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Abstract: State-of-the-art parallel MRI techniques either explicitly or implicitly require 

certain parameters to be estimated, e.g., the sensitivity map for SENSE, SMASH and 

interpolation weights for GRAPPA, SPIRiT. Thus all these techniques are sensitive to the 

calibration (parameter estimation) stage. In this work, we have proposed a parallel MRI 

technique that does not require any calibration but yields reconstruction results that are at 

par with (or even better than) state-of-the-art methods in parallel MRI. Our proposed 

method required solving non-convex analysis and synthesis prior joint-sparsity problems. 

This work also derives the algorithms for solving them. Experimental validation was 

carried out on two datasets—eight channel brain and eight channel Shepp-Logan phantom. 

Two sampling methods were used—Variable Density Random sampling and non-Cartesian 

Radial sampling. For the brain data, acceleration factor of 4 was used and for the other an 

acceleration factor of 6 was used. The reconstruction results were quantitatively evaluated 

based on the Normalised Mean Squared Error between the reconstructed image and the 

originals. The qualitative evaluation was based on the actual reconstructed images. We 

compared our work with four state-of-the-art parallel imaging techniques; two calibrated 

methods—CS SENSE and l1SPIRiT and two calibration free techniques—Distributed CS 

and SAKE. Our method yields better reconstruction results than all of them. 
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1. Introduction 

In parallel MRI (pMRI), the object under study is scanned by multiple receiver coils. In order to 

expedite scanning, the K-space is partially sampled at each of the channels. The problem is to 

reconstruct the image given the partial K-space samples. The problem is rendered even more 

challenging by the fact that, each of the receiver coils has their own sensitivity profiles depending on 

their field of view; these sensitivity profiles are not accurately known beforehand. 

In the past, all pMRI techniques required the sensitivity profile to be estimated either explicitly 

(SENSE [1], SMASH [2]) or implicitly (GRAPPA [3,4], SPIRiT [5]). All the aforementioned methods 

assume that the sensitivity maps are smooth and hence have a compact support in the Fourier domain. 

Thus, while acquiring the MRI scan, the centre of the K-space is densely sampled from which  

the sensitivity map is either explicitly estimated (SENSE or SMASH) or the interpolation weights 

(dependent on the sensitivity maps) are estimated (GRAPPA, SPIRiT). Unfortunately joint estimation 

of sensitivity maps (or related interpolation weights) is an ill-posed problem. 

All the aforementioned pMRI reconstruction methods proceed in two stages—(i) In the calibration 

stage, the sensitivity maps or the interpolation weights are estimated; (ii) Based on these estimates,  

the image is reconstructed in the reconstruction stage. The reconstruction accuracy of the images is 

sensitive to the accuracy of the calibration stage. The calibration in turn depends on the choice of 

certain parameters, e.g., the window size—size of the central K-space region that has been fully 

sampled (for all the aforementioned methods) and the kernel size for estimating the interpolation 

weights (for GRAPPA and SPIRiT). These parameters are manually tuned and the best results are 

reported. The GRAPPA formulation has been studied in detail, and there is a study which claims to 

offer insights regarding the choice of GRAPPA reconstruction parameters [6]; however for other 

techniques such as SPIRiT and CS SENSE, there are no detailed studies on parameter tuning.  

In this work, we improve upon our previous work on calibration free reconstruction (see  

Section 2.2). Our method reconstructs each of the different multi-coil images, which are then 

combined by the sum-of-squares approach (used in GRAPPA and SPIRiT). We compare our method 

with state-of-the-art parallel MRI reconstruction methods; two of these are calibrated techniques—CS 

SENSE [7] and SPIRiT and the other two are calibration free methods—DCS and SAKE. Our 

proposed method outperforms all of them.  

Mathematically the sensitivity encoding of MR images is a modulation operation where the signal 

(image) is modulated by the sensitivity function (map) of the coils. All the aforesaid studies are based 

on the assumption the sensitivity map is smooth. Moreover the design on the receiver coils ensure that 

there sensitivity does not vanish anywhere, i.e., there is no portion of the sensitivity map that has 

zeroes. This is to ensure that each of the coils collects information about the entire object under scan 

and no portion of the object is ―invisible‖ to any of the coils. The sensitivity maps can thus be 

represented as smooth functions without any singularities. When this assumption holds, the sensitivity 

maps will not affect the location of the singularities/discontinuities/edges in the image. Sparsifying 

transforms like wavelet and finite difference, capture the discontinuities in the images, i.e., the 

transform coefficients have high values at positions corresponding to the edges and zeros elsewhere. 

Since sensitivity encoding (modulation), do not affect the position of the discontinuities in the 
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sensitivity encoded coil images, the positions of the high valued transform coefficients of the coil 

images will be the same for all. 

Our reconstruction method is based on the fact that the position of the high valued transform 

coefficients in the different sensitivity encoded coil images remain the same. Based on the precepts of 

Compressed Sensing (CS) we formulated the reconstruction as a row-sparse Multiple Measurement 

Vector (MMV) recovery problem. Our method produces one sensitivity encoded image corresponding 

to each receiver coil in a fashion similar to GRAPPA and SPiRIT. Both of these methods reconstruct 

the final image as a sum-of-squares of the sensitivity encoded images. In this paper, we will follow the 

same combination technique. 

Row-sparse MMV optimization can be either formulated as a synthesis prior or an analysis prior 

problem. However it is not known apriori which of these formulations will yield a better result. Even 

though the synthesis prior is more popular, it has been found that the analysis prior yields better results 

than the synthesis prior. Both of the analysis and the synthesis prior formulations can either be convex 

or non-convex. The Spectral Projected Gradient algorithm [8] can solve the convex synthesis prior 

problem efficiently. There is no efficient algorithm to solve the analysis prior problem. In the past, it 

has been found that for both synthesis and analysis prior, better reconstruction results can be obtained 

with non-convex optimization [9–11]. Following previous studies, we intend to employ non-convex 

optimization for solving the reconstruction problem. Since algorithms for solving such optimization 

problems do not exist, in this work, we derive fast but simple algorithms to solve the non-convex 

synthesis and analysis prior problems. 

2. Proposed Reconstruction Technique 

The K-space data acquisition model for multi-coil parallel MRI scanner is given by: 

 (1) 

where yi is the K-space data for the i
th

 coil, FΩ is the Fourier mapping from the image space to the  

K-space (Ω is the set of sample points, for Cartesian sampling, FΩ can be expressed as RF, where R is 

a mask and F is the Fast Fourier Transform, but for non-Cartesian sampling, viz. Spiral, rosetta and 

radial, FΩ is a non-uniform Fourier transform), xi is the vectorized sensitivity encoded image  

(formed by row concatenation) corresponding to the i
th

 coil, ηi is the noise and C is the total number of 

receiver coils. 

Since the receiver coils only partially sample the K-space, the number of K-space samples for  

each coil is less than the size of the image to be reconstructed. Thus, the reconstruction problem is 

under-determined. Following the works in CS based MR image reconstruction [12], one can 

reconstruct the individual coil images separately by exploiting their sparsity in some transform 

domain, i.e., each of the images can be reconstructed by solving, 

 (2) 

where Ψ is the wavelet transform εi is the variance of noise times the number of pixels in the image. 

The analysis prior optimization directly solves for the images. The synthesis prior formulation 

solves for the transform coefficients. In situations where the sparsifying transform is orthogonal 

, 1...i i iy F x i C  

2

1 2
min  subject to 

i

i i i i
x

x y F x   
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(Orthogonal: Ψ
T
Ψ = I = ΨΨ

T
) or a tight-frame (Tight-frame: Ψ

T
Ψ = I ≠ ΨΨ

T
), the inverse problem 

Equation (2) can be solved via the following synthesis prior optimization: 

 (3) 

where zi = Ψxi are the sparse transform coefficients. 

However, such piecemeal reconstruction of coil images does not yield optimal results. In this paper,  

we will reconstruct all the coil images simultaneously by solving a MMV recovery problem. Equation (1) 

can be compactly represented in the MMV forms as follows: 

 (4) 

where Y = [y1|…|yC], X = [x1|…|xC] and N = [η1|…|ηC]. Here ―|‖ denotes that the vectors are stacked  

as columns. In this work, we recover all the coil images X by solving the inverse problem Equation (4). 

2.1. Joint Sparsity Formulation 

The multi-coil images (xi‘s) are formed by sensitivity encoding of the original image (to be 

reconstructed). All previous studies in parallel MRI assume that the sensitivity maps are smooth and 

have a compact support in the Fourier domain. Since the sensitivity maps are smooth, they do not alter 

the positions of the edges of the images although they might change the absolute values. 

This can be clarified with a toy example. Figure 1a shows a prominent edge (say after sensitivity 

encoding by first coil) and Figure 1b shows a less prominent edge (say after sensitivity encoding by 

second coil). 

Figure 1. (a) Sharp edge and (b) Less prominent edge. 

  

(a) (b) 

If finite difference is used as the sparsifying transform, the discontinuities along the edges are 

captured, i.e., there are high values along the edges but zeroes elsewhere. The positions of the 

discontinuities are maintained, although the absolute values change as can be seen from Figure 2. 

Figure 2. (a) Finite differencing of sharp edge and (b) Finite differencing of less 

prominent edge. 

  

(a) (b) 

2

1 2
min  subject to 

i

T
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x
z y F z   

Y F X N 
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Based on this toy example, we consider the MMV formulation Equation (4). All the columns of X 

are images corresponding to different coils. Since the sensitivity maps of all the coils are smooth, the 

positions of the edges remain intact. For better clarity, we look at the images in a transform domain: 

 (5) 

where Ψ is the sparsifying transform than encodes the edges of the images, Z is the matrix formed by 

stacking the transform coefficients as columns. 

In Equation (5), each row corresponds to one position. Based on the discussion so far, since the 

positions of the edges in the different images do not change, the positions of the high valued 

coefficients in the transform domain do not change either. Therefore for all the coil images the high 

valued transform coefficients appear at the same position. Thus the matrix Z is row-sparse, i.e., there 

are a few rows with high valued coefficients while most of the rows are zeros. 

We propose to solve Equation (4) by incorporating this row-sparsity information into the 

optimization problem. The analysis prior formulation for solving Equation (4) is as follows: 

 (6) 

where 
2, 2

1

N
pp j

p
j

Z Z 



  ( jZ   is the vector whose entries form the j
th

 row of Z = ΨX), ||.||Fdenotes the 

Frobenius norm of the matrix and ε is the variance of noise multiplied by the length of the transform 

vector and the number of receiver coils (C in our case).  

The values of the inner (l2) and outer (lp) norms have been suggested in [13]. The choice of such 

values for the norms can be understood intuitively. The inner l2-norm over the rows enforces non-zero 

values on all the elements of the row vector whereas the outer lp-norm enforces row-sparsity, i.e., the 

selection of only a few rows [13]. 

The aforesaid problem Equation (5) is convex for p = 1. However, it has been found better MR 

image reconstruction results can be obtained if non-convex priors are used. 

The analysis prior optimization directly solves for the images. The synthesis prior formulation 

solves for the transform coefficients. In situations where the sparsifying transform is orthogonal or  

a tight-frame, the inverse problem Equation (4) can be solved via the following synthesis  

prior optimization: 

 (7) 

where Z = ΨX. 

The images are recovered by: 

 (8) 

The final image (I) is obtained from the individual coil images by sum-of-squares combination in a 

fashion similar to GRAPPA and SPIRiT: 

1,1 1,
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 (9) 

The analysis and the synthesis priors yield same results for orthogonal transforms but different 

results for redundant tight-frames. 

2.2. Connection with Previous Works 

In a recent work, a method similar to ours has been proposed [14]. The individual coil images were 

reconstructed by the solving the following optimization problem: 

 (10) 

This is actually the unconstrained version of our prior analysis problem Equation (6) with p = 1. 

The algorithm proposed in [14] to solve Equation (10) is ad hoc and is not derived from any 

optimization principle. It formulates an analysis prior problem and then suggests a synthesis prior type 

algorithm to solve it. Furthermore there is also the issue of choosing parameters ε and τ; For  

correct choice of parameters the constrained and the unconstrained versions yield the same results. 

Unfortunately, no analytical relationship exists between the two. It is easy to estimate ε since it is 

dependent on the noise variance. But there is no known way to estimate τ given the value of ε. One can 

only manually try different values of τ and report the best possible results. However, such a technique 

is not guaranteed to give optimum results in practical scenarios. 

There have been other studies that used joint-sparsity models for parallel MRI reconstruction [15–17]. 

However, they are all modification of the basic SENSE method and require estimates of the coil 

sensitivities. They require explicit knowledge regarding the sensitivity maps and therefore are not 

calibration free techniques. The approach proposed here and those in the aforementioned studies  

are different. 

Prior to this work, we proposed a naive version of the CaLM MRI technique [18]. There in, instead 

of stacking the coil images/transform coefficients as columns of a MMV matrix (as done here), were 

concatenated to a long vector, i.e., instead of Equation (4) the data acquisition model was expressed  

as follows: 

 (11) 

where:
1 10 0

... , 0 ... 0  and ...

0 0C C

y RF x

y E x

y RF x







     
     

  
     
          

  

In this formulation, the vector x will be group-sparse in transform domain for the same reasons it is 

row-sparse in the proposed formulation. In [18] a convex group-sparse recovery problem is proposed 

to recover the coil images. Even though the reconstruction philosophy is the same in [18] and the 

proposed approach; the approach proposed in this work is more general since we can handle both 

convex and non-convex formulations. Also the data acquisition model Equation (4) is more natural 

than Equation (11). 

1/2

2

1

C
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i
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In this work, we also do an in-depth analysis as to why the proposed technique is likely to be 

successful. None of the previous studies [14,18] have carried out such an analysis. Over all this work is 

a more generalized, thorough and in-depth extension to the prior studies. 

During the review, one of the reviewers pointed out to a few recent studies that do not require a 

calibration stage [19,20]. The formulation in [19] can be understood from the following diagram 

(Figure 3)—overlapping blocks from all the channels are vectorized and stacked as columns of a 

Hankel matrix A. 

Figure 3. Formation of low-rank hankel matrix.  

 

The Hankel matrix thus formed is low-rank owing to local correlations. In [18] the low-rank 

structure is exploited to recover the coil images. This is a good intuitive approach, but the main 

problem with this approach is that the Hankel matrix thus formed is huge owing to overlap of the 

blocks. Estimating the low-rank matrix is an iterative process and at each iteration the SVD of this 

matrix needs to be computed. Computing the SVD for such a large matrix becomes infeasible in 

practice. This (low-rank) assumption (behind SAKE) follows from inuition but is not very practical for 

large scale problems especially for 3D volume reconstruction. 

SAKE is pegged on the idea that the coil images are correlated spatially; also the various channel 

images are correlated. Thus, the K-space samples are also correlated (The Fourier transform being 

orthogonal do not disturb the correlation). To overcome the computational issue of SAKE, the CLEAR 

technique was proposed in [20]. In CLEAR, a partial Hankel matrix is formed by considering a small 

section of the K-space. CLEAR assumes that the K-space is correlated locally. However, such an 

assumption does not follow readily from the mathematics of MRI acquisition—local correlation in the 

pixel domain does not translate to local correlation in the Fourier frequency domain. Thus, although 

CLEAR addresses the computational issues of SAKE, it introduces more severe problems—the 

reconstruction shows heavy artifacts owing to incorrect modeling. 

3. Theoretical Understanding of Proposed Approach 

A lot of practical CS problems exploit the sparsity of the natural signals in the wavelet basis in 

order to reconstruct them. The sparsity of the wavelet coefficients arises on account of the piecewise 

smooth (e.g., piecewise polynomial) structure of such signals, and the vanishing moments of wavelets. 
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A precise way of describing this is that the action of any wavelet ψ(t) can be regarded as a ―smoothed‖ 

derivative operation [21], namely: 

 (12) 

where the order of differentiation n is precisely the number of vanishing moments of ψ(t). Here φ(t) is 

some low-pass function matched with the wavelet ψ(t). As a result, large wavelet coefficients are 

obtained in the vicinity of singularities, while a relatively smaller response is obtained in the smooth 

portions of the signal. 

In this sub-section, we make some observations on how the sparsity of the piecewise smooth signal 

is affected by modulation. To keep it simple, we work with one-dimensional signals. Let f(t) be  

a piecewise smooth signal that is multiplied by a waveform m(t) to get the modulated signal  

g(t) = f(t)m(t). A natural question then is whether g(t) is sparse in the wavelet domain, and if so, does it 

have the same sparsity signature as f(t)? By sparsity signature, we simply mean the set of points where 

the wavelet coefficients are larger than some threshold. The actual size of the response could, however, 

be very different. Simulation results confirm that this is indeed the case, provided that m(t) and some 

of its derivatives is non-vanishing. These observations can be explained more precisely. 

Note that if f(t) and g(t) are singular at the same set of points, then they clearly have the same 

sparsity signature. The questions then is can the modulation operation create new discontinuities or 

erase some of the existing ones? It is clear that g(t) cannot have a discontinuity if both f(t) and m(t)  

are smooth. 

Therefore, the only situation of interest is that in which f(t) has a discontinuity and we ask as to under 

what conditions on m(t) will g(t) exhibit a discontinuity? For the simplest case of jump discontinuity, we 

easily see the following. 

Proposition 1 (Jump singularity). Suppose f(t) has a jump discontinuity at t = t0, and m(t) is 

smooth. Then g(t) has a jump at t0 if and only if m(t0) is non-zero (see Figure. 4). 

Note that by smooth we mean that m(t) is continuous and has sufficient derivatives. On the other 

hand, f(t) has a jump at t0 in the sense that f(t) is smooth away from t0, but has different left and right 

limits at t0, that is, f(t) tends to different values as t approaches t0 from the left and right of t0. As a 

simple example, consider the Heaviside function with a transition at t0. 

In practice this proposition demands that the sensitivity map (modulation function) should be 

smooth and non-vanishing. The fact that the sensitivity map is smooth is well known and is the basis 

of all studies in parallel MRI. But we make the additional demand that the sensitivity map should be 

non-vanishing as well. Ideally this constraint is satisfied by the design of the scanner—there is no 

portion of the subject which is completely blind to a particular channel; thus the sensitivity profile for 

all the channels are non-vanishing. 

Note that higher-order singularities can arise when two smooth functions are glued together. For 

example, consider the function obtained by gluing the zero function and a polynomial: 

 (13) 

( )
0 0( ) ( ) ( )( )nf t t t dt D f t   

0  0
( )

  0n

if t
f t

x if t


 


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It is clear that f(t) is continuous. In fact, f(t) has n derivatives. However, the n-th derivative f
(n)

(t) has 

a jump at t0. As a result, the wavelet transform of f(t), obtained using a wavelet with sufficient 

vanishing moments, is sparse with a large non-zero response around t0. 

So what is the effect of modulation on the wavelet transform of such signals? Of course, one would 

expect g(t) to have at most n derivatives. The only way it could have more derivatives is if the 

corresponding derivatives of m(t) vanish at t0. 

Proposition 2 (Higher-order singularity). Suppose f(t) has n derivatives at t = t0, but its n-th 

derivative is discontinuous at t0. Then g(t) can have m > n derivatives at t0 if and only if m
(k)

(t0) = 0 for 

n ≤ k ≤ m − 1. Otherwise, the g(t) would have at most n derivatives at t0. 

Combined with Equation (12), the implication of this observation is that if the wavelet at least n 

vanishing moments, then the wavelet transforms of both f(t) and g(t) would exhibit a large response 

around t0, unless the n-th and larger derivatives of m(t) are zero at t0 (see Figures 4 and 5). In summary, 

if it can be guaranteed that m(t) and its derivatives are always positive (or negative), then the wavelet 

coefficients of g(t) would have the same sparsity signature as that of f(t). 

Figure 4. (Left)—Modulation function m(t); (Middle)—Signal f(t); (Right)—Modulated  

signal m(t)f(t).  
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Figure 5. (Left)—Modulation function m(t); (Middle)—Signal f(t); (Right)—Modulated 

signal m(t)f(t).  

 

 

For parallel MRI reconstruction, the sensitivity map modulates the underlying signal (MR image). 

The sensitivity maps are assumed to be smooth and can be modeled as polynomials [22]. The design of 

the scanner ensures that there are no singularities in the sensitivity maps; physically this ensures that 

each receiver coil has information about the full image. Based on the discussion in this sub-section, 

this guarantees that the jump discontinuities in the MR image are preserved after sensitivity encoding. 

Hence, the positions of the high valued wavelet transform coefficients will remain unchanged before 

and after sensitivity encoding. 

We show a toy example. We considered a function f(t) = (1 + t
2
) (2 heaviside(t)-4 heaviside(t-T)). 

Which was modulated by two polynomials of small order; the modulation functions are: 

  

The original function and its modulated versions are shown in Figure 6.  

Figure 6. Original and modulated signals. (Top) to (bottom): f(t); m1(t) × f(t); m2(t) × f(t). 

 

We compute the wavelet transforms of the original and the modulated signals. These are shown in 

Figure 7. Daubechies wavelets of order 16 is used and the decomposition scale is 7. 

3 2

2

1

2( ) 1

1( ) t t

m

m

t t

t  
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Figure 7. Wavelet transform of original and modulated signals. (Top) to (bottom):  

f(t); m1(t) × f(t); m2(t) × f(t).  

 

It can be seen from Figure 6 that the sparsity signatures are exactly the same. The wavelet transform 

of the original and the modulated signals have high valued coefficients at the same positions; but the 

actual values at these positions are varying. 

4. Optimization Algorithms 

The Majorization-Minimization (MM) approach [23] is employed to derive solution to the 

following problems: 

Synthesis:  (14a) 

Analysis:  (14b) 

For the synthesis prior X = Z, H = FΩΨ and for analysis prior, A = Ψ and H = FΩ. 

Instead of solving the aforesaid constrained problems, we propose solving their  

unconstrained counterparts, 

 (15a) 

 
(15b) 

The constrained and the unconstrained formulations are equivalent for proper choice of the 

Lagrangian λ. Unfortunately for most practical problems it is not possible to determine λ explicitly by 

analytical means. Therefore, instead of ‗guessing‘ λ, given the value of ε (as in [14]), we will reach the 

solution of the constrained problem by iteratively solving a series of unconstrained problems with 

decreasing values of λ. Such cooling techniques are successful since the Pareto curve for the said 

problem is smooth [24]; similar cooling algorithms have been successfully used in the past for solving 

Compressed Sensing problems [24–26]. 

4.1. Solving the Unconstrained Problems 

We solve this problem by the Majorization-Minimization (MM) approach [23]. The generic MM 

algorithm is as follows, 

  

2

2,
min  subject to 

p

p FX
X Y HX  

2

2,
min  subject to 

p

p FX
AX Y HX  

2

1 1 2,

1
min ( ),  where ( )

2

p

F pX
J X J X Y HX X  

2

2 2 2,

1
min ( ), where ( )

2

p

F pX
J X J X Y HX AX  
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Let J(x) be the (scalar) function to be minimized 

1. Set k = 0 and initialize x0. 

Repeat step 2–4 until suitable a stopping criterion is met. 

2. Choose Gk(x) such that 

a. Gk(x) ≥ J(x) for all x. 

b. Gk(xk) = J(xk). 

3. Set xk + 1 as the minimizer for Gk(x). 

4. Set k = k + 1, go to step 2. 

For this paper, the problems to be solved are Equations (15a) and (15b). They do not have a closed 

form solution and therefore must be solved iteratively. At each iteration, we chose 

 (16a) 

 (16b) 

( )

1 ( )kG x  and ( )

2 ( )kG x  satisfies the condition for MM algorithm when α ≥ max eigvalue(H
T
H). 

Equations (16a) and (16b) can alternately be expressed as, 

 (17a) 

 
(17b) 

where K1 and K2 are terms independent of X. 

Minimizing Equations (17a) and (17b) are the same as the following, 

 (18a) 

 
(18b) 

where ( ) ( ) ( )1
( )k k T kB X H Y HX


   .  

These updates Equation (18) are known as the Landweber iterations. 

For the synthesis prior problem, we need to solve Equation (18a) at each iteration. Taking the 

derivative of
( )

1 ( )kG X  we get, 

  

where signum is the sign of the components in X, where
2

( ) ( )

2
( )

p
k j kdiag X X


  ; here 

2
( )

2

p
k jX


 means 

that the l2-norm of the j
th

 row of X is raised to power p-2.  

Setting the derivative to zero and re-arranging, we get: 

 (19) 

 

  

( ) ( ) ( ) 2

1 2,( ) ( ) ( )( ) || || || ||k k t T k p

F pG x X X I H H X X Y HX X       

( ) ( ) ( ) 2

2 2,( ) ( ) ( )( ) || || || ||k k t T k p

F pG x X X I H H X X Y HX AX       

( ) ( ) 2

1 2 2, 1

1
( ) || ( ) || || ||k k T p

pG x X H Y HX X X K 


     

( ) ( ) 2

1 2 2, 1

1
( ) || ( ) || || ||k k T p

pG x X H Y HX X AX K 


     

2
( ) ( ) ( )

1 1 2,

1
min ( ),  ( )

2

k k k

pFX
G X G X B X X




  

2
( ) ( ) ( )

2 2 2,

1
min ( ),  ( )

2

k k k

pFX
G X G X B X AX




  

( )

( )1 ( )
( )

k

kdG X
X B signum X

dX




   

( )B X signum X



  



Sensors 2013, 13 16726 

 

 

This can be solved by the following soft-thresholding: 

 (20) 

Equations (18a) and (20) suggest a compact solution for the unconstrained synthesis prior problem. 

This is given in the following algorithm. 

Algorithm 1: Unconstrained Synthesis Prior  

Initialize: 

  

Repeat until convergence: 

 
 

 
 

Solving the analysis prior problem requires minimization of Equation (18b) in each iteration. 

Taking the derivative of ( )

2 ( )iG X  ( )

2 ( )iG X  we get: 

 (21) 

where 
2

( )

2
( )

p
i jdiag W


 

2
( )

2
( )

p
i jdiag W


   and W = AX. 

Setting the gradient to zero we get: 

 (22) 

It is not possible to solve Equation (22) directly as the sparsifying transform (A) in most cases is 

available as a fast operator and not as an explicit matrix. To overcome this problem, the matrix 

inversion lemma is used to simplify it: 

  

From Equation (22), we have using the above identity: 

  

Adding cz to both sides and subtracting AA
T
z from both sides gives the equivalent equation we get: 

 (23) 

 
(24) 

where c ≥ max eigvalue(A
T
A). 

  

( 1) ( ) ( )( )max(0, )k k kX signum B B




   

(0) 0X 

( ) ( ) ( )1
( )k k T kB X H Y HX


  

( 1) ( ) ( )( )max(0, )k k kX signum B B




   

( )

( )2 ( )k

i TdG X
X B A AX

dX




   

( )( )T kI A A X B



  

1 1 1( ) ( )T T TI A A I A AA A
 

 

       

( ) 1 1 ( )( )k T T kX B A AA AB




    

( 1) 1 1 ( ) ( ) ( )( ) ( ( ))k k k T kZ cI cZ A B A Z




      

( 1) ( ) ( )k k T kX B A Z  



Sensors 2013, 13 16727 

 

 

This leads to the following algorithm for solving the analysis prior joint-sparse optimization problem. 

Algorithm 2: Unconstrained Analysis Prior  

Initialize: 

  

Repeat until convergence: 

  

  

 
 

4.2. Solving the Constrained Problem via Cooling 

We have derived algorithms to solve the unconstrained problems. As mentioned before, the 

constrained and the unconstrained forms are equivalent for proper choice of ε and λ. However, there is 

no analytical relationship between them in general. When faced with a similar situation, we employed 

the cooling technique following previous studies [24–26]. 

The cooling technique solves the constrained problem in two loops. The outer loop decreases the 

value of λ. The inner loop solves the unconstrained problem for a specific value λ. As λ is 

progressively decreased, the solution of the unconstrained problem reaches the desired solution. Such a 

cooling technique works because the pareto curve between the objective function and the constraint is 

smooth. The cooling algorithm for the synthesis and analysis prior are: 

Algorithm 3: Synthesis Prior Algorithm  

Initialize: 

; λ < max(P
T
x)  

Choose a decrease factor (DecFac) for cooling λ 

Outer Loop: While
1
 

  

Inner Loop: While
2 

  

 
 

Compute: 

  

Compute: 

(0) 0X 

( ) ( ) ( )1
( )i i T iB X H Y HX


  
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


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2|| ||Fy Hx  

( ) ( 1)

( ) ( 1)

i i

i i

J J
Tol

J J
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

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( ) ( ) 2 ( )

2,|| || || ||i i i p

F pJ Y HX X  
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
  
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End While
2
 (inner loop ends) 

  

End While
1
 (outer loop ends) 

 

Algorithm 4: Analysis Prior Algorithm  

Initialize: 

; λ < max(P
T
x)  

Choose a decrease factor (DecFac) for cooling λ 

Outer Loop: While
1
 

  

Inner Loop: While
2 

  

 
 

Compute: 

  

Update: 

  

Update: 

  

  

End While
2
 (inner loop ends) 

  

End While
1
 (outer loop ends) 

In this work, we proposed solving the reconstruction problem via non-convex optimization 

algorithms. Theoretically one may argue about the convergence of such algorithms to local minima. 

However, in practice it has never been a problem. In previous studies [9–11,27], non-convexity never 

posed to be problem for MRI reconstruction. 

  

( 1) ( ) ( )( )max(0, )i i iX signum B B




   

( 1) ( ) 2 ( )

2,|| || || ||i i i p

F pJ Y HX X   

DecFac  

(0) 0X 

2|| ||Fy Hx  

( ) ( 1)

( ) ( 1)

k k

k k

J J
Tol

J J










( ) ( ) 2 ( )

2,|| || || ||k k k p

F pJ Y HX AX  

( ) ( ) ( )1
( )k k T kB X H Y HX


  

( 1) 1 1 ( ) ( ) ( )( ) ( ( ))k k k T kZ cI cZ A B A Z




      

( 1) ( ) ( )k i T kX B A Z  

( 1) ( ) 2 ( )

2,|| || || ||k k k p

F pJ Y HX AX   

DecFac  



Sensors 2013, 13 16729 

 

 

5. Experimental Evaluation 

There are two sets of ground-truth data used for our experimental evaluation (Figure 7). The brain data 

and the Shepp-Logan phantom have been used previously in [4]. The brain data is a fully sampled T1 

weighted scan of a healthy volunteer. The volunteer was scanned using Spoiled Gradient Echo sequence 

with the following parameters—echo time = 8 ms; repetition time = 17.6 ms; flip angle = 20 degrees.  

The scan was performed on a GE Sigma-Excite 1.5-T scanner, using an eight-channel receiver coil. 

The 8-channel data for Shepp-Logan phantom was simulated. The ground-truth is formed by  

sum-of-squares reconstruction of the multi-channel images. 

Figure 7. Groundtruth images: Brain and Shepp-Logan Phantom. 

 

In this work, we show results for two different K-space sampling schemes (Figure 8)—Variable 

Density Random Sampling (Cartesian) and Radial Sampling (non-Cartesian). In VD Random (VDR) 

Sampling, the center of the K-space is densely sampled, while the rest of the K-space is sparsely 

sampled by randomly omitting lines in the phase encoding direction. This is widely used sampling 

method for parallel MRI. Radial sampling is one of the fastest sampling methods [28,29] and has been 

previously used in parallel MRI [30]. For the brain image, the acceleration factor of 4 is used, for the 

Shepp-Logan phantom, acceleration factor of 6 is used for both Variable Density random sampling and 

radial sampling. 

Figure 8. (a) VD Random Sampling, (b) Radial sampling. 

  

(a) (b) 
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We compare our proposed method with two state-of-the art calibrated methods—L1SPIRiT [4] 

(frequency domain method) and CS SENSE [6] (image domain method) and two calibration free 

techniques DCS [14] and SAKE [19]. For our proposed method, the mapping from non-Cartesian  

K-space to the Cartesian image space is the Non-Uniform Fast Fourier Transform (NUFFT) [31,32]. 

For CS SENSE the sensitivity profiles are estimated in the fashion shown in [30]. A Kaiser-Bessel 

window at the center of the K-space is densely sampled, from which a low resolution image for each 

coil is obtained. These images are combined by sum-of-squares. The sensitivity map is computed by 

dividing the low resolution image of the corresponding coil by the combined sum-of-squares image. 

Our proposed method and the DCS based method propounded in [14] do not require any parameter 

estimation. In [14], the reconstruction is solved via Equation (10). However, as mentioned earlier, it is 

not possible to determine the parameter τ analytically. For this work, we determine the value of τ  

as specified in [14]—1/500 of the maximum (in absolute value) of the zero-filled image for the first  

50 iterations, and 1/100 of the maximum value for the last 10 iterations. Sixty iterations were used to 

generate the final image. 

For our non-convex formulation, we found that the best results were obtained for p = 0.5 (this value 

of p has also been suggested in [11]). The quantitative reconstruction results are shown in Table 1. 

Normalized Mean Squared Error (NMSE) is the metric used for evaluation. The best reconstruction 

(lowest error) results are shown in bold. 

Table 1. Comparison of reconstruction accuracies for calibration-free techniques. 

Image → Brain Phantom 

Type of Sampling → VDR Radial VDR Radial 

l1SPIRiT [4] 0.13 0.07 0.13 0.09 

CS SENSE [5] 0.16 0.28 0.14 0.04 

DCS reconstruction [13] 0.25 0.19 0.29 0.17 

SAKE [19] 0.14 0.14 0.13 0.10 

Proposed non-convex synthesis prior 0.08 0.03 0.15 0.01 

Proposed non-convex analysis prior 0.06 0.03 0.13 0.00 

The DCS reconstruction yields the worse results. This is expected—DCS is an ad hoc algorithm and 

consequently it fails. Our proposed non-convex analysis prior formulation yields the best results. The 

synthesis prior formulation is slightly worse off than the analysis prior. The SAKE technique does not 

yield as good results as our proposed technique. CS SENSE and l1SPIRiT yield better results than 

SAKE, but they have to be thoroughly calibrated and hence are not robust. 

Although NMSE is an often used metric for evaluating the reconstruction accuracy, it does not 

always reflect the qualitative aspects of reconstruction. For qualitative evaluation we show the 

reconstructed images in Figure 9. Owing to limitations in space we only show the results for variable 

density random sampling. The qualitative results more or less corroborate the quantitative results. With 

6-fold undersampling, all the methods apart from our proposed analysis prior formulation yields 

significant reconstruction artifacts. 
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Figure 9. Reconstruction for Variable Density Random sampling. From Top to Bottom: 

DCS Reconstruction, l1SPIRiT, CS SENSE, SAKE, Proposed Non-Convex Synthesis 

Prior, Proposed Non-Convex Analysis Prior. 
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Figure 9. Cont. 

 

In order to elucidate the reconstruction even more, we show the difference (between groundtruth 

and reconstructed) images for the brain image. The difference images are shown in Figure 10. The 

contrast of the difference images have been enhances five times for visual clarity. The difference 

images corroborate our previous findings. We see that the DCS reconstruction yields the worst results. 

CS SENSE and SAKE yields almost similar difference images; l1SPIRiT slightly improves upon CS 

SENSE and SAKE. Our analysis prior formulation yields the best results; the synthesis prior is better 

than l1SPIRiT bust is slightly worse than the analysis prior. 

Figure 10. Difference Images. (a) DCS; (b) CS SENSE; (c) SAKE; (d) l1SPIRiT;  

(e) non-convex synthesis prior; (f) non-convex analysis prior. 

   

(a) (b) (c) 

   

(d) (e) (f) 

6. Conclusions 

State-of-the-art parallel MRI techniques either implicitly or explicitly require a calibration stage to 

estimate the sensitivity maps (for SENSE, SMASH and related techniques) or interpolation weights 
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(for GRAPPA, SPIRiT and related techniques). Thus, all these methods are sensitive to the calibration 

stage. In recent times there is a concerted effort in developing calibration free reconstruction 

techniques. In this paper we improve upon a previous technique calibration free reconstruction 

technique [18]. 

We compare our proposed technique with other calibrated and calibration free methods. We find 

that our proposed non-convex analysis prior formulation always yields the best results. However there 

are two shortcomings with the proposed method. The first one is more of a constraint than a 

shortcoming. Our technique does not work with uniform periodic undersampling. This is because, our 

solution approach requires solving an under-determined problem Equation (4) and is based on the 

tenets of Compressed Sensing; and Compressed Sensing demands that the sampling scheme should  

be randomized.  

The second problem with our work is on the assumption that the modulation function is smooth that 

does not change the number of discontinuities in the image. However, the function can introduce new 

discontinuities if the function is zero in certain positions. Ideally this is taken care of during the design 

of the scanner, the FOV is designed such that no area of the subject is completely blind to the channel. 

However, if the SNR the modulation function can be effectively zero. This would violate the  

row-sparsity assumption and our method would fail to produce good results. 
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