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Abstract: Fractional calculus is considered when derivatives and integrals of non-integer 

order are applied over a specific function. In the electrical and electronic domain, the 

transfer function dependence of a fractional filter not only by the filter order n, but 

additionally, of the fractional order α is an example of a great number of systems where its 

input-output behavior could be more exactly modeled by a fractional behavior. Following 

this aim, the present work shows the experimental ac large-signal frequency response of a 

family of electrical current sensors based in different spintronic conduction mechanisms. 
Using an ac characterization set-up the sensor transimpedance function Zt ( jf )  is obtained 

considering it as the relationship between sensor output voltage and input sensing current, 

Zt ( jf ) Vo,sensor ( jf )
Isensor ( jf )

. The study has been extended to various magnetoresistance 

sensors based in different technologies like anisotropic magnetoresistance (AMR), giant 

magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). 

The resulting modeling shows two predominant behaviors, the low-pass and the inverse 

low-pass with fractional index different from the classical integer response. The TMR 

technology with internal magnetization offers the best dynamic and sensitivity properties 

opening the way to develop actual industrial applications. 
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1. Introduction 

Fractional calculus is considered when derivatives and integrals of non-integer order are applied 

over a specific function. In its origin, fractional calculus was a mathematical discipline systematically 

developed in the beginning and middle of the 19th century by Liouville, Riemann and Holmgren, 

although there were individual contributions before that (Euler, Lagrange) [1]. At the same time, this 

emerging field was applied to solve various mathematical problems like linear differential or integral 

equations. In the last decades, fractional calculus has been a powerful analytical technique to 

accommodate the actual behavior of a target system in the scientific or engineering domains to a 

defined set of differential equations, transfer functions or driving-point adpedance functions. In the 

field of electrochemistry fractional calculus was used to describe more accurately the diffusion 

processes in electrochemical solutions [2,3] or the equivalent circuit of an electrochemical cell [4,5]. In 

biochemistry or medicine areas, modeling of biological tissues like skull or intestine have been done 

with success using the well-known Cole-Cole model. This one considers an impedance in the Laplace 

domain of the form Z(s) = 1/sα, α being non-integer, [6,7]. In botany, the frequency behavior of 

different fruits and vegetables also have been modeled by fractional electrical impedances [8] or to 

monitor the microbial growth by means of a signal conditioning circuit based in a sensor described by 

a fractional impedance model [9]. In the electrical and electronics area, fractional calculus has enjoyed a 

wide variety of developments. Coils with substantial eddy current and hysteresis losses respond in the 

frequency domain to a (jω)αL model with α = 0.6, more exactly than the classical α = 1 behavior [10]. 

In the analogue signal processing field, a great number of studies have been addressed to model 

fractional capacitors using RC ladders circuits [11–14] or to design fractional order oscillators, 

differentiators or filters. In the case of oscillators, a significant increase in the oscillation frequency 

could be reached considering a non-integer exponent (0 < α < 1) in the oscillation capacitance [15,16]. 

In designing analogue filters one of the most important consequences is that of obtaining slopes in the 

attenuation band different from multiples of ±20 n dB/dec being n the filter order. In this way it could 

be obtained slopes of ±20 n α dB/dec where α is the filter fractional order. Additionally, the cut-off 

frequencies are also α-dependent, [17–19]. In industrial electronics fractional controllers have been 

implemented to stabilize the control loop of switched-mode power converters in solar-powered electrical 

generation systems [20] or in parameter identification of supercapacitors or lead/acid batteries [21,22]. 

The transfer function dependence of a fractional filter not only by the filter order n, but additionally, 

of the fractional order α, is an example of a great number of systems where its input-output behavior 

could be more exactly modeled by a fractional behavior. Following this aim, the present work shows 

the experimental ac. large-signal frequency response of a family of electrical current sensors based in 

different spintronic conduction mechanisms. Using an ac characterization set-up the sensor 
transimpedance function Zt ( jf )  is obtained considering it as the relationship between sensor output 

voltage and input sensing current, Zt ( jf ) Vo,sensor ( jf )
Isensor ( jf )

. The study has been extended to various 
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magnetoresistance (MR) sensors based in different technologies like anisotropic magnetoresistance 

(AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). 

The obtained experimental results in the ac large-signal characterization process revealed that 

transimpedance Zt frequency response is more accurately described by a fractional transfer  

function behavior. 

2. Systems with Fractional Representation 

2.1. Fractional Derivatives and Integrals 

Fractional derivatives and integrals (fractional differintegral) are an extension of the classical 

differential and integral (integer) calculus. A great number of fractional derivatives and integrals 

definitions have been proposed in the mathematical field, but from an engineering point of view there 

are specific definitions of special interest. 

The forward Grünwald-Letnikov derivative must be considered when studying a fractional system 

under its steady-state behaviour in the time domain: 
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 the binomial coefficients. This definition is based on the incremental ratio and fractional 

order differences concepts, [23,24]. 

In the Laplace transform domain the fractional differintegral is much easier to handle. This property 

is applied to solve problems in fields like biology, medicine or engineering. Applying the bilateral 

Laplace transform: 

F(s)  f (t)  est  ds




  (2)

 
to both sides in Equation (1) is it possible to obtain that: 

α α( ) ? ( )fL D f t s F s    , for Re(s) > 0 (3)

here for sα and a cut line in the left half plane [24]. 

2.2. Convolution Integral 

Fractional linear-time invariant systems (FLTI) have at the first conception stages the same 

properties than their previous integer linear-type invariant (ILTI) counterparts. Initial properties  

like linearity, time invariance are also assumed in the case of FLTI systems [24,25]. Taking them  

into account, an equivalent behavior is maintained for this type of systems as explained in the  

following subsections. 

Let x(t) a continuous-time signal that is to be applied to the input of a fractional system (Figure 1). 
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Figure 1. Fractional system representation in the time-domain. 

 

The input signal x(t) could be expressed as a weighted superposition of time shifted impulses: 

x(t)  x( )  (t  ) d




  (4)

being δ(t) the impulse function. Let H, the characteristic operator of the FLTI system that is applied to 

the input signal x(t) to produce an output signal y(t): 

y(t)  H x(t)  H x( )  (t  ) d



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 (5)

Assuming the linearity of the fractional system, the order of the operator and integration could be 

interchanged to obtain: 

y(t)  H x(t)  x( ) 




 H (t  )  d  (6)

If h(t)≡H{δ(t)} is defined as the output of the system in response to a unit impulse signal and 

considering the time-invariant property of the fractional system: 

δ( ) ( )H t h t     (7)

replacing this result into Equation (6) gives to consider that the fractional system output response y(t) 

could be expressed as: 

y(t)  x( ) h(t  ) d




  (8)

The above expression indicates that the output y(t) is given as a weighted superposition of system 

impulse responses time shifted by t. The system output, y(t) is obtained by the convolution integrals of 

signals x(t) and h(t), as in ILTI systems: 

y(t)  x(t)h(t)  x( ) h(t  ) d




  (9)

2.3. Eigenfunction Property 

Considering the commutative property of the convolution operation and taking the input x(t)  

in the form x(t)  es·t , where s is the complex frequency s j   , the fractional system input 

response y(t) will be: 

y(t)  h(t) x(t)  h( ) x(t  ) d 




 h( ) es·(t )  d  




 es·t  h( ) es·  d




  (10)
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The resulting integral is defined as the transfer function H(s) of the FLTI system. In other words, 
the input x(t)  es·t  is defined as an eigenfunction of the FLTI system and H(s) as the  

responding eigenvalue: 

y(t)  H(s) es·t  (11)

On the other hand, as the output system response y(t) is equivalent to the convolution of h(t) and 

x(t) signals, taking bilateral Laplace transform in Equation (10) leads to: 

Y (s)  H(s) X(s)  (12)

then, the transfer function of a FLTI system could be expressed as: 

H (s)  
Y (s) 

X(s)
  (13)

like in ILTY systems. 

2.4. Transfer Function 

Equation (14) establishes the input-output representation of a FLTI system by means of a 

differential equation with constant coefficients where y(t) represents the output and x(t) the input is 

assumed to be a continuous-time signal. The constants a1, a2, ... aN and b1, b2, ..., bM depend on the 

element values and the internal topology of the system. Its order is determined by the integer numbers 

N and M but often N ≥ M and the order is described using only N. In its general format: 

 akD
qk y(t) 

k0

N

  bk Dqk x(t)
k0

M

  (14)

where, ak and bk are constants coefficients, qk are assumed to be positive real numbers being the 
derivative order (with k = 0, 1, 2, ...) and D symbolizes the time derivative operation, . 

Considering the eigenfunction property, if x(t)  est  then y(t)  H(s) est  estH(s) . Replacing x(t) 

and y(t) by their expressions in the fractional differential Equation (14): 
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because the fractional derivative of the exponential function is Dqk est  sqk est   Re(s)  0  [24], then: 
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and solving for H(s), it brings an explicit representation of the transfer function for FLTI systems: 

H(s) 
 bks

qk

k0

M
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qk

k0
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
 (18)

D  d
dt
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considering Re (s) > 0 because causal systems are assumed. Again, in ILTI systems the transfer 

function is a rational quotient between two polynomials of variable s with positive real number qk as 

exponents and with coefficients ak, bk done by the fractional differential equation defined by the system. 

The system frequency response H(jω) is obtained with s = jω and their associated Bode diagrams 

could be obtained. The main difference compared to ILTI systems is that it could be obtained, in the 

amplitude asymptotic representation, lines with slopes that have no restrictions about the ±20 dB/dec 

multiples like integer systems. 

In the fractional systems modeling process the above expression for the transfer function H(s)  

put complex problems at the time to solve for its poles. In this way, in order to find a transfer  

function representing the fractional system behavior, a two cases restriction is applied concerning the 

qk exponents: 

(a) qk will be irrational numbers but multiples of a given q, 0 ≤q ≤ 1 or 

(b) qk will be any rational number that could be written in the format uk/vk. In this case, let u and v 

the least common multiples of the uk and vk , thus, qk = k u/v where k and v are positive integer 

numbers, so qk = k q with q = 1/v. The coefficients and orders do not coincide necessarily with 

the previous ones, since some of the coefficients can be zero. 

With these considerations the transfer function becomes: 

H (s) 
 bks

kq

k0

M



 aks
kq

k0

N


 (19)

If the starting point is the transfer function it is possible to obtain, as in the ILTI systems, the system 

behavior in the time domain using the mathematical techniques offered by the fractional calculus. That 

is the system response to an input impulse or whatever input signal in the s-domain X(s) by the use of 

the Laplace transform inversion [24,26]. 

3. Magnetoresistance Sensors 

In the last two decades magnetoresistive sensors have attracted great interest from the science and 

technology point of view. Some authors use the acronym XMR [27,28] to refer to all technologies 

arising for implementing MR sensors: AMR, GMR and TMR. 

AMR technology is the simplest technology in terms of layers and materials. To be consistent with 

the following MR technologies, an AMR sensor comprises a single-permalloy layer of which magnetic 

moment is free to rotate due to an external-magnetic field influence Hf. The electrical resistance R is 

dependent on the angle between the magnetization of this free layer and its biasing current [29]. The  

R-Hf characteristic of a simple AMR sensor is shown in Figure 2. Note that each value of the resistance 

corresponds to two identical but opposed values of the normalized Hf. This non-linearity is corrected in 

Figure 2 using the barber-pole geometry [29], in which, the permalloy layer is coated with an Al wire 

orientated 45° respect to its longitudinal axis therefore creating a biasing field capable to set a  

linear-like sensor output curve around zero magnetic fields. AMR technology offers a weak MR effect, 

usually lower than 3%. 
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Figure 2. R-Hf characteristic of a simple AMR sensor and barber-pole AMR sensor. 

 

GMR technology offers sensors with a magnetoresistance variation in percentage terms ranging 

between 10%–200%. It consists of a multilayer structure where two ferromagnetic layers (FM) are 

separated by a nanometric non-ferromagnetic conductive layer (NFM). The electrical resistance 

depends on the scattering suffered by the electrons as a function of its spin (up or down) and the 

relative orientation of the magnetization between ferromagnetic layers. Its operating principle can be 

explained using the two-current model described in [30], which proposes that the current through a 

GMR structure is composed by two channels, one channel for spin-up electron and the other for  

spin-down electrons. If the orientation of the FM layers is antiparallel, then both channels provide high 

scattering for spin-up and spin-down electrons. But, in case the configuration of the FM layers is 

parallel there is a channel with low resistance for electrons either spin up or spin down electrons, 

depending on Hf direction. Figure 3 represents the R-Hf characteristic of a GMR sensor where it can be 

observed that again it is bi-valued in magnetic field because two values of it (equal in magnitude and 

opposite in sign) have assigned the same magnetoresistance value. This problem is solved by spin-valve 

technology (GMR-SV). It consists in a multilayer where one FM layer is free to rotate under an external 

magnetic field influence meanwhile the other layer is pinned orthogonally [31]. The GMR-SV effect is 

lower than GMR, but a change equal to 6%–20% is still greater than AMR technology. 

Figure 4 shows the R-Hf characteristic for a GMR-SV element. In this case, the sensor were 

microfabricated at INESC-MN Lisbon, with the following structure (thickness in Å): Si/Al203 500//Ta 

30/Ni80Fe20 30/Mn77Ir23 60/Co80Fe20 30/Cu 19/Co80Fe20 25/Ni80Fe20 25/Ta 20/Ti10W90(N2) 50, free and 

pinned layers easy axis were set orthogonally in order to enhance a linear transfer curve, [32,33]. 

TMR technology provides the highest MR ratios (up to 500%) [34], its structure derives from GMR 

structures where the NFM conductive layer is replaced by an NFM insulating layer (MgO, Al2O3, for 

example). The electrons flow through the insulating layer by means of tunneling effect defined by 

quantum mechanics. They have strong likelihood to cross the insulating layer when the magnetization 

vectors of adjacent FM layers are in parallel alignment and low probability when they are in 

antiparallel alignment. These two states correspond respectively to low and high electrical resistance 

state. Although the variation of resistance is due to different physical principles, GMR and TMR 

structures exhibit a similar R-Hf characteristic curve, and are based on the same principles as the spin 

valve technology to obtain a linear response. TMR main drawback is the presence of hysteresis in its 

R-Hf characteristic, however this can be minimized using integrated permanent magnets [35]. Figure 5 
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shows the R-Hf characteristics corresponding to two TMR sensors one with and the second without 

biasing magnets. These characteristics belong to a MTJ stack based in MgO that was deposited at the 

International Iberian Nanotechnology Laboratory (INL, Braga, Portugal) in the Timaris sputtering 

system, with a layer structure of: Si/2000 SiO2/50 Ta/500 CuN/50 Ta/500 CuN/50 Ta/50 Ru/75 

IrMn/20 CoFe/8.5 Ru/26 CoFeB/10 MgO/30 CoFeB/2.1 Ta/160 NiFe/100 Ta/300 CuN/70 Ru/150 

TiW(N) (thickness Å). The permanent magnets were then implemented with CoCrPt thin film 

elements, [36], patterned after the sensor microfabrication. 

Figure 3. (Top) GMR principle illustration; (bottom) R-Hf characteristic of a GMR sensor. 

 

Figure 4. R-Hf characteristic of the spin valve sensor used in this work (MR = 7%) [30]. 

 

XMR sensors have been applied as hard disk read heads, electronic compasses, displacement 

transducers, encoders and proximity switches, between others. In this paper the XMR sensors are used 

for electrical current measurement, their main advantages are the inherent galvanic isolation, the level 

of integration and the ability to measure dc and ac currents. The experimental results of this work are 

focused in comparing the AMR, GMR and TMR ac large-signal frequency responses. The sensors 

characterized in this work were set in full or half Wheatstone bridge configurations. 
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Figure 5. R-Hf characteristic of the TMR sensor used in this work (177% MR), [36]. 

 

4. Experimental Procedure and Methodology 

The main goal of the present work was modeling using fractional calculus, the transimpedance 
function Zt ( jf )  in various MR current sensors considering it as the relationship between sensor output 

voltage and input sensing current, Zt ( jf ) Vo,sensor ( jf )
Isensor ( jf )

. The target group was configured by two 

commercial MR sensors: the ZMC20 part, based on the AMR technology, the AA003-02 part, based 

on GMR technology and three specific MR sensors micro-fabricated at the INESC-MN and INL 

facilities: one based on GMR-SV technology [32], and the two last based on TMR technology (without 

and with internal magnetization) [36–38]. Figure 6 shows the sensors, each one attached over an 

appropriated printed circuit board or wire in order to sense the current through a copper trace or conductor. 

The ZMC20 sensor has inside the plastic package an internal current carrying conductor (Figure 6a 

top) this arrangement is different from the others MR sensors where the conductor is out of the sensor 

package. In the case of the AA003-02 part there is a copper trace placed in the printed circuit board 

and below the sensor (Figure 6b top). The GMR-SV and TMR sensors have a U-shaped copper trace 

conductor under the sensor active area (Figures 6c–e respectively). 

Figure 6. Actual appearance of the tested MR sensors. (a) AMR sensor (ZMC20);  

(b) GMR sensor (AA003-02); (c) GMR-SV sensor (INESC-MN, Lisbon, Portugal);  

(d) TMR-without magnets (INL, Braga, Portugal) and (e) TMR-with magnets (INL). 
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In all the cases a frequency sweep was selected for a sensor sine wave input current using a high 

level rms large signal value in amplitude. Figure 7 shows the experimental set-up used to obtain the ac 

transimpedance frequency response. All the current sensors were energized by a 2 mA constant current 

source (mod. 6221, Keithley, Cleveland, OH, USA) and the current to be measured by them was 

generated by two voltage-controlled amplifiers. From a practical point of view it was difficult to have a 

unique equipment generating in good conditions and simultaneously the current amplitude and 

frequency needed by the test requirements. Consequently, the whole test was divided in two: the low 

and the high frequency tests. The low-frequency test was done using a transconductance amplifier 

(3200 PCS-2B, Krohn-Hite, Brockton, MA, USA) because it has a low cut-off frequency response. In 

the case of PCS-2B model a peak current amplitude of 10 A was guaranteed between the 40 Hz–1 kHz 

band. On the other hand, the high frequency test required an equipment prepared to reach the highest 

possible upper frequency response. In this work the sensing current was generated by a high-frequency 

transformer with a 21:1.1 turns ratio [38] connecting in its primary side a wide band voltage amplifier 

(Krohn Hite 7500) with a dc-to-1 MHz frequency response. The ac test was carried out up to a  

400 kHz frequency because this limit was imposed by the transformer frequency response limitations. 

Figure 8 shows the output current capability of the high frequency test (wide band voltage amplifier 

and voltage transformer loaded with 0.165 Ω). This equipment is able to generate rms current levels of 

10 A in a reduced frequency interval (5–10 kHz) but it is capable to reach easily 0.8 Arms at 400 kHz. 

In both tests the reference dc voltage signal was generated by a waveform generator (Agilent 33120A). 

The sensor output voltage is a differential signal and in all the cases was measured by an oscilloscope 

(TDS3034, Tektronix, Beaverton, OR, USA) using two identical and compensated 1:1 voltage probes 

using the difference mode of the oscilloscope. A differential voltage probe was not used in the test 

because this would cause additional gain errors and phase shifts. The current measurement was done 

by the Tektronix TCP202 current probe and the sensor transimpedance Zt(jf) function was obtained 

taking readings of the rms input current and output sensor voltage and the phase shift between both 

signals (Figure 9). The sensors studied were submitted to input rms current values between 100 mA 

and 3.6 A for frequencies of 50 Hz, 60 Hz, 200 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz 

and 200 kHz and with 0.8 Arms for 400 kHz frequency. 

Figure 7. Experimental set-up to test the sensors transimpedance AC large-signal 

frequency response. 
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Figure 8. High-frequency set-up output current capability. 

 

Figure 9. TMR sensor-without magnets output voltage (CH2) vs. sensing current (CH1), 

Irms = 1.54 A, f = 200 kHz. 

  

5. Experimental Results, Modeling and Discussion 

For each MR sensor the transimpedance Zt(jf) function in the frequency domain was obtained both 

in amplitude and phase formats (Bode diagrams) from the expressions: 

Zt ( jf ) 
rms (vo,sensor )

rms (isens )
 (20)

phase Zt ( jf )   phase (vo,sensor ) phase (isens )  (21)

Four transfer functions were fitted numerically using Matlab software to fit the experimental ac 

response to a least square algorithm to minimize the relative error function. The results are shown in 

the following figures. For each sensor its normalized transimpedance ac large-signal frequency 

response is obtained both in magnitude and phase (blue lines) and at the same time is depicted (in red 
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line) the response of the proposed fractional model. The following figures (Figures 10–14) and tables 

(Tables 1–4) summarize the fractional model parameters obtained. 

Figure 10. AMR sensor ac large-signal fractional modeling. 

(a) (b) 

With the goal to model the obtained experimental response (Figure 10) a two poles and two zeros 

transimpedance function was obtained as the most appropriate with poles located in fp1 = 10 kHz and 

fp2 = 600 kHz and zeros in fz1 = 38 kHz and fz2 = 245 kHz with fractional orders of α1 = 0.59, α2 = 1.5, 

β1 = 0.95 and β2 = 0.85 respectively. The obtained low frequency transimpedance gain zo was  

1.3 mV/A. Equation (22) summarizes the proposed model.  
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 (22)

In this case a −3 dB frequency of f-3dB = 116 kHz was obtained. Experimental measurements and 

modeling process revealed that GMR and TMR-without magnets sensors offer a fractional low-pass 

behavior, the first with a fractional index α less than unity and the second greater than it (Figures 11 

and 13, Tables 1 and 3). Additionally both sensors have an ac large-signal −3 dB bandwidth around 

70–100 kHz and similar zo dc sensitivity. On the other hand GMR-SV and TMR-with magnets 

manifest an inverse fractional low-pass behavior with fractional index α slightly less than 2  

(Figures 10, 12 and 14 and Tables 2 and 4). Note the presence of a resonance region in the TMR-with 

magnets response (Figure 14) as a consequence of its fractional index approximation to the α = 2 value 

in conjunction with its characteristic frequency fc. As far as the experimental set-up can (0.8 Arms with  

f = 400 kHz) the measurements revealed an increasing transfer function with frequency in the high 

frequency zone. Probably using an improved testing experimental set-up the transfer function will be 

limited in magnitude but this behaviour cannot be shown yet. Nevertheless unless the transfer function 

is not limited in the high frequency region a compensation of this not-limited magnitude can be done 

connecting in cascade at the sensor output a differential low-pass filter properly designed. 
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Figure 11. GMR sensor ac large-signal fractional modeling. 

(a) (b) 

Table 1. GMR sensor ac large-signal fractional modeling parameters. 

Zt(jf) α fc (kHz) Zo (mV/A) f−3dB (kHz)
zo

1 j
f
fc










  

0.8 105.6 57.1 72.2 

Figure 12. GMR-SV sensor ac large-signal fractional modeling. 

(a) (b) 

Table 2. GMR-SV sensor ac large-signal fractional modeling parameters. 

Zt(jf) α fc (kHz) Zo (mV/A) f−3dB (kHz) 

zo 1 j
f

fc





















 1.8 48.3 0.21 25.5 
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Figure 13. TMR sensor without internal magnetization ac large-signal fractional modeling. 

(a) (b) 

Table 3. TMR sensor without internal magnetization ac large-signal fractional modeling parameters. 

Zt(jf) α fc (kHz) Zo (mV/A) f−3dB (kHz)
zo

1 j
f
fc






















 
1.1 86 66.3 99 

Figure 14. TMR sensor with internal magnetization ac large-signal fractional modeling. 

(a) (b) 

The AMR sensor responds to a more complex model with two zeros and two poles with their 

fractional index. The widest ac large-signal −3 dB frequency band are offered by the TMR technology 

(without and with magnets) providing at the same time higher zo dc sensitivity (Tables 3 and 4). These 

properties give the TMR technology an appropriate MR sensor to implement actual industrial 

applications. Moreover, it is possible to extend the practical frequency band applying the extension 

technique described in [39]. One effect observed in TMR-with magnet sensor was the variation of the 

bandwidth with the power supply bias current Icc. Figure 15 shows how the corner frequency of the 

transimpedance function is shifted to higher frequency region as the sensor constant current power 
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supply increases. Nevertheless a trade-off must be reached between bandwidth and power 

consumptions in order to optimize the sensor use. 

Table 4. TMR sensor with internal magnetization ac large-signal fractional modeling parameters. 

Zt(jf) α fc (kHz) Zo (mV/A) f−3dB (kHz) 

zo 1 j
f

fc





















 1.9 204 56.4 108 

Figure 15. Dynamic behavior dependence with Icc in TMR sensor without permanent 

magnet linearization. 

 

6. Conclusions 

The present work has been an attempt to model the ac large-signal frequency response of different 

MR current sensor technologies using fractional calculus. From the experimental measurements 

obtained by a specific high-current wide bandwidth set-up different fractional transimpedance 

functions have been fitted. The resulting modeling shows two predominant behaviors: the low-pass 

and the inverse low-pass with fractional index differ from the classical integer response. The TMR 

technology with internal magnetization (permanent magnet biasing stabilization) offers the best 

dynamic and sensitivity properties, opening the way to develop actual industrial applications. 
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