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Abstract: The abnormal event detection problem is an important subject in real-time video

surveillance. In this paper, we propose a novel online one-class classification algorithm,

online least squares one-class support vector machine (online LS-OC-SVM), combined with

its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as

an optimal description of training objects in a regularized least squares sense. The online

LS-OC-SVM learns a training set with a limited number of samples to provide a basic

normal model, then updates the model through remaining data. In the sparse online scheme,

the model complexity is controlled by the coherence criterion. The online LS-OC-SVM

is adopted to handle the abnormal event detection problem. Each frame of the video

is characterized by the covariance matrix descriptor encoding the moving information,

then is classified into a normal or an abnormal frame. Experiments are conducted, on a

two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset,

to demonstrate the promising results of the proposed online LS-OC-SVM method.

Keywords: abnormal detection; optical flow; covariance matrix descriptor; online least

squares one-class SVM
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1. Introduction

Visual surveillance is one of the major research areas in computer vision. After recording events by

a visual sensor, such as a camera, obtaining detailed information of individual or crowd behavior is a

challenging object in this area; automatic abnormal event detection is required to provide convenience,

safety and an efficient lifestyle for humanity [1]. An abnormal event is defined as behavior deviating

from what one expects. For example, a pedestrian panic in a public region: the people are running in

the plaza, where people are usually strolling. As shown in Figure 1a, a normal scene is illustrated, the

people are walking. In Figure 1b, the people are suddenly running in different directions; this scene is

considered abnormal. If a system can detect this event, which might imply a safety risk, security staff

can be alerted to take emergency response procedures. The abnormal event detection is a content-based

video analysis problem; it includes two technologies: a feature representation of an event model and an

abnormal event detection approach.

Figure 1. Examples of the normal and abnormal scenes. (a) A normal lawn scene: all the

people are walking; (b) An abnormal lawn scene: all the people are running.

(a) (b)

In [2–4], abnormal detection approaches with behavioral models were introduced. The behavior

pattern modeled by adopting optical flow or pixel change history (PCH) was represented by Bayesian

models. In [5], the motion feature, including the position, direction and velocity, was modeled by latent

Dirichlet allocation. In [6], the abnormal vehicle behavior at intersections was detected via a stochastic

graph model based on the Markovian approach. The behavior was labeled as abnormal when the current

motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot

be parsed with the stochastic model. These works relied on an explicit signal statistical model, and the

abnormal events were the ones interpreted as statistical model abrupt changes, maximum likelihood or

Bayesian estimation theory [7]. The signal model together with probabilistic assumption techniques are

usually extremely powerful insofar as an accurate model exists; these methods are effective in several

scenarios. However, there are various situations where a robust and tractable model cannot be obtained.

This raises the need for model-free methods.

On the other hand, low-level motion features were employed. In [8], the authors presented an

algorithm monitoring optical flow in a set of fixed spatial positions. The similarity of the model was
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computed to detect abnormal patches. In [9], the irregular behavior of images and videos was detected

by comparing the likelihood of patches via a probabilistic graphical model. These methods based

on separated patches, benefiting from the partial knowledge of the image, do not exploit the global

information of the frame.

Trajectory information is also adopted to detect abnormal events. In [10,11], the authors presented a

method for anomalous event detection by means of trajectory analysis. The trajectories were subsampled

to a fixed-dimension vector representation and clustered with an one-class support vector machine

(SVM). In [12], alarm detection of traffic was performed on the basis of the parameters of the moving

objects and their trajectories by using semantic reasoning and ontologies. In [13], vision-based abnormal

events for home healthcare systems were detected by using shape feature variation and 3D trajectory.

Tracking-based algorithms are likely to fail in crowded scenes.

We consider the model-free approach, which does not require an explicit statistical model. To be

accurate, the support vector machine (SVM) classification method is relied on in this paper. Inspired by

the satisfactory performance of a covariance feature descriptor representing object in a tracking problem,

a covariance descriptor characterizes the moving information of a global frame. In a tracking problem,

the covariance descriptor is constructed of the blob intensity or color for template matching. In this

paper, covariance encodes the optical flow of the global frame.

The rest of the paper is organized as follows. In Section 2, related works are briefly reviewed. In

Section 3, the online least squares one-class support vector machine (online LS-OC-SVM) classification

method is originally derived. In Section 4, a covariance matrix descriptor is described to provide feature

vectors for the classification algorithm. In Section 5, we propose abnormal detection methods based

on the online LS-OC-SVM. In Section 6, we present the results on synthetic data and real-world video

scenes. Finally, Section 7 concludes the paper.

2. Related Work

SVM is usually trained in a batch model, i.e., all training data are given a priori and are learned

together. If additional training data arrive afterward, the SVM must be retrained from scratch [14]. In

the problem of abnormal event detection in video surveillance, the normal sequence for training may last

for a long time. It is impractical to train the big training set of normal samples as one batch together.

If a new datum is added to a large training set, it will likely have only a minimal effect on the previous

decision surface. Resolving the problem from scratch seems computationally wasteful. Considering

these two aspects, the online strategy is considered in our work to adapt to the computational and the

memory requirement.

Some online learning algorithms for SVM were derived based on analyzing the change of

Karush–Kuhn–Tucker (KKT) conditions while updating the classifier. In [15], new arrival data along

with the data violating the KKT conditions, and the support vectors from the last iteration, were

considered as a new training dataset to train the classifier at the current step. The iteration will be

stopped when all data satisfy the KKT conditions. In [16,17], the authors analyzed the change of the

KKT conditions when one datum was included into, or removed from, the training set; then, a so-called
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bookkeeping step was used to compute the new coefficients of the classifier to achieve an online update

for a two-class SVM. Useful implementation issues on incremental SVM were presented in [18].

In [7], it was argued that the binary classification algorithm in [16] cannot be directly implemented

for a one-class problem. In [7,19], the authors considered the change of the normal model over time

and online identified outliers using previous data vectors in a sliding time window. Two one-class SVM

classifiers, which preceded and followed the present instant, were compared. A change in the statistics

of the time series was likely to occur when the resulting machines were different. The sliding time

window approach was considered in [20], with an application on wireless sensor networks. This method,

adopting sliding window formulation, is not inherently online, since it requires repeated batch training

of new machines.

In [21], an online one-class SVM was presented following the idea of [22]: an exponential window

was applied to the data to suit it to an adaptive scenario where the solution was able to track the changes of

the data distribution and to forget old patterns. This algorithm is based on the slow-varying assumption.

Some online one-class SVM classification methods were proposed based on support vector data

description (SVDD) [23,24], the hypersphere one-class SVM formulation. In [25], an online one-class

classification method was proposed, a least squares optimization problem was considered and the model

complexity was controlled by the coherence criterion. In [26], a method was proposed to reduce space

and time complexities. It reduced the training set size during the training procedure by removing data

having a high probability of becoming non-support-vectors.

In order to sidestep the difficulty in the nature of the constrained quadratic optimization problem, we

derive an online version of the hyperplane one-class SVM [27] based on the least squares regularization.

In the least squares SVM version, one finds the solution by solving a linear system instead of a quadratic

programming problem. This advantage comes from the use of equality instead of inequality constraints

in the problem formulation [28]. Least squares one-class SVM (LS-OC-SVM) was proposed in [29],

without considering the sparsity of the hyperplane representation. It is thus inappropriate to detect

abnormal events online. In the following, we shall derive an online version of the least squares one-class

SVM, then propose a sparsification representation of the detector.

3. Classification

In this section, we introduce the derivation of the proposed online least square one-class support vector

machine (online LS-OC-SVM). In abnormal detection problems, it is supposed that the samples from a

positive class are obtainable. A density will only exist if the underlying probability measure possesses

an absolutely continuous distribution function, but the general problem of estimating the measure for

a large class of sets is not solvable [27,30]. The one-class SVM framework is then suitable to the

specificity of the abnormal event detection where only normal scene data are available. Support vector

machine (SVM) was initially proposed by Vapnik and Lerner [31], attempting to find a compromise

between the minimization of empirical risk and the prevention of overfitting. By applying a kernel trick,

SVM can handle nonlinear classification problems [10,32–34]. Based on the theoretical foundation of

SVM and the soft-margin trick [35,36], one-class SVM is proposed to address the problem where only

one-category (the positive) samples with a few outliers are available. In this section, after a brief review
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of one-class SVM and least squares one-class SVM on a batch model, an online training algorithm is

proposed. A sparsified version of the algorithm will then be provided for further adapting to critical

online requirements.

3.1. One-Class SVM

One-class SVM (OC-SVM) aims to determine a suitable region in the input data space, X , which

includes most of the samples drawn from an unknown probability distribution, P . It detects objects

that resemble training samples. The hypersphere one-class SVM was proposed in [23,24]. It identified

outliers by fitting a hypersphere with a minimal radius. The hyperplane one-class SVM was an extended

version of the original SVM to one-class problems [27,36]. It identified outliers by fitting a hyperplane

from the origin. In our work, we adopt the hyperplane one-class SVM, which is formulated as a

constrained minimization optimization problem:

min
ω,ξ,ρ

1

2
‖w‖2 − ρ+ C

n
∑

i=1

ξi subject to 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 (1)

where xi ∈ X , i ∈ {1 . . . n}, are n training samples in the input data space, X , and ξi is the slack variable

for penalizing the outliers. The hyperparameter, C, is the weight for restraining the slack variable. It

tunes the number of acceptable outliers and, thus, enables the analyzing of noisy data points. ‖·‖ denotes

the Euclidean norm of a vector. The decision hyperplane is given by the equation:

〈w,Φ(xi)〉 − ρ = 0 (2)

The nonlinear function, Φ : X → H, maps datum xi from the input space, X , into the feature space,

H, which allows us to solve a nonlinear classification problem by designing a linear classifier in the

feature space. w defines a hyperplane in the feature space separating the projections of training data

from the origin. A positive definite kernel function, κ, is defined as κ(x,x′) = 〈Φ(x),Φ(x′)〉, which

implicitly maps the training or testing data, x, into a higher (possibly infinite) dimensional feature space.

Introducing the Lagrangian multipliers, αi, the decision function in the input data space, X , is given by:

f(x) = sgn(
n

∑

i=1

αiκ(xi,x)− ρ) (3)

if f(x) = −1, the datum, x, is classified as abnormal; otherwise, x is classified as normal.

3.2. Least Squares One-Class SVM

Least squares SVM (LS-SVM) was proposed by Suykens in [37,38]. By using the quadratic loss

function, Choi proposed least squares one-class SVM (LS-OC-SVM) [29]. LS-OC-SVM extracts a

hyperplane as an optimal description of training objects in a regularized least squares sense. It can be

written as the following objective function:

min
w,ξ,ρ

1

2
‖w‖2 − ρ+

1

2
C

n
∑

i=1

ξ2i subject to 〈w,Φ(xi)〉 = ρ− ξi (4)
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The condition for the slack variables in OC-SVM, ξi ≥ 0, is no longer in need. The variable, ξi,

represents an error caused by a training object, xi, with respect to the hyperplane. The definitions of the

other parameters in Equation (4) are the same as the ones in OC-SVM. The associated Lagrange is:

L =
1

2
‖w‖2 − ρ+

C

2

n
∑

i=1

ξ2i −

n
∑

i=1

αi

(

w⊤Φ(xi)− ρ+ ξi
)

(5)

Setting derivatives of Equation (5) with respective to primal variables, w, ξi, ρ and αi, to zero, we

have the following stationarity conditions:

∂L

∂w
= 0 ⇒ w =

n
∑

i=1

αiΦ(xi) (6)

∂L

∂ξi
= 0 ⇒ Cξi = αi (7)

∂L

∂ρ
= 0 ⇒

n
∑

i=1

αi = 1 (8)

∂L

∂αi

= 0 ⇒ w⊤Φ(xi) + ξi − ρ = 0 (9)

Substituting Equations (6)–(8) into (9) yields:

n
∑

i,j=1

αiΦ
⊤(xi)Φ(xj) +

αi

C
− ρ = 0 (10)

For all i = 1, 2, . . . , n, we can rewrite Equation (10) in matrix form as:
[

K + I
C

1

1⊤ 0

][

α

−ρ

]

=

[

0

1

]

(11)

where K is the Gram matrix with (i, j)-th entry κ(xi,xj), I is the identity matrix with the same

dimension as Gram matrix K and α is the column vector with i-th entry αi for training sample xi.

1 and 0 are all-one and all-zero column vectors, respectively, with compatible lengths. The parameters,

α and ρ, could be obtained by:
[

α

−ρ

]

=

[

K + I

C
1

1⊤ 0

]−1 [

0

1

]

(12)

The hyperplane is then described by:

f(x) =

n
∑

i=1

αiκ(xi,x)− ρ = 0 (13)

The distance, dis(x), of a datum, x, with respect to the hyperplane is calculated by:

dis(x) =
|f(x)|

‖α‖
=

|(
∑n

i=1
αiκ(xi,x)− ρ)|

‖α‖
(14)

where xi is a training sample, ‖α‖ is the two-norm of vector α. An object with a low dis(x) value lies

close to the hyperplane thus resembles the training set better than other objects with high dix(x) values.

The distance, dis(x), is used as a proximity measure to determine the normal and abnormal class of

the data [29].
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3.3. Online Least Squares One-Class SVM

In an online learning scheme, the training data continuously arrive. We thus need to tune

hyperparameters in the objective function and the hypothesis class in an online manner [17]. Let αn,

Kn and In denote the coefficient, Gram matrix and identity matrix at the time step, n, respectively. The

parameters of LS-OC-SVM [αn − ρn]
⊤ at the time step, n, could be calculated as:

[

αn

−ρn

]

=

[

Kn +
In
C

1n

1⊤
n 0

]−1 [

0n

1

]

(15)

In order to proceed, recall the matrix inverse identity for matrices A, B, C and D with suitable sizes [39]:

[

A B

C D

]−1

=

[

A−1 0

0 0

]

+

[

−A−1B

1

]

× (D − CA−1B)−1 × [−CA−1 1] (16)

The matrix, Kn, with diagonal loading In
C

can be calculated recursively with respect to time step n by:

[

Kn+1 +
In+1

C

]−1

(17)

=

[

Kn +
I

C
κn+1

κn+1 κn+1 +
1

C

]−1

(18)

=

[

(

Kn +
In
C

)−1
0n

0⊤
n 0

]

+
1

(

κn+1 +
1

C

)

− κn+1

(

Kn +
In
C

)−1
κn+1

[

−
(

Kn +
In
C

)−1
κn+1

1

]

[

−κ⊤
n+1

(

Kn +
In
C

)−1
1
]

(19)

where κn+1 is the column vector with i-th entry κ(xi,xn+1), i ∈ {1, 2, . . . , n}, and

κn+1 = κ(xn+1,xn+1). Based on Equations (15) and (17), we arrive at an online implementation of

LS-OC-SVM.

3.4. Sparse Online Least Squares One-Class SVM

The procedures for calculating the parameters, α and ρ, of LS-OC-SVM in Section 3.3 lose

sparseness, due to the quadratic loss function in the objective function Equation (4). This formulation is

inappropriate for large-scale data and unsuitable for online learning, as the number of training samples

grows infinitely [25]. We propose a sparse solution to provide a robust formulation. A dictionary is

adopted to address the sparse approximation problem [40].

Instead of Equation (6), where w is expressed with all available data, we intend to approximate it by

adopting a dictionary in a sparse way. Consider a dictionary, xD, D ⊂ {1, 2, . . . , n}, of size D with

elements xwj
, j ∈ D. Instead of Equation (6), we approximate w with these D dictionary elements:

w =
D
∑

j=1

βjΦ(xwj
) (20)
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The hyperplane becomes:

f(x) =
D
∑

j=1

βjκ(x,xwj
)− ρ = 0 (21)

In sparse online LS-OC-SVM, the distance, disD(x), of a datum, x, to the hyperplane is:

disD(x) =
|
∑D

j=1
βiκ(x,xwj

)− ρ|

‖β‖
(22)

where xwj
is a dictionary element and β is the column vector with the entries, βj . Replacing

Expression (20) into Lagrange Function (5), we have:

L =
1

2
β⊤KDβ − ρ+

C

2

n
∑

i=1

ξ2i −

n
∑

i=1

αi(

D
∑

j=1

βjΦ
⊤(xwj

)Φ(xi) + ξi − ρ) (23)

Taking the derivatives of the Function (23) with respect to primal variables, β, ξi, ρ and αi, yields:

∂L

∂β
= 0 ⇒ KDβ = K⊤

D(x)α (24)

∂L

∂ξi
= 0 ⇒ Cξi = αi (25)

∂L

∂ρ
= 0 ⇒

n
∑

i=1

αi = 1 (26)

∂L

∂αi

= 0 ⇒

D
∑

j=1

βjκ(xwj
,xi) + ξi − ρ = 0 (27)

The matrix form for Condition (27) is written:

KD(x)β + ξ − ρ = 0 (28)

Replacing Conditions (24) and (25) into (28) leads to:

KD(x)K
−1

D
K⊤

D
(x)α+

α

C
− ρ = 0 (29)

Combining Equations (26) and (29), the equation for computing coefficients
[

α − ρ
]⊤

becomes:
[

KD(x)K
−1

D
K⊤

D
(x) + I

C
1

1⊤ 0

][

α

−ρ

]

=

[

0

1

]

(30)

After providing these relations with the dictionary, we now discuss the dictionary construction. The

coherence criterion is adopted to characterize a dictionary in sparse approximation problems. It provides

an elegant model reduction criterion with a less computationally-demanding procedure [25,40,41]. The

coherence of a dictionary is defined as the largest correlation between the elements in the dictionary, i.e.,

µ = max
i,j∈D,i 6=j

|κ(xi,xj)| (31)
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In the online case, the coherence between a new datum and the current dictionary is calculated by:

ǫt = max
j∈D

|κ(xt,xwj
)| (32)

where xwj
is the element in the dictionary, xD. Presetting a threshold, µ0, the new arrival sample, xt, at

the time step, t, is tested with the coherence criterion to judge whether the dictionary remains unchanged

or is incremented by including the new element. For n training samples, the subset, which includes

m (1 ≤ m ≪ n) samples, is considered the initial dictionary. Then, each remaining sample is tested

with Equation (32) to determine the relation between itself and the previous dictionary. If ǫt ≤ µ0, it

will be included into the dictionary. Concretely, the algorithm is performed with two cases described

herein below.

First case: ǫt > µ0

In this case, at time step n + 1, the new data, xn+1, is not included into the dictionary. The Gram

matrix, KD, with the entries, κ(xi,xj), i, j ∈ {1, 2, . . . , D}, is unchanged. When a new sample, x,

arrives, we need to compute:

[[

KD(x)

κ⊤

]

K−1

D

[

KD(x)
⊤ κ

]

+
I

C

]−1

=

[

KD(x)K
−1

D
K⊤

D
(x) + I

C
KD(x)K

−1

D
κ

κ⊤K−1

D
K⊤

D
(x) κ⊤K−1

D
κ+ I

C

]−1

(33)

where at time step n + 1, κ is the column vector with entries κ(xn+1,xwj
), j ∈ {1, 2, . . . , D}. KD(x)

is the matrix with the (i, j)-th entry κ(xi,xwj
), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , D}.

Second case: ǫt ≤ µ0

In this case, the new data, xn+1, is added into the dictionary, xD. Then, the Gram matrix should be

changed by:

KD =

[

KD d

d⊤ d

]

(34)

where KD is the Gram matrix of the dictionary, including the new arrival dictionary sample, xn+1, and

KD is the Gram matrix of the dictionary at the last time step, n. Let xD = {xw1
,xw2

, . . . ,xwD
} denote

the dictionary at time step n; d is the column vector with entries dj = κ(x,xwj
), j ∈ {1, 2, . . . , D}, and

d = κ(xn+1,xn+1). By adopting the matrix inverse identity Equation (16), we have:

K
−1

D
=

[

K−1

D
+A b

b⊤ c

]

(35)

where:

c =
1

d− d⊤K−1

D
d

(36)

A = cK−1

D
dd⊤K−1

D
(37)

b = − cK−1

D
d (38)
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Because the dictionary changes, the value of KD(x) and also
[

KD(x)K
−1

D
K⊤

D
(x) + I

C

]−1
should be

updated. Let the S denote the updated
[

KD(x)K
−1

D K⊤
D (x) +

I

C

]−1
at time step n + 1; we have:

S =

[

[

KD(x) q
]

K
−1

D

[

K⊤
D
(x)

q⊤

]

+
I

C

]−1

(39)

=[KD(x)K
−1

D
KD(x)

⊤ +
I

C
+KD(x)AK⊤

D
(x)+

qb⊤K⊤
D
(x) +KD(x)bq

⊤ + cqq⊤]−1 (40)

where at time step n + 1, q is the column vector with entries qi = κ(xi,xD+1), i ∈ {1, 2, . . . , n},

and xD+1 is the new arrival datum xn+1, which is included into the dictionary. The matrix inverse in

Equation (39) can be calculated by using four-times Woodbury identity:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (41)

with proper choices of matrices A, U , C and V , such that U and V should be chosen as two vectors,

and A should be chosen as a scaler. Thus, the inverse, (C−1 + V A−1U), is a scaler; Equation (39) can

be calculated very efficiently. For instance, for computing the inverse, including the term, (KD(x)bq
⊤),

we regard two vectors, (KD(x)b) and q⊤, as vector U and V , respectively, while C in Equation (41)

is one.

Once knowing S, using Equation (33) to add the new κ with entries κ(xn+1,xwj
),

j ∈ {1, 2, . . . , D,D + 1}, xwj
is an element of the dictionary.

4. Covariance Descriptor of Frame Behavior

The optical flow is chosen as the basic low-level feature to represent the movement direction and

amplitude. We apply the Horn–Schunck (HS) method to compute optical flow in this paper. The optical

flow can provide important information about the spatial arrangement of the object and the change rate

of this arrangement [42]. The optical flow of a gray image is formulated as the minimization of the

following global energy functional:

E =

∫ ∫

[(Ixu+ Iyv + It)
2 + γ2(‖∇u‖2 + ‖∇v‖2)]dxdy (42)

where I is the intensity of the image, Ix,Iy and It are the derivatives of the image intensity value along

the x, y and time t dimension, u and v are the components of the optical flow in horizontal and vertical

direction and γ represents the weight of the regularization term.

The covariance feature descriptor was originally proposed by Tuzel [43] for pattern matching in a

target tracking problem. Owing to its good performance, the covariance descriptor encoding the optical

flow is introduced to represent the global movement of the frame. A feature is defined as:

F (x, y, i) = φi(I, x, y) (43)

where I is the image (which could be gray, red-green-blue (RGB) , hue-saturation-value (HSV) ,

hue-lightness-saturation (HLS) , etc), φi is a mapping relating the image with the i − th feature, F
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is the W ×H× d dimension feature, W is the image width, H is the image height and d is the number of

the chosen features. For each frame, the feature, F , can be represented as the d× d covariance matrix:

C =
1

n− 1

n
∑

k=1

(zk − µ)(zk − µ)⊤ (44)

where n is the number of the pixels sampled in the frame, µ is the mean of n feature vectors of the

selected points and zk is the feature vector of the k − th point. C is the covariance matrix of the

feature vector, F . The covariance matrix descriptor proposes a way to merge multiple features. Different

choices of feature vectors are shown in Table 1, where u and v are horizontal and vertical components of

optical flow, ux and vx are the first derivatives of horizontal and vertical optical flow in the x direction,

respectively, uy and vy are the first derivatives of the corresponding feature in the y direction, uxx and

vxx are the second derivatives in x direction and uyy and vyy are the second derivatives in y direction.

The flowchart of covariance matrix descriptor computation is shown in Figure 2. The optical flow

and corresponding partial derivative characterize the inter-frame information or can be regarded as the

movement information.

Figure 2. Covariance descriptor computation based on the features of a video frame.

framei
iOPoptical flow field

( , , )F x y j
+1framei

consecutive frame

1,2,...,j n=
if rameC

features

Table 1. Different choices of feature F to construct the covariance descriptor.

Feature Vector F

F1(6× 6) [y x u v ux uy]

F2(6× 6) [y x u v vx vy]

F3(8× 8) [y x u v ux uy vx vy]

F4(12× 12) [y x u v ux uy vx vy uxx uyy vxx vyy]

If proper parameters are given, classical kernels, such as Gaussian, polynomial and sigmoidal kernels,

have similar performances [44]. In our work, the Gaussian kernel κ(xi,xj) = exp(−
‖xi−xj‖2

2σ2 ) is used.

The covariance matrix is an element in the Lie group; the Gaussian kernel in Euclidean spaces is not

suitable. The Gaussian kernel in the Lie group is defined as [45,46]:

κ(Xi,Xj) = exp(−
‖ log(X−1

i Xj)‖

2σ2
), (Xi,Xj) ∈ G×G (45)
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where Xi and Xj are matrices in Lie group G; the parameter σ determines the scale at which the data

is probed.

5. Abnormal Event Detection

In an abnormal event detection problem, it is assumed that a set of training frames, {I1, I2, . . . , In}

(the positive class), describing the normal behavior is obtained. The abnormal detection strategies

relative to the online algorithms proposed in Section 3.3 and Section 3.4 are introduced below.

5.1. Online LS-OC-SVM Strategy

The general architecture of the abnormal event detection method via online least squares one-class

SVM (online LS-OC-SVM) proposed in Section 3.3 is summarized in Algorithm 1; the flowchart is

shown in Figure 3 and explained below.

Algorithm 1: Visual abnormal event detection via online least squares one-class support vector

machine (LS-OC-SVM) and sparse online LS-OC-SVM.

Require

n training frames {Ii}
n
i=1 and the corresponding optical flow {OPi}

n
i=1.

Compute the covariance matrix of each frame.

{OP1, OP2, . . . , OPn} −→ {C1,C2, . . . ,Cn} (46)

(a) Online strategy: Applying LS-OC-SVM on the small subset of training samples to calculate

the coefficient matrix.

{C1,C2, . . . ,Cm}, 1 ≤ m ≪ n
online
−−−→ coefficient matrix

[

K

] [

α − ρ
]⊤

(47)

(b) Sparse online strategy: Applying LS-OC-SVM to train the initial dictionary, CD, offline.

CD = {C1,C2, . . . ,Cm}, 1 ≤ m ≪ n
offline
−−−→ coefficient matrix

[

K

] [

β − ρ
]⊤

(48)

(a) Online strategy: Applying online LS-OC-SVM on the remaining samples to calculate the

coefficient matrix.

{Cm+1,Cm+2 . . .Cn},
[

K

]

online
−−−→ coefficient matrix

[

K

] [

α − ρ
]⊤

(49)

(b) Sparse online strategy: Applying sparse online LS-OC-SVM on the remaining samples to

calculate the coefficient matrix and to update the dictionary.

{CD,Ck}, m < k ≤ n
sparse online
−−−−−−−→ coefficient matrix

[

β − ρ
]⊤







CD := CD ∪Ck, if ǫt ≥ µ0

CD := CD, if ǫt < µ0

(50)

Each frame Cn+l is classified via LS-OC-SVM.
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Figure 3. Major processing states of the proposed abnormal frame event detection method.
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Step 1: The first step consists of calculating the covariance matrix descriptor of the training frames.

The features could be chosen as any form shown in Table 1. This step can be generalized as:

{OP1, OP2, . . . , OPn} −→ {C1,C2, . . . ,Cn} (51)

where {OP1, OP2, . . . , OPn} are the image optical flows of the 1st to n− th frames; {C1,C2, . . . ,Cn}

are the covariance matrix descriptors.

Step 2: The second step is applying LS-OC-SVM on a small subset of the training samples to

calculate the coefficient parameters, α and ρ, in Equation (11). Consider a subset {Ci}
m
i=1, 1 ≤ m ≪ n

of data selected from the training set {Ci}
n
i=1. Without loss of generality, assume that the first m frames

are chosen. These m samples are trained offline. This step can be described in the following equation:

{C1,C2 . . .Cm}, 1 ≤ m ≪ n
offline
−−−→ coefficient matrix

[

K

] [

α − ρ
]⊤

(52)

where
[

K

]

and
[

α − ρ
]⊤

are defined in Equation (11).

Step 3: After learning the first m samples, the coefficient matrices, K and
[

α − ρ
]⊤

, are

obtained. The online LS-OC-SVM method (Section 3.3) is applied to learn the remaining n−m samples

{Cm+1,Cm+2 . . .Cn}. This step can be expressed as:

{Cm+1,Cm+2 . . .Cn},
[

K
]

online
−−−→ coefficient matrix

[

K
] [

α − ρ
]⊤

(53)

Step 4: Based on the coefficient matrix,
[

α − ρ
]⊤

, the distance of the training samples {Ci}
n
i=1

and the incoming test sample, Cn+l, with respect to the decision plane is computed. By comparing the

distances of the samples, an abnormal event is detected:
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dis(Cn+l) =
|(
∑n

i=1
αiκ(C,Ci)− ρ)|

‖α‖
(54)

=







1 if f(Cn+l) ≥ Tdis

−1 if f(Cn+l) < Tdis

(55)

where Cn+l is the covariance matrix descriptor of the (n + l) − th frame needed to be classified, and

Ci is the sample of the training data. “1” corresponds to an abnormal frame; “ − 1” corresponds to a

normal frame. Tdis is the threshold of the distance, it is the maximum distance of the training samples to

the hyperplane.

5.2. Sparse Online LS-OC-SVM Strategy

The abnormal event detection via sparse online least squares one-class SVM (sparse online

LS-OC-SVM) is introduced below. A subset of the samples is chosen to form the dictionary, CD, making

a sparse representation of the training data. The initial dictionary, CD, is learned offline. Each remaining

training sample is learned one-by-one online. Meanwhile, it is checked to be included, or not, into the

dictionary. The test datum is classified based on the dictionary. The feature extraction step (Step 1) and

the detection step (Step 4) are the same as the ones presented in Section 5.1. Owing to the dictionary,

the training steps are different.

Step 2-sparse: The second step is applying LS-OC-SVM to train the initial dictionary offline. The

first m samples are the initial dictionary denoted as CD. This step can be generalized as:

CD = {C1,C2, . . . ,Cm}, 1 ≤ m ≪ n
offline
−−−→ coefficient matrix

[

K

] [

β − ρ
]⊤

(56)

Step 3-sparse: After learning the initial dictionary, CD, including the first m (1 ≤ m ≪ n) samples,

the remaining training samples, {Cm+1,Cm+2, . . . ,Cn}, are learned via sparse online LS-OC-SVM

described in Section 3.4. This step can be described in the following equations:

{CD,Ck}, m < k ≤ n
sparse online
−−−−−−−→

coefficient matrix
[

β − ρ
]⊤







CD := CD ∪Ck if ǫt ≥ µ0

CD := CD if ǫt < µ0

(57)

where CD is the dictionary and Ck is a new incoming remaining sample in the training dataset.

According to the coherence criterion introduced in Section 3.4, if the new sample, Ck, satisfies the

dictionary updated condition, it will be included into the dictionary, CD.

6. Abnormal Event Detection Results

This section presents the results of experiments conducted to illustrate the performance of the

two proposed classification algorithms, online least square one-class SVM (online LS-OC-SVM) and
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sparse online least square one-class SVM (sparse online LS-OC-SVM). The two-dimensional synthetic

distribution dataset and the University of Minnesota (UMN) [47] dataset are used.

6.1. Synthetic Dataset via Online LS-OC-SVM and Sparse Online LS-OC-SVM

Two synthetic data, “square” and “ring-line-square” [48], are used. The “square” consists of four

lines, 2.2 in length and 0.2 in width. In the area of these lines, 400 points were randomly dispersed

with a uniform distribution. The “ring-line-square” distribution is composed of three parts: a ring with

an inner diameter of 1.0 and an outer diameter of 2.0, a line of 1.6 in length and 0.2 in width, and a

square the same as dataset “square” introduced above. 850 points are randomly dispersed with a uniform

distribution. These two data are shown in Figure 4.

Figure 4. Synthetic dataset. (a) Square; (b) ring-line-square.
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(a) Dataset square (b) Dataset ring-line-square

The first sample is used for initializing the online LS-OC-SVM proposed in Section 3.3; the 399

remaining samples in “square” and 849 remaining samples in “ring-ling-square” are learned in the

online manner.

Via the sparse online LS-OC-SVM method proposed in Section 3.4, the first sample is trained offline,

and this sample is considered the initial dictionary. Then, each arrival sample in 399 remaining samples

in “square” and 849 remaining samples in “ring-ling-square” are checked by the coherence criterion to

determine whether the dictionary should be retained or updated by including the new element.

The distances are shown in contours illustrating the boundary. The contours of “square” and

“ring-line-square” are shown in Figures 5 and 6, respectively. Gaussian kernel was used in these two

data, with bandwidth σ = 0.065. The preset threshold of the coherence criterion is µ0 = 0.08. The

detection results obtained by these two online training algorithms are the same as the ones when training

data were learned in a batch model.
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Figure 5. Offline, online LS-OC-SVM and sparse online LS-OC-SVM results of “square”.

The figures might be viewed better electronically, in color and enlarged. (a) The contours

when all the training data are learned as one batch offline; (b) The contours when the training

data are learned via online LS-OC-SVM; (c) The blue circle (pointed out by the arrow) shows

the original dictionary. The red points show the 232 new data included into the dictionary via

sparse online LS-OC-SVM; (d) The contours when the training data are learned via sparse

online LS-OC-SVM.
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Figure 6. Offline, online LS-OC-SVM and sparse online LS-OC-SVM results of

“ring-line-square”. (a) The contours when all the training date are learned as one batch

offline; (b) The contours when the training data are learned via online LS-OC-SVM; (c) The

blue circle (pointed out by the arrow) shows the original dictionary. The red points show the

534 new data included into the dictionary via sparse online LS-OC-SVM; (d) The contours

when the training data are learned via sparse online LS-OC-SVM.
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6.2. Abnormal Visual Event Detection via Online LS-OC-SVM

UMN dataset detection results via online LS-OC-SVM proposed in Section 3.3 are shown below. The

UMN dataset consists of eleven sequences of crowded panic escape events, which are recorded in a lawn,

an indoor and a plaza scene. A frame where the people are walking in different directions is considered

as a normal sample for training or for normal testing. A scene where the people are running is taken as an

abnormal sample for testing. The detection results of the lawn scene, the indoor scene and the plaza scene
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are shown in Figures 7, Figure 8 and Figure 9, respectively. A Gaussian kernel for the covariance matrix

in the Lie group is used. Various values of the variance, σ, in the Gaussian function and the penalty

factor, C, are chosen to form the receiver operating characteristic (ROC) curve. In the indoor scene,

time lags of the frame labels lead to the lower area under the ROC curve (AUC) value. In the last few

frames, labeled as abnormal of abnormal sequences, there are no people, while, in the training samples,

there are no people in the upper half of the image. The covariance of the training frame is similar to the

covariance of the abnormal frame without people. Our covariance feature descriptor-based classification

method cannot distinguish between these two situations. However, this issue can be resolved by utilizing

the foreground information. For example, if there are no moving objects in the frame, this frame is

immediately classified as abnormal. The results of these three scenes show that the covariance descriptor

can distinguish between normal and abnormal events. The performance of online LS-OC-SVM is almost

the same as that of the offline method.

Figure 7. Detection results of the lawn scene. (a) The detection result of a normal frame; (b)

The detection result of an abnormal panic frame; (c) Receiver operating characteristic (ROC)

curve of covariance descriptors constructed from different features F of the lawn scene

detection results via LS-OC-SVM. All the training samples are learned together offline. The

biggest AUC value is 0.9874; (d) ROC curve of detection results via online LS-OC-SVM.

The biggest AUC value is 0.9874.
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Figure 8. Detection results of the indoor scene. (a) The detection result of a normal frame;

(b) The detection result of an abnormal panic frame; (c) ROC curve of covariance descriptors

constructed from different features F of the indoor scene results via LS-OC-SVM. All the

training samples are learned together offline. The biggest AUC value is 0.8900; (d) ROC

curve of detection results via online LS-OC-SVM. The biggest AUC value is 0.8904.
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Figure 9. Detection results of the plaza scene. (a) The detection result of a normal frame;

(b) The detection result of an abnormal panic frame; (c) ROC curve of covariance descriptors

constructed from different features F of the plaza scene results via LS-OC-SVM. All the

training samples are learned together offline. The biggest AUC value is 0.9800; (d) ROC

curve of detection results via online LS-OC-SVM. The biggest AUC value is 0.9839.
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6.3. Abnormal Visual Event Detection via Sparse Online LS-OC-SVM

UMN dataset abnormal event detection results via sparse online LS-OC-SVM proposed in Section 3.4

are presented. Taking the lawn scene as an example, the first normal covariance matrix descriptor

from the training samples is included into the dictionary firstly; then, the remaining training covariance

descriptors are learned online by the sparse online LS-OC-SVM method. The ROC curve of the detection

results of the lawn scene, the indoor scene and the plaza scene are shown in Figure 10a–c, respectively.

The resulting performances when all training samples are learned offline via one-class SVM

(OC-SVM), learned via least squares one-class SVM (LS-OC-SVM), learned via online least squares

one-class SVM (online LS-OC-SVM) and learned via sparse online least squares one-class SVM (sparse

LS-OC-SVM), are shown in Table 2. The LS-OC-SVM algorithm obtains better performance than the

original OC-SVM. The performances of online and sparse online strategy results are similar to the
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resulting performances when all training samples are learned offline. The sparse online strategy can

be computed efficiently and can adapt to the memory requirement.

Figure 10. ROC curve of University of Minnesota (UMN) dataset. (a) Sparse online

LS-OC-SVM results in the lawn scene. The biggest AUC value is 0.9510; (b) Sparse online

LS-OC-SVM results in the indoor scene. The biggest AUC value is 0.8886; (c) Sparse

online LS-OC-SVM results in the plaza scene. The biggest AUC value is 0.9515; (d) The

ROC curve of the best performance of the lawn, plaza and indoor scene when the training

samples are learned via LS-OC-SVM offline. The biggest AUC values of the lawn, indoor

and plaza scene are 0.9874, 0.8900 and 0.9800.
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Table 2. AUC of the abnormal event detection method based on covariance descriptors

constructed by different features F via OC-SVM (Section 3.1), original LS-OC-SVM

learning training samples together offline (Section 3.2), online LS-OC-SVM (Section 3.3)

and sparse online LS -OC-SVM (Section 3.4). The biggest value of each method is shown

in bold.

Features
Area under ROC

lawn indoor plaza

offline OC-SVM

F1(6× 6) 0.9474 0.8381 0.9148

F2(6× 6) 0.9583 0.8410 0.9192

F3(8× 8) 0.9656 0.8483 0.9367

F4(12× 12) 0.9798 0.8744 0.9782

offline LS-OC-SVM

F1(6× 6) 0.9755 0.8605 0.9422

F2(6× 6) 0.9738 0.8603 0.9489

F3(8× 8) 0.9788 0.8662 0.9538

F4(12× 12) 0.9874 0.8900 0.9800

Online LS-OC-SVM

F1(6× 6) 0.9755 0.8616 0.9403

F2(6× 6) 0.9720 0.8730 0.9517

F3(8× 8) 0.9795 0.8670 0.9563

F4(12× 12) 0.9874 0.8904 0.9839

Sparse Online LS-OC-SVM

F1(6× 6) 0.8840 0.8077 0.9245

F2(6× 6) 0.9435 0.8886 0.9515

F3(8× 8) 0.9269 0.8266 0.9428

F4(12× 12) 0.9510 0.8223 0.9501

The resulting performances of the covariance matrix descriptor-based online least squares one-class

SVM method, and of state-of-the-art methods, are shown in Table 3. The covariance matrix-based online

abnormal frame detection method obtains competitive performance. In generally, our sparse online

LS-OC-SVM method is better than others, except sparse reconstruction cost (SRC) [49]. In that paper,

multi-scale histogram of optical flow (HOF) was taken as a feature and a testing sample was classified

by its sparse reconstruction cost, through a weighted linear reconstruction of the over-complete normal

basis set. However, the computation of the HOF takes more time than the computation of covariance.

By adopting the integral image [43], the covariance matrix descriptor of the subimage can be computed

conveniently. The covariance descriptor can appropriately be used to analyze partial image movement.

In [49], the whole training dataset was saved in the memory in advance; then, the dictionary was chosen

as an optimal subset for reconstructing. Our sparse online LS-OC-SVM strategy enables one to train the
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classifier with sequential inputs. This property makes our proposed method extremely suitable to handle

large volumes of training data, while the method in [49] fails to work due to lack of memory.

Table 3. The comparison of our proposed method with state-of-the-art methods for abnormal

event detection in the UMN dataset. NN, nearest neighbor. SRC, sparse reconstruction cost.

STCOG, spatial-temporal co-occurrence Gaussian mixture models.

Method
Area under ROC

lawn indoor plaza

Social Force [50] 0.96

Optical Flow [50] 0.84

NN [49] 0.93

SRC [49] 0.995 0.975 0.964

STCOG [51] 0.9362 0.7759 0.9661

LS-SVM (Ours) 0.9874 0.8900 0.9800

Online (Ours) 0.9874 0.8904 0.9839

Sparse Online(Ours) 0.9510 0.8886 0.9515

7. Conclusions

In this paper, we proposed a method to detect abnormal events via online least squares one-class

SVM (online LS-OC-SVM) and sparse online least squares one-class SVM (sparse online LS-OC-SVM).

Online LS-OC-SVM learns training samples sequentially; sparse online LS-OC-SVM incorporates the

coherence criterion to form the dictionary for a sparse representation of the detector. The covariance

matrix descriptor encodes the movement feature of the frame to distinguish between normal and

abnormal events. The proposed detection algorithms have been tested on a synthetic dataset and a

real-world video dataset yielding successful results in detecting abnormal events.
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3. Utasi, Á.; Czúni, L. Detection of unusual optical flow patterns by multilevel hidden Markov models.

Opt. Eng. 2010, doi:10.1117/1.3280284.

4. Xiang, T.; Gong, S. Incremental and adaptive abnormal behaviour detection. Comput. Vis.

Image Underst. 2008, 111, 59–73.

5. Kwak, S.; Byun, H. Detection of dominant flow and abnormal events in surveillance video.

Opt. Eng. 2011, doi:10.1117/1.3542038.
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