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Abstract: Thermocouples are the most frequently used sensors for temperature measurement 

because of their wide applicability, long-term stability and high reliability. However, one of the 

major utilization problems is the linearization of the transfer relation between temperature and 

output voltage of thermocouples. The linear calibration equation and its modules could be 

improved by using regression analysis to help solve this problem. In this study, two types of 

thermocouple and five temperature ranges were selected to evaluate the fitting agreement of 

different-order polynomial equations. Two quantitative criteria, the average of the absolute 

error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate 

the accuracy and precision of these calibrations equations. The optimal order of polynomial 

equations differed with the temperature range. The accuracy and precision of the calibration 

equation could be improved significantly with an adequate higher degree polynomial equation. 

The technique could be applied with hardware modules to serve as an intelligent sensor for 

temperature measurement. 
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1. Introduction 

Temperature measurement is basic and important work in a variety of industries. Electrical 

temperature sensors included resistive temperature detectors, thermistors and thermocouples [1,2]. 

Because of their multiple advantages of low cost, robustness and easily standardization, thermocouples 

are the most frequently used sensors for temperature measurement. They can measure a wide range of 

temperatures and have long-term stability and high reliability [3,4]. However, the major problems of 

this sensor for signals conditioning are the cold junction compensation and linearization of the transfer 

relationship between temperature and output voltage [2,3]. 

Output voltage tables for various types of thermocouples list the output voltage corresponding to 

different temperatures [5]. The reference junction is fixed at 0 °C. The relation between output voltage 

and temperature is established as a higher order polynomial equation for each type thermocouple [1,3]. 

For T-type thermocouples, the relation equation is an 8th order polynomial equation for the 

temperature range from 0–400 °C. For practical applications, this calibration equation is expressed as 

an inverse equation. Temperature is recognized as the dependent variable and the output voltage serves 

as the independent variable.  

Because these calibration equations are higher order polynomial equations, Sarma and Boruan [6] 

suggested that the whole temperature range can be divided into smaller ranges, with lower degree 

polynomial calibrations being used for each range [4], but the literature contains no reports of any 

applications of this method.  

Hardware modules have been designed to linearize the non-linear signals with hardware  

linearization [7]. The curve of nonlinear signals was divided into several pieces. The relationship 

between input and output was assumed to be a linear equation. The thermocouple input signal for each 

piece was filtered, isolated, amplified and converted to an analog voltage output by a linear equation [6]. 

The theory of the calibration with piecewise linear regression has been discussed [8]. Several  

self-compensation methods were proposed to build reconfigurable measurement systems for designing 

intelligent sensors [9]. The thermistor output from 0 °C to 100 °C was selected to compare errors of 

the measurement system. However, the piecewise linear interpolation method had the largest errors for 

these methods.  

Some generalized software techniques for linearisation transducers had been used for  

thermocouples [10,11]. However, their performances have seldom been reported. An increase in table size 

of the thermocouple output voltage could improve the accuracy, but is impractical for an electrical 

thermometer. More electronic circuits for linearization could enhance the accuracy. However, these circuits 

are affected by ambient temperature, electromagnetic, and radiofrequency interference [10,11]. A  

log-amplifier based circuit for linearizing thermocouple signals was described [12]. Three types of 

thermocouples were selected to compare simulation results. The maximum percentage nonlinearity error 

before and after linearization were reduced significantly. To design a higher precision industrial 

temperature measurement system, Sarma et al. [13] linearized the amplified thermo-emf of a K-type 

thermocouple with the least squares polynomial fitting technique. Four temperature ranges were 

selected. The parameters for linear and polynomial equations were estimated for receiving signals 

gained by the amplifier and the accuracy was better with polynomial equations than linear fitting.  
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Sarma and Boruan [6] developed a measurement system for a K-type thermocouple with  

analog-to-digital converter, amplifier reference junction and computer. The measurement temperature 

range was 0 °C to 200 °C. Two calibration equations, a 9th order polynomial and a linear model, were 

proposed by a least squares method. The accuracy was within ±0.08 °C at 100.2 °C standard temperature. 

The authors suggested that the precision could be improved with a higher order regression equation, but did 

not report their adequate regression model. Danisman et al. [14] designed a high precision temperature 

measurement system based on an artificial neural network for three types of thermocouples. A neural 

linearizer was used to compute the temperature from the output voltage of the thermocouples.  

For determining the optimal order of polynomial equations for temperature measurement, data 

fitting ability and prediction performance are both important [15]. A higher order polynomial equation 

has higher values for the coefficient of determination (R
2
). However, the standard values of estimation 

could be increased with the loss of data freedom. A higher degree polynomial equation may be  

over-fitted and the predicted ability thus decreased [16]. Resistance-temperature calibration equations 

for a negative temperature coefficient (NTC) thermistor have been evaluated with a modern regression 

technique to show the importance of an adequate calibration equation [16]. The division of the whole 

measurement range into smaller temperature ranges was proposed [6]. These calibration equations 

could be transformed with the use of software and incorporated into an intelligent sensor.  

In the previous studies, the curves of the relationship of temperature and output voltage were 

divided into many pieces. Each piece of these curves was assumed as a linear relationship, however, 

the residual plots of each piece still indicated nonlinear results [4,7,13]. The linear equation should not 

be the only choice for establishing of calibration equations. Least squares-based parabolic regression 

had been reported to determine the parameters of the calibration equation [17]. As the piece 

relationship between temperature and output voltage of a thermistor was assessed with the 4th order 

polynomial equation, the accuracy and precision could be improved significantly [16]. 

In this study, the data of output voltage for two types of thermocouple were used from the US 

National Institute of Standards and Technology (NIST) standard. Five temperature ranges were 

selected to evaluate their calibration polynomial equations, called piecewise polynomial equations. The 

parameters for these equations were estimated by the least squares technique. The fitting performance 

of these equations was evaluated by several statistical methods. 

2. Calibration Equations 

2.1. Calibration Equations 

The inverse calibration equation was used to describe the relationship between temperature (T) and 

output voltage of thermocouples (mv). Because the output voltage at 0 °C for thermocouples is zero, 

the intercept is excluded in a polynomial equation: 

T = c1mv + c2mv
2
 +…….+ ckmv

k
 (1) 

where c1, c2 to ck are constants. 
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2.2. Temperature-Voltage Data of Thermocouples 

Table data for thermocouples [5] were selected to evaluate the fitting ability of the calibration in 

this study. 

2.2.1. Type of Thermocouples: T-Type and J-Type 

Two-types of thermocouples were selected in this study for their popularity in industry. The method 

developed in this study could be used for other thermocouples. The J-type thermocouple is commonly 

used for higher temperature ranges. In this study, the type of thermocouple was selected to evaluate the 

improved performance by piecewise polynomial equation. 

2.2.2. Piecewise Range of Temperature  

There were five ranges (a) 0~100 °C; (b) 0~200 °C; (c) −50~50 °C; (d) −100~0 °C; and  

(e) −100~100 °C. They are the ranges for most living systems, included human beings. The 

distribution of temperature data for temperature versus voltage for two types of thermocouples are 

presented in Figures 1 and 2. 

Figure 1. Distribution of temperature and output voltage of two types of thermocouples 

with temperature (0 to 200 °C). 
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Figure 2. Distribution of temperature and output voltage of two types of thermocouples 

with temperature (−100 to 100 °C). 
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2.3. Data Analysis 

Microsoft Excel 2003 was used to estimate the parameters of the different order polynomial 

equations. The t value of the highest order parameter was used to evaluate the optimal order of 

polynomial equations. If the order of polynomial equation is underestimated, the estimated parameters 

and variance will have a fixed bias. If the order of polynomial equation is overestimated, the variance 

increases and the bias of the prediction ability will inflate [6,15]. Residual plots were used as the 

qualitative criterion to evaluate the adequateness of models [15]. If the model is adequate for 

expressing the relationship between independent and dependent variables, the error distribution in 

residual plots is represented as horizontal bands. If the model is not adequate, the residual plots show a 

clear systematic pattern. The error was defined as follows:  

ˆ
i i ie y y 

 (2) 

where ei is the error of calibration equation, yi is the dependent variable and iy  is the predicted values 

of the calibration equation.  

Three statistics, emax, emin and |e|ave were used as quantitative criteria. The emax is the maximum ei 

value, emin is the minimum ei value and |e|ave is the average of the absolute errors:  

i

ave

e
e

n



 
(3) 

where ie  is the absolute value of ei and n is the number of data. The smaller of the |e|ave, the better the 

accuracy of the calibration equation. 
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The other criterion for uncertainty comparing of calibration equations is precision. The precision 

performance could be calculated from the standard deviation of the calibration equation [18]:  

2

0.5( )
1

i

std

e
e

n





 

(4) 

3. Evaluation of Calibration Equations of Thermocouples 

3.1. T-Type Thermocouple 

The estimated parameters of calibration equations for five temperature ranges are listed in Table 1. 

The quantitative criteria for these calibration equations are listed in Tables 2 and 3. 

Table 1. Estimated parameters for several polynomial equations for T-type thermocouples 

by temperature range. 

Equation  bi 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

2nd order b1 25.67471979 25.07879340 26.00810515 −25.22117110 26.44647267 

 b2 −0.54576494 −0.39314346 −0.74516432 −1.26190490 −0.78530785 

3rd order b1 25.86464325 25.76378439 25.85804386 −25.90849949 25.91435043 

 b2 −0.69457635 −0.64264925 −0.75808252 −0.59839052 −0.83435521 

 b3 0.026133029 0.020317674 0.066304477 −0.14489758 0.061098417 

4th order b1 25.84962602 25.09020576 25.84551540 −25.77505075 25.81912460 

 b2 −0.673394463 −0.73340079 −0.70994624 −0.830585167 −0.74867280 

 b2 0.017448349 0.037584526 0.074689216 −0.026571395 0.077691433 

 b4 −1.082962 × 10−3 −9.9772501 × 10−4 −0.018167033 −0.018427604 −8.8817640 × 10−3 

5th order b1  25.88262726   25.86505358 

 b2  −0.71357086   −0.73577069 

 b2  0.031114204   0.062941133 

 b4  −1.5600801 × 10−4   −0.010532441 

 b5  3.7937780 × 10−5   9.7149801 × 10−4 

6th order b1     25.85453185 

 b2     −0.72787713 

 b2     0.067478989 

 b4     −0.012651926 

 b5     6.0999501 × 10−4 

 b6     −1.3091201 × 10−4 

3.1.1. Range 0~100 °C 

The 2nd order polynomial equation produced a clear systematic pattern of residual plots  

(Figure 3a). The 3rd and 4th order polynomial equations produced a random distribution on residual 

plots (Figure 3b and c). Thus, the 2nd polynomial equation was not adequate because of systematic 

errors were found over the temperature ranges. 
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Figure 3. Residual plots of polynomial calibration equations for T-type thermocouples with 

temperature 0 to 100 °C. (a) 2nd order polynomial equation; (b) 3rd order polynomial 

equation; (c) 4th order polynomial equation. 
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Figure 3. Cont.  
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(c) 

Table 2. Criteria for evaluating of polynomial equations for T-type thermocouples by 

temperature range. Sacle equation to same font size as table. 

Equation Criteria  0–100 °C   0–200 °C  −50–50 °C −100–0 °C −100–100 °C 

2nd order 

emin −0.07447137 0.49823066 0.225686384 −0.36968565 −1.67100581 

emax 0.13074332 0.98345135 0.13642422 0.18487408 1.21440524 

|e|ave 0.04592460 0.36507503 0.06717221 0.12630630 0.48771413 

3th order 

emin −0.02072832 0.13412573 0.06409870 −0.04361028 −0.55185176 

emax 0.01471193 0.07282170 0.04472070 0.03208275 0.285123028 

|e|ave 0.00681306 0.03911083 0.02223685 0.01384381 0.150423885 

4th order 

emin −0.01753270 0.03052425 0.02023304 −0.01507971 −0.07094427 

emax 0.01501541 0.19169659 0.02069277 0.01633248 0.11870578 

|e|ave 0.00676768 0.00718054 0.00763593 0.00663725 0.027618094 

5th order 

emin  0.02534386   −0.027957131 

emax  0.01656904   0.03741114 

|e|ave  0.00680437   0.01217997 

6th order 

emin     -0.02814230 

emax     0.02771649 

|e|ave     0.00986177 

The |e|ave value represents the accuracy of the calibration equation. From Table 2, the 2nd order 

polynomial equation had the largest value for emax , emin and |e|ave. The |e|ave values for the 3rd and 4th 

order polynomial equations did not differ substantially: 0.00681306 and 0.00676768, respectively.  

The estd value represents precision of the calibration equation. The estd values for the 2nd, 3rd and 

4th order polynomial equations were 0.05325660, 0.00840050 and 0.00824098, respectively (Table 3). 
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The reduction in estd values between 2nd and 3rd order polynomial equation was about 1/6.5 but that 

between 3rd and 4th order polynomial equations was not substantial. The increase in the 4th order 

(c4x
4
) of the calibration equation had only a marginal effect on improving performance. The adequate 

calibration equation for the T-type thermocouple for temperature 0 to 100 °C is as follows: 

T = 25.86464325 mv – 0.69457635 mv
2
 + 0.026133029 mv

3
 (5) 

Table 3. Measurement precision of polynomial equations for T-type thermocouples by 

temperature range. 

Equation 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

2nd order 0.05325659 0.41512994 0.079658494 0.14552443 0.57348457 

3rd order 0.00840050 0.04580101 0.026619274 0.01675441 0.18449760 

4th order 0.00824098 0.00940073 0.009181103 0.00794493 0.03658164 

5th order  0.00860020   0.01527604 

6th order     0.01228220 

3.1.2. Range 0~200 °C 

The 2nd and 3rd
 
order polynomial equations produced a systematic residual pattern and 4th and 5th 

order polynomial equations revealed a uniform distribution. All residual figures were showed in 

Supplement Figures A. 

The |e|ave values for the 2nd, 3rd, 4th and 5th order polynomial equations were 0.36507503, 

0.03911083, 0.00718054 and 0.00680437, respectively (Table 2). Therefore, the 4th and 5th degree 

equations had the best accuracy. 

The estd values for the above four equations were 0.41512994, 0.04580101, 0.00940073 and 

0.00860020, respectively (Table 3). Comparing 3rd
 
degree equation with 4th degree equation, the 

reduction in estd value between 3rd and 4th order equation was approximately 1/5. Comparing with the 

4th order equation, the contribution of the 5th order equation was substantial. The reduction in 

precision was limited. Therefore, the adequate equation for the T-type thermocouple for temperature 0 

to 200 °C is as follows: 

T = 25.90205757 mv – 0.73340079mv
2 

+ 0.037584526mv
3
 – 9.9772501 × 10

−4
mv

4
 (6) 

3.1.3. Range −50~50 °C 

This temperature range included the activity environment for the most biological system. The 

residual plots of the 2nd, 3rd and 4th order calibration equations are presented in Supplement Figure B. 

Only the 4th order equation showed a random distribution in residual plot. The 4th order polynomial 

had the smallest |e|ave and estd values (Tables 2 and 3). The following equation was considered as 

adequate:  

T = 25.84551540 mv – 0.70994624mv
2 

+ 0.074689216mv
3 
– 0.018167033mv

4
 (7) 
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3.1.4. Range −100~0 °C 

Only the 4th order polynomial equation had a uniform distribution on residual plots (data not shown) 

and the smallest value of |e|ave and estd (Tables 2 and 3). This following equation was considered adequate: 

T = 25.77505075mv – 0.83058517mv
2
 + 0.026571395mv

3
 – 0.018427604mv

4
 (8) 

3.1.5. Range −100~100 °C 

The shape of the data distribution between temperature and thermocouple output voltage is a 

nonlinear curve. Only a higher order polynomial equation could produce a uniform distribution on 

residual plot (data not shown). The adequate calibration equation was a 6th order polynomial equation 

and showed as follows: 

T = 25.85453185 mv – 0.72787713mv
2
 + 0.067478989mv

3
 

 – 1.2651926×10
−2

mv
4
 + 6.0999501 × 10

−4
mv

5
 – 1.3091201 × 10

−4
mv

6
 

(9) 

The |e|ave value represents the accuracy and the estd value was used to assess the precision of these 

equations. By the selection of the adequate polynomial calibration equations, the |e|ave was < 0.009 °C 

and the estd value was < 0.012 °C for the T-type thermocouple. 

3.2. J-Type Thermocouple 

The estimated parameters for calibration equations for five temperature ranges are listed in Table 4 

and the quantitative criteria are listed in Tables 5 and 6. 

Table 4. Estimated parameters for several polynomial equations for J-type thermocouples 

by temperature range. 

Equation    bi 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

2nd order b1 19.71440273 19.45794480 19.92321865 19.53896507 20.15400867 

 b2 −0.14280031 −0.08790950 −0.24205613 −0.42806222 −0.25366061 

3rd order b1 19.82859586 19.76305984 19.84718826 19.91333650 19.85023043 

 b2 −0.21497883 −0.18247776 −0.24479520 −0.16293062 −0.26518721 

 b3 0.01024941 0.006582481 0.019753541 0.042391433 0.02046607 

4th order b1 19.84344081 19.82989561 19.84610586 19.83020340 19.82940836 

 b2 −0.23187152 −0.21979759 −0.23898495 −0.26902673 −0.23785577 

 b3 0.01584881 0.012647965 0.020179476 2.9937101 × 10−3 0.02258792 

 b4 −5.6514610 × 10−4 −3.0010410 × 10−3 −1.2941520 × 10−3 −4.5105150 × 10−3 −1.5837460 × 10−3 

5th order b1    19.85185466 19.84739765 

 b2    −0.22599582 −0.23586796 

 b3    0.030341877 0.019194036 

 b4    −2.5509630 × 10−3 −1.7327180 × 10−3 

 b5    6.2928705 × 10−4 1.2591410 × 10−4 
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Table 4. Cont. 

Equation    bi 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

6th order b1     19.84959392 

 b2     −0.23844914 

 b3     0.018639399 

 b4     −1.4776299 × 10−3 

 b5     1.5145010 × 10−4 

 b6     −1.2754301 × 10−5 

Table 5. Criteria for evaluating of polynomial equations for J-type thermocouples by 

temperature range. 

Equation Criteria 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

2nd order 

emin 0.05557809 0.24933012 0.13616157 −0.28775249 −1.18173165 

emax 0.08928586 0.47674018 0.11595334 0.14466809 0.85074564 

|e|ave 0.03400235 0.18601820 0.04196053 0.09499065 0.33772693 

3rd order 

emin 0.01317127 0.068261782 0.02101240 −0.04169692 −0.30645416 

emax 0.01187325 0.046436731 0.01547939 0.02779399 0.14204194 

|e|ave 0.00481871 0.021161537 0.00574589 0.01190433 0.07435890 

4th order 

emin 0.01009384 0.013460643 0.01074795 −0.01449671 -0.06051327 

emax 0.00925146 0.013254812 0.00786120 0.01273097 0.03879727 

|e|ave 0.00429203 0.004711247 0.00438609 0.00532295 0.01359488 

5th order 

emin    −0.01239944 −0.02524355 

emax    0.01075262 0.01869201 

|e|ave    0.00507465 0.00580843 

6th order 

emin     −0.01393513 

emax     0.01228582 

|e|ave     0.00482716 

Table 6. Measurement precision of polynomial equations for J-type thermocouples by 

temperature range. 

Equation 0–100 °C 0–200 °C −50–50 °C −100–0 °C −100–100 °C 

2
nd

 order 0.03903280 0.21139799 0.049680 0.10986868 0.39874169 

3
rd

 order 0.00585086 0.02519590 0.007350308 0.01429016 0.09409667 

4
th

 order 0.00522916 0.00582213 0.005281434 0.00641780 0.016754189 

5
th

 order  0.00537354  0.00612658 0.00723238 

6
th

 order     0.00581152 

All datasets for different temperature ranges were evaluated by regression analysis. The residual 

plots were used to evaluate the adequateness of models. The |e|ave and estd values were used to assess 

accuracy and precision. The adequate equations for different temperature ranges are listed as follows: 

(1). 1.0~100 °C 

T = 19.82859586 mv – 0.214978825 mv
2
 + 0.01024941mv

3
 (10) 
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(2). 0~200 °C 

T = 19.8289561mv – 0.21979759mv
2
 + 0.012147965mv

3
 – 3.0010410 × 10

−4
mv

4
 (11) 

(3). −50~50 °C 

T = 19.84610586mv – 0.23898495mv
2
 + 0.020179476mv

3
 – 1.2941520 × 10

−3
mv

4
 (12) 

(4). −100~0 °C 

T = 19.85185466mv – 0.225995822mv
2
 + 0.030341877mv

3 

 – 2.5509630 × 10
−3

mv
4
 + 6.2928705 × 10

−4
mv

5
 

(13) 

(5). −100~100 °C 

T = 19.84959392 mv – 0.238449137mv
2
 + 0.018639399mv

3 

 – 1.4776301 × 10
−3

mv
4
 + 1.5145009 × 10

−4
mv

5
 – 1.2754301 × 10

−5
mv

6
 

(14) 

With the selection of the adequate polynomial calibration equations, the |e|ave was <0.005 °C and 

The estd value was <0.008 °C for the J-type thermocouple. The |e|ave value presented the accuracy and 

the estd value showed the precision of these equations. These numeric values indicated the performance 

improvement for this type thermocouple using in the special temperature range. 

Now, the development of microprocessor systems is rapid and the price is dwindling. The nonlinear 

characteristics of sensing element could be improved by software package techniques. The calculation 

of the higher order polynomial equation could be treated as rapidly and accurately as linear equations. 

In this study, the orders of their polynomial equations for adequate calibration equations were lower 

than that of the NIST Standards. The accuracy and precision of these equations were improved 

significantly compared to that of a linear equation. They could be adapted to microprocessor systems 

to enhance the measurement performance of different types of thermocouples. The suggestion of the 

application of these polynomial calibration equations are as follows: 

a. The analog mv output of the thermocouple is amplified to voltage. 

b. The voltage signal is digitized by A/D converter. 

c. The function of the A/D converter is controlled by a microcomputer. 

d. The software for these calibrations is embedded in the flash ROM of the microcomputer. 

e. The true temperature then is computed by its adequate polynomial calibration equation. 

f. The true temperature could be display in a LCD or send to a PC via RS232 for data display or 

send to temperature controller. 

4. Conclusions 

Thermocouples are the most frequently used sensors for temperature measurement. However, 

linearizing the transfer relationship between temperature and output voltage is one of their major 

problems. In this study, two types of thermocouple with five temperature ranges were selected to 

evaluate the fitting agreement of different order polynomial equations to help solve this problem. The 

estimated parameters were established by regression analysis techniques. Two quantitative criteria, 
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|e|ave and estd were used to evaluate the accuracy and precision of these calibrations equations. Residual 

plots were applied to justify the adequateness of these models. 

The adequate order of polynomial calibration equation was affected by the temperature range. The 

3rd order polynomial equation was adequate for the 0 to 100 °C temperature range and the higher 6th 

order polynomial equation was adequate for the −100 °C to 100 °C range. 

The |e|ave value represents the accuracy of these equations. The estd value was used to assess the 

precision of equations. With the adequate polynomial calibration equation, the |e|ave was <0.009 °C for 

the T-type thermocouple and <0.005 °C for the J-type thermocouple. The numeric value of estd  

was <0.012 °C for the T-type thermocouple and <0.008 °C for the J-type thermocouple. 

These polynomial calibration equations are easy to be written as software and be incorporated into 

an IC circuit as calculated equations. The measured thermocouple output could be transformed into the 

temperature easily and accurately. The technique could be applied with hard modules to serve as 

intelligent sensors. The regression analysis technique and criteria for comparison used in this study 

could be applied to evaluate adequate calibration equations for other thermocouples with different 

temperature ranges. The piecewise polynomial equation could be established to meet the requirement 

temperature range for practical applications. 
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