (for illustrative purposes). 

 

Figure 3 illustrates the factors that influence the accuracy and reliability of the proposed VVS. The 

dotted line represents the grey-scale intensity curve I(x) along a path x. For this theoretical example, 

the background is assumed to be light colored and the object of interest dark colored. The location and 

size of the monitored pixel is depicted by the grey square denoted with P(x,t). L represents the length 

over which the intensity changes. Figure 3 represents a snapshot and as time t progresses the intensity 

curve I(x) will vibrate horizontally (in the x-direction) with an amplitude A causing the pixel to 

oscillate vertically about xp, following the I(x) curve. 
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Figure 3. Illustration of the relationship between vibration of motion in direction x  

(one direction only for simplification), amplitude of vibration A, pixel location xP and pixel 

size, and shape of the grey-scale intensity curve I(x). 

 

If the object, characterized by the intensity I(x), is vibrating at a natural frequency ώ0 and without 

losing generality we can write  0sinx A t , hence the intensity value becomes     0sinI x I A t . 

If we want to consider the effect of the function I(x) on our measured peak frequencies we can write: 

     0sin j tF I x I A t e dt





   (2)  

If I(x) is a linear function and by subtracting the DC term we are able to compute the exact peak 

frequency (neglecting any quantization noise)     0 0sin sinI A t C t   so that: 

      0 0F I t C
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Taking the summation  out of the integral we obtain: 
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Equation (5) reveals that any nonlinearity of degree n  in I(x) produces peak frequencies at  

(n – 2k)ώ0 for 0 < k < n. It is important to note that if I(x) can be written as a power series, the 

magnitude of the spurious impulses in the frequency domain can be calculated based on the above 

equation. The extreme positions (peak amplitude points) of the VVS with respect to the intensity curve 

I(x) should be located on an approximately linear portion of I(x) and within L. If I(x) is nonlinear, 

spurious frequency peaks will occur as can be observed in Figure 5b which will be explained in more 

detail in Section 4.1. From the discussion above, the following can be concluded: 
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• The intensity range  max minI I I    should be maximized, i.e., a small range will increase 

quantization noise. This can be achieved by selecting proper background and lighting conditions. 

• The number of pixels across A should be maximized which is directly related to the  

spatial resolution. 

• The amplitudes of vibration should be small, i.e., the maximum amplitude of vibration A should 

lie within L in order to avoid the appearance of nonlinear system behavior. 

• The size of the pixel (or VVS) with respect to the length should be small to avoid averaging of 

measured intensity values and additional quantization noise. 

Additionally, the following factors influence the accuracy of the VVS: 

• High sampling rates, i.e., a large number of frames per second, decrease the quantization noise. 

Minimum sampling rates as given by the Nyquist-Shannon sampling theorem [27] apply and are 

discussed in Chapter 4. 

• The total signal duration T directly influences the resolution and thus the uncertainty of the VVS, 

i.e., the resolution of a signal in the frequency domain is 
1f T   . 

• Finally, moving and shaking of the camera, changing illumination, and noise in the image sensor 

influence the signal-to-noise ratio and therefore the accuracy of the computed peak frequency. 

4. Experimental Verification 

To verify the validity and accuracy of our proposed approach, a cantilever beam with  

adjustable length, LC (i.e., variable stiffness) and a concentrated constant mass on top, equivalent to a 

single-degree-of-freedom (SDOF) system [28], was tested as shown in Figure 4a. The test was initiated 

by creating an initial displacement (by hand) and then letting the cantilever vibrate in its natural mode 

of vibration. Acceleration was measured using a high-accuracy capacitive accelerometer (Model 2260-010 

by Silicon Designs, Inc., Kirkland, WA, USA, sampling at 1 kHz) attached to the mass. Additionally, a 

digital video was taken during the test capturing the motion of the cantilever using two different 

cameras: a commercially available digital camcorder (Model ViXIA HFS100 HD by Canon USA, Inc., 

Melville, NY, USA, recording at 30 fps) for frequencies up to 10 Hz and a relatively high-speed camera 

(Model Hero 3 by Woodman Labs, Inc., Half Moon Bay, CA, USA, recording at 120 fps) for higher 

frequencies. It should be noted that, as for any digitally sampled signal, the Nyquist-Shannon [27] 

sampling theorem applies, i.e., the sampling rate needs to be set to at least twice the highest anticipated 

frequency to be distinguishable in the signal [29]. Anti-aliasing filters were set to one half of the 

selected sampling frequency for the accelerometer. For the cameras, such an option is currently not 

available, and one of our goals was to determine whether this represents a problem. The selection of 

the pixel to be monitored (candidate VVS) turned out to be critical to obtain meaningful frequency 

data from the videos and a thorough discussion is included in the following section. 
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Figure 4. (a) Snapshot of moving cantilever and (b) candidate virtual visual sensors (VVS). 

 

4.1. Candidate Virtual Visual Sensors  

The advantage that every pixel in the video represents a candidate virtual visual sensor (VVS) is 

also the challenge. In this section we compare and discuss the signals computed from a number of 

different candidate pixels. For this evaluation the cantilever length, LC was kept constant at 25 in  

(635 mm). Figure 4b shows three candidate VVS: Pixels A and B are located near the top and the 

bottom of the cantilever where the largest and smallest amplitudes of vibration occur, respectively. 

Pixel C is located away from the cantilever but capturing its shadow. Intuitively one might pick pixel A 

since it is located where the largest motion takes place which should produce the best data. However, 

in the case of our proposed approach this does not work well as it is discussed next. 

Figure 5a shows example data collected with the accelerometer. Although pixel B is at the bottom 

of the cantilever, a place with the smallest motion which can hardly be observed by the naked eye, the 

change of intensity (grey scale pixel value) is represented by a relatively harmonic signal (Figure 5c). 

For pixel A located near the top of the cantilever, where the amplitude of vibration is largest, the 

intensity value experiences periodic impulses due to the sudden occlusion of the mostly grey background 

by the beam. As a result, the FFT produces a periodic function as well, showing pronounced harmonic 

peaks, as can be observed in Figure 5b. This can be mathematically explained (see Section 3.3) by a 

highly non-linear function such as I(x) = x
n
 where n is a large number. Although the peak frequency is 

present and correct, the upper harmonics are very strong as well which makes the analysis more 

difficult. Alternatively, pixel C is found to produce a relatively harmonic signal as well (Figure 5d). 

Although it is not located on the structure, it can capture the motion of its shadow. This represents an 
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opportunity to observe vibrations indirectly, in case the actual structure is not directly observable. 

These facts suggest that a reliable candidate VVS for measuring frequency is a point with small 

amplitudes of vibration near the physical boundary (i.e., edge) of the structure where the change in 

intensity is most pronounced (a theoretical discussion is presented in Section 3.3). For the cantilever 

study this can also be a point near the top of the cantilever after damping has reduced the amplitudes of 

vibration significantly. For practical purposes, this condition is usually satisfied considering the 

camera is relatively far from the structure compared to the amplitude of vibrations to be captured [13]. 

Figure 5. Time history (left column) and frequency (right column) data for (a) accelerometer; 

(b) pixel A; (c) pixel B; and (d) pixel C. Note: the intensity time histories were centered 

about 0 vertically to avoid a large DC component in the frequency domain. 
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Although the total average amplitude of vibration for the data shown in Figure 5a,c was 

approximately 100 mm and 0.3 mm, respectively, the signal-to-noise ratios for the frequency plots are 

comparable. This further highlights the potential of this sensing approach to capture small vibrations. 

4.2. Accuracy of Virtual Visual Sensors 

In order to determine the accuracy of our proposed approach, a pixel close to the bottom of the 

cantilever was selected to compute the frequency as described previously and shown in Figure 4a. The 

length, LC was varied between 50 and 635 mm to produce a range of natural frequencies. Figure 6 

shows the correlation between the physical accelerometer and the frequencies computed from the 

selected VVS. The computed frequencies listed in Figure 6a are given as f ± f/2 to account for the 

uncertainty where f = 1/T with T being the duration of the original signal length in seconds. Although 

we used zero padding to run the FFT in some cases, which will provide smoother peaks in the low 

frequency range, higher accuracy is not achieved. As can be observed in Figure 6b, there is excellent 

correlation between the frequencies computed from the two measurements. The squared correlation 

coefficient and standard error between accelerometer and the camera’s computed frequency were 

found to be 99.993% and 0.0295, respectively. 

Figure 6. (a) Table and (b) plot showing correlation between physical accelerometer and 

virtual visual sensor (VVS). 

 

4.3. Frequency Analysis over Range of Pixels 

An extended approach to determine candidate VVS is to analyze a selected area of pixels in a video 

around the vibrating structure and then highlighting the pixels that have the same frequency in the 

image as illustrated in Figure 7. It should be noted that this only works well for small amplitudes of 

vibration for reasons discussed in Section 4.1. This involves the following steps: 

(1) Select range of pixels to be analyzed within video (shown as white box in Figure 7b,c). 

(2) Compute time history of intensity values for each of the selected pixels. 

(3) Compute the peak frequency for each pixel as described in Section 3.2 and create a histogram. 
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(4) Highlight the pixels with the same peak frequency in the selected range (Figure 7b). 

(5) Normalize the color values with the magnitude of the FFT transform to reduce noise (optional, 

Figure 7c). 

(6) Repeat steps 1 to 5 if more than one significant frequency is present in the histogram. 

Figure 7. (a) Snapshot of cantilever; (b) snapshot with highlighted pixels of same peak 

frequency; and (c) snapshot with normalized highlighted pixels of same peak frequency. 

 

As can be observed from Figure 7, the result of this analysis is essentially an image of the outline of 

the vibrating parts of the structure. Note that this was done for a period where the cantilever was 

experiencing small amplitudes of vibration to avoid problems as discussed in the previous section. This 

analysis could also be used to average peak frequencies from several measurements rather than using 

one measurement. 

5. In-Service Monitoring Example 

In order to examine the applicability of this method for practical purposes, a video of an existing 

major bridge in Oregon was evaluated. The bridge consists of a continuous steel truss and some of the 

vertical hangers have experienced extensive torsional vibrations due to the high transverse winds 

which caused vortex shedding. Concerns regarding fatigue at the connections have been raised and as a 

result, the State Department of Transportation has recently retrofitted some of the susceptible 

members. The reason for the vibrations is the low torsional stiffness of the used I-sections. In a recent 

research project the problem was investigated in the laboratory to make predictions on the remaining 

fatigue life [30]. 

A video taken by DOT personnel showing torsional oscillations was made available to us.  

The movie was taken with an inexpensive point-and-shoot-type camera recording at 25 fps by hand  

(no mechanical stabilization) with the intent to qualitatively document such an occurrence and not 

necessarily for quantitative analysis purposes. The video captured severe torsional vibrations of two 

vertical hangers labeled (1) and (2) in Figure 8a, simultaneously. It should be noted that only four 
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seconds from the original video were usable which directly influences the resolution in the frequency 

domain. For this analysis, all pixels were analyzed and their peak frequency values computed as 

described in the Section 4.3. Figure 8 shows a histogram of all computed peak frequencies. As can be 

observed, the majority of computed peak frequencies are close to zero which essentially means that the 

majority of the pixel intensity values don’t change. Frequencies between 0 and 1 can be associated 

with the fact that the camera was held by hand and therefore probably not completely fixed. A closer 

look reveals that there are two distinct frequency peaks that can be associated with the torsional vibrations 

of the two hangers. 

Figure 8. Histogram of peak frequencies from all pixels in the bridge video. Insert:  

(a) Snapshot of video clip; (b) Colored pixels with same frequencies. 

 

By filtering out pixels that are not within the desired frequency range, we obtain the outline of the 

oscillating hangers (Figure 8b) as described in Section 4.3. The frequencies computed from one 

selected pixel for members (1) and (2) are 6.1 ± 0.125 and 7.1 ± 0.125 Hz, respectively. A finite 

element (FE) analysis of a hanger modeled after one of these two members [30] predicted a torsional 

vibration frequency of approximately 6.5 Hz. This result is not the actual measurement but proves that 

our computed frequencies obtained from the VVS are plausible. This demonstrates that, although the 

movie was never taken with the intent for analysis with our proposed methodology, we were still able 

to deduce useful frequency of vibration information. 

6. Conclusions and Outlook 

The concept of virtual visual sensors (VVS) offers new opportunities for structural health monitoring 

of structural and mechanical systems. The following conclusions can be drawn from this study: 
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• The fundamental frequency of vibration of single-degree-of-freedom (SDOF) systems [28] can 

be accurately computed using the proposed methodology of virtual visual sensors (VVS). 

• VVS are inexpensive non-contact sensors with great application flexibility. 

• Multiple independently vibrating elements in one video can be distinguished and their fundamental 

frequency of vibration computed. 

• The accuracy and resolution of the measurements depends on a variety of factors such as 

sampling rate, quantization noise (function of pixel size and location with respect to intensity 

curve), image sensor quality and size, and lens type. 

• By highlighting the pixels with a distinct frequency, the outline of the vibrating elements in a 

video can be recovered. 

In the future we plan to apply the methodology to multi-degree-of-freedom (MDOF) and continuous 

systems [28]. Furthermore, we want to investigate approaches that not only give frequency but also 

amplitude of vibration. Eventually, our goal is to establish sensitivity and reliability measures for a 

range of structural and mechanical applications. 
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