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Abstract: Microelectromechanical Systems (MEMS) technology is playing a key role in
the design of the new generation of smartphones. Thanks to their reduced size, reduced
power consumption, MEMSessors can be embedded in above mobile devices for
increasing their functionalities. However, MEMS cannot allow accurate autonomous
location without external updates, efygom GPS signals, since their signals are degraded

by various errors. Whenthesense or s are fi xed on the wuser 6s
foot can easily be determined and periodic Aexlocity UPda®s (ZUPTs)re perforred

to bound the position errokWhen the sensor is in the hand, the situation becomes much
more complex. First of all, the hand motion can be decoupled from the general motion of
the user.Second, the characteristics of the inertial signals can di#eending on the
carrying modes. fAerefore, algorithms for characterizing the gait cycle of a pedestrian
using a handheld device have been developed. A classifier able to detect motion modes
typical for mobile phone users has been designed and implemented. According to the
detected motiomode, adaptive step detection algorithms are applied. Success of the step
detection process is found to be higher than 97% in all motion modes.

Keywords: pedestrian navigation; handheld MEMS; step detection; mobile phone;
gait analysis
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1. Introduction

A consequence of tHeooming markebf smartphones and other typgsPersonal Digital Asistant
(PDAS) is thathe possibility of using mobile devices for locate person is becoming more and more
attractive for many applications. Among them are headtie Gervices, commercial applications and
safety services. The trend is evolving from applications dedicated to professional market to the
consumer market. This explains the increasing interest for research in handheld based positioning fol
LocationBase®er vi ces (LBS) as it could broaden the
example, mobile phone users can automatically receive information about places of interest, such a:
restaurants or shops according to their actual locations or thelgecaanstantly updated about the
| ocation of their friendsd networ k. Knowi ng ¢
assistance services in emergency situations or help in the assistance of elderly or impaired people
Subsequently, it is nessary to guarantee accuracy, continuity and availability of provided services in
different environments. It is known that Global Navigation Satellite Systems (GNSS) are the primary
source for trackingt s e r 6 s rpimdsor @nvirenments,lin urban camgoand in other challenging
surroundings the availability of satellite signals cannot be guaranteed and GNSS based services can &
highly degraded or totally denied. In these cas®@sro-electromechanicadystems (MEMS), such as
accelerometers anglyroscopes, an aid thegeolocationprocess. The main advantage of using these
sensors is that they are already embedded in most emerging mobile devices.

However, the main drawback of low grade MEMS sensors is that, since their signal is affected by
various noises and driftgl], they cannot constitute a selbntained systemin order to boundhe
above error sources, frequent GNSS updates can beWset. GNSS aiding is not available other
approaches have to be investigated in ordegeolocate usersA widespread approach consists in
applying PedestriarDead Reckoning (PDR) using embedded inertial sensgbotrary to strajglown
navigation, PDR offers an interesting strategy because it exploits the kinematic of the hunf2jn gait
instead of doubly integting the inertial data. Given a starting known position, PDR algorithm
propagates the usero6s position by estimating
speedTraditionally, PDR algorithms compute the travelled distance by detgctit he user 0s
determining their lengthThis technique has been used for navigation application in many research
works, as detailed in Section 2.

2. Background and Related Works

The PDR approach is very effective when the sensor is rigbuntel on t he user o
especially when it ilsthid casptae stance ghasestoftle fdaterethed s f
foot is flat on the groundcan be identifiecand associated witktep events. Periodic zero velocity
updates (ZUPTs) and/or zeamgular rate updates (ZARUS) are then performed to bound the position
error accumulatiorf3i 5]. The same techniques can be adopted when the sensor is mounted on the
user 6 s | eg asin thenakoveecaseguasistdtiaperiods, even if shorter than the ones
identified for the foot case, are stillpres@it The case of inerti al senso.
belt is also explored7i 10]. In the above situationshe inertial force experienced by the senisor
directly |l inked to the motion of the human bo
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gl obal u s ldowéver, body fixéddogations are not realistic for consumer grade applications
since generic users usually carry their mobile devinetheir hands, lower pockets or handbags. The
case of unmounted sensdi@ inertial pedestrian navigatioms only marginally exploredSome
researchdeawi t h t he case of t he[llsld. Whenithe subjett istwialleng u s e
withthe€nsor in the pocket, the | MU signal IS g€
motion. Subsequently, in this case, approaches similar tatheflxed case can be adoptéudeed a
handheldmobile device can be subjected to various typemations and the pattern of the sensor
signal is less predictable than the above mentioned casd&susenbaueet al [13] analysethe
situation where the user carries the mobile device in his/her hand looking at the screen to consult
navigation instructions.The mentioned work does not considiferent carrying modeswhichis a
limitation for realistic applicationsAnother promising approach for navigation purposes using
handheld devices is based on the integration of inertial sensor sigilal® camera, nowadays
embedded in all smart phond$,14,15]. Thisapproach is based on specific assumptions regarding the
light conditions and the camera orientatd®termined by thdevice orientation

For devices carried without any assumption abibeir orientation or position the continuous
identification of thedevicecarrying mode and the user motion can help to constrain and properly tune
the navigation algorithms according to the specific situaimh consequentlyp the characteristics of
the sensor signal patterRor body fixed sensors, it has been shown timawkedge about the user
motion can be exploited to aid PDR systearsd refine the usércation estimatee.g, [9,16]. The
identification of human motion and gestut®s usinginertial sensors is an active and proliferating
research field finding many applications included medical diagnosis, sport rehabilifa@hn
elderly assistance [18kmergency servicell9], monitoring system$20], offender tracking[21],
navigation[9,22] etc. Eachapplication has specific requirements determining the number and type of
sensors to be used, the sensor position and carrying mode, and the motions/activities to be recognize
For instance, the use of multiple sensors is a common appfoacmedical applicationsand
rehabilitation purposesince more sources of information increase @beuracyof the classification
process. The use of multiple body fixed sendorshuman activity recognitiornas beerdeeply
investigated irthe literature An extensive comparison of classification techniques usegial body
worn sensa can be found if23i 25]. In the recent yearfiuman activity recognition by exploiting the
capabilities of moderhandheldsmart phonesr devicess also becoming ancéve field of research.
However, he identification of human activéis recognitionby using mobile phonestroduces many
peculiarissues[26,27]. One of the main requirements is thhe classification should be robust,
regardless of the device carryimgode and its orientatiorSome research worfocuses on the
identification of human activitiesising portable devicem order to localize users the outdoos
relying on the combination of GPS armther technologie®r external source informatiore.g,
Geographic Information Systen®[S) andinertial sensorglata [2829]. Howeverthesealgorithms
which rely on GPS measurementre designed for outdoor applicatiom®d, ©®nsequentlyare not
suitablefor navigation purposes in satellite signal deniedi®mnmens. A very few recen papers
propose navigation algorittsrior handheld devicebased onlyon inertial sensa data andaking in
accountdifferent sensor carrying modescluding the swinginghand case The latteris the most
critical situation Indeed when an inertiakensor is held ia swinginghand the hand motiogan hide
the global pedestrian motion making the step identification difficult. For this reason, the techniques
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used for Abody fixedod sensor s awsdaandedicate amaysisaip p |
required.Recently Peet al [30] proposed a Least Squaeipport Vector Machines for identifying
eight motion statessonsideringdifferent carrying modescluding the swingingsituation Based on
accelerations and magnetielfl data recorded with a handheld unit, this classifier performs with
successful recognition rates varying between 80.45% and %5d&pending on the considered
featuresThen, human activity recognition is combined with wireless positioning for indeayatien.
Kamisakaet al. [31] propose the design and implementation of a RF&emfor mobile phone
applications. This workleak with different carrying modes includindpe swinging caserlhe lattens
distinguished fom other sensor carrying modes laynalysing the output of a magnetometer
Specifically, the magnetometer measurements are used to evaluate the variation in the angular
difference detected by the sensor. This approach is motivated by the observation that arm swinging
produces a sinusoidalagnetometer output. Once the specific carrying mededentified user steps
are detected by exploiting the magnetometer outputs in the swinging case and the acceleromete
outputs in all the other analysed carrying modes. Howevagnetic field experieme rapid variations
in indoor spaces due to surrounding ferromagnetic compouwitish may perturb the sinusoidal
pattern analysis

3. Motivation and Paper Outline

In this paper different kinds of motions commonly experiedcby handheld inertial sensoase
considered and identifiegsing a dedicateclassifier.In particular, the case @nIMU carried in the
user6s swinging hand is distinguished fmpobdem t h
device, for example when the walking subjsgbhoning or texting a message on his/her matzhace.

In order to identify the swinging case, the proposed approach uses angular rates instead of magnetomet
measurements exploited [80,31]. Indeed, this appears to be a more robust source of iafiorm A

further element of novelty isthead y si s of fAi r r geguarraotion olasg inclodesal . T
motions inducing an inertial force on the se
displacement. The identification of this tymé motion, which is frequently neglected in PDR
algorithms, is fundamental for navigation purposes in order to discard parasite motions in the
navigation process. This aspectlsopointed out in §] where a waist mounted IMU is exploited to
detectdifer ent types of motions including irregul a
l inked to a change of Siclirregusrenotiorss arg evengnora [kaly te a |
occur when the sensor is freely carried in a hardch is thecase considereldere butarealso more

difficult to identify due to the possible decoupling between hand and body motions. Knowledge of the
motion mode is then exploited to develop step detection algorithms that are adafitedriode
experienced by thaser. In fact, as shown i133)], the algorithms proposederecan be exploited in
conjunction with a step | ength model to effec
using handheld devices freely carried by the user. The challenging tadiustly detecting steps with
handheld inertial sensors is essential for-fresgtial PDR andis the motivation of this work.

The remairderof thepaper is organized as followis Section 4, the signal model is introduced and
in Section 5, theselectedmotion modes are illustrated. The features and the decision tree algorithm
used for classifying the pedestrian and hand motion modeslem@ibedin Section 6. The step
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detection algorithm is described in Section 7. Section 8 details the degetioosand assessthe
proposed algorithms:inally, Sectior® drawsconclusiors.

4. Signal andSystem Model

The motion mode recognition and the userds s
with a six-degreeof freedomhandheldnertial Measurement Unit (IMU). The device is constituted by
a tri-axis accelerometer and-tikis gyroscope that respectively measure the acceleration and angular
velocity of the rigid body with respect to the navigation frame. The output of theslMW¥ a can
be modelled as the sum of the response to the experienced inertial force and a nojSg¢ teim
composed by the accelerometer ouE;‘ILl[m] N g and the gyroscope output astfn] ¥ a . It can be
expressed as

L &l gl o 4
= & %

€ D
&l gek] o adnk
where:

7~ = represents the temporal indekthe signal with sampling frequency= 1/Tsequals to
100Hz
a[n] is theraw acceleration vector at the output of theatxis accelerometer,

df‘[n] is the noise vector associated to the accelerometer output,
¥ [n] is theraw angular rate vector at the output of theatxis gyroscope and

= =4 =4 A

d”[n]is the noise vector associated to the gyroscope output.

Dueto their low grade nature, the sensors embedded in most common mobile devices are strongly
affected by errors degradinigeir accuracyl]. To cope with such errors, specific signal-precessing
is requiredas describedn Section 6.1. In particular, the algthms presented in this papare
extracting information from moving windows whose méaremovedin order tomitigatethe slowly
varying sensor errorgg., the sensor bias drift.

5. Motion Mode Definition

As analysed i27,33], portablehandhelddevices experience a large variety of motions producing
different patterns in the recorded signalhe success rate dfignal processing techniques for
analysing pedestrian gait is therefore related to the design of adaptive analyses. Subsequently, knowin
not only the userdéds gl obal moti on mdvibregver ibisst al
importanttoie@ nt i fy all hand motions that do not ref/l
be only considered as perturbations for tracking the gldisplacementOtherwise in these cases, the
user position would be incorrectly propagated in any nawigdilter. Such event occurs, for example,
when the user is standing and looking for his/her phone in the bag. In these situations the subject is no
changing his geographical position although a significantly inertial force is experienced by the
handheldMU.
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In this paperthe followingfour differentclasse$ave been identifieth order tobetter characterez
thesensor carrying modes and motions typical for mobile phone.users

Class 1 this class includes all situations when user is st&tie. uselis considered as static when
his/her location does not change during the analysis temporal window. More specifically,
it also includes the situation when the user is slightly moving but not significantly enough
to be considered asgtobal locomotionThis is the casehen the user is stepping on spot
while answering a phone call. All these types of activities have to be recognized as static
activities, so that the user position is not wrongly affected.

Class 2 this class refers to all cases when the ckvs quasi stabland the inertialforce
experiencedy the sensor is mainly produced by the user global matiancludes the
following cases

T Hand texting:in this case the mobile handheld device is almost stationary. For
example, the user is walkintgxting or reading a message on the phdihe.situation
when the subject I's wal king watching
navigation instructions included as well

T Hand phoning: the user walks while making or receiving a call.

T Bag carryingthe user is walking with the mobile device in a bag held in one hand.

Class 3 it refers to the hand swingingase The user is walking while holding the mobile device in
his/her swinging hand.

Class 4 it includes tharregular motions. They arall motions that the user performs while he is
standing and that do not contribute to the global locomotion. For example, the subject is
searching the phone in a bag without walking

6. Motion Mode Classification

The goal of a classification system isaatomatically assign a given input pattern to known classes
of objects, according to specific decision rules.general any classification process is performed
according to the three following phagéd].

1 Data preprocessing: the main purpose of tipisase is to remove the noise from raw data
enabling next phases.

1 Features extraction and evaluation: this phase aims at extracting and evaluating meaningful
parameters able to univocally characterize each class, therefore enabling the classificatmn proces

1 Decision Making: this phase refers to the last stage that is the association of the input pattern to
a specific class.

As shown in Figure 1, where the general block scheme of a classifier for motion mode recognition
is reported, the raw data are firseprocessed and then the extraction and evaluation of features is
performed.The optimum features for characterizing the input pattern are found during the training
phase. The latter has also the aim to learn the classifier according to a specifidimatig].the class
selection is performed-ollowing sections detail the above three phases that have been implemented

A

for identifying the usero6s motion mode.
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Figure 1. Scheme of a classifier for motion mode recognition.
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6.1. PreProcessing

Since most ofthe energy captured by the accelerations and angular rates associated to human
movements i®elow 15 Hz B5], the components in Equati¢h) are first lowpass filtered using a fl©
order Butterworth filter with a 15 Hz cuiff frequency. This filtering removes the hi§lequency
components of the noise. This phase is necessary for extracting useful information from-¢bstlow
sensor signals enabling theuman motion recognition preess. It is worth pointing out that
high-frequency components could be exploited to identify other typemtexts[36,37], such as
driving a carwhich are not considered in this paper.

Moreover processing is performed on the norm of the inertiahlsighndeed when the sensor is not
body fixed, the orientation of the sensor cannot easily be determined, which affects the analysis of
inertial signals along a specific axis. In addition, due to fast motions that are generally performed by
hand, the orietation of the sensor can suddenly change and distorts a compageergrocessing. To
remove any dependence upon the sensoro6s orieni
following notation is used to denote the filtered acceleration andangte norm:

i @

where

1 ig ¢ WE WE OE
T i ¢ 1 ¢ 1 €& 1 ¢

It has to be noted that the presence of azesn DC component can hidi@portant information
and reduce the effectiveness of frequency domain estimation techniques, which will be used later.
Thus, the DC component is removed as follows

i & a 3)
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The second term dEquation(3) is the signal mean computed using a moving average filteNand
is the length of the moving averagéhe criterion used to select the analysis window length is
explained in Section 6.2.

6.2. Featureextraction

To perform any classification process a set of features has to be extiHutgdre attributes able
to characterize without ambiguity each motion mode. The features selection plays a key role in the
entire classification process and strongly affects thal fserformance of the designed classifier. In
particular, to reduce the probability of midassification, features have to be chosen in ordg4io

1 minimize the distance among different features belonging to the same class
1 maximizethe distance among different features belonging to different classes.

In this work, feature extraction is performed by dividing the norm ofppoeessed inertial data in
sliding windows of N samples with 50% overlap. The effectiveness of this choiceotton mode
recognition has already been shown in previous werg§.,([27,32]) . The windowds s
selected in order to be big enough for including at least a cycle gait but small enough to allow
identifying sudden motion mode transitions. Insthwork N was chosen to be 256 samples that
correspond to 2.56 seconds using a H2aGampling frequency.

In addition, this size allows the fast computation of the Fast Fourier Transform [$gdf Tised for
the frequency analysis of the examined signale following features have been identified for the
classification process:

1 the gyroscope ener@y

the accelerometer energy

the gyroscope variande ,

the accelerometer variange and

the dominant frequencies of the gyroscope and accelerometer, respe&tivaatyl /£

= =4 =4 A

They are described in the next sections.
6.21. SignalEnergy

Energy features allow distinguishing low and high intensity activities. The energy is computed here
by squaring the norm of the accelerometer and gyroscope data and summing and normalizing themn
over a moving window as

: P .
@) =
g i € 4
: p . .
O =
T (5)
where N is the length of the analysis window aind  andi are thenorms of thefiltered

accelerometer and gyroscope data. This feature mainly contributes to the identification of static and
dynamic states. Figure 2 shows the results of an actual user walking along a straight line with the IMU
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alternatively in the phoning and swinging hand.eTéwinging mode experiences much higher
amplitudes of the angular rate and acceleration energies as compared to the other states of interes
namely texting, phoning, bag carrying. It was found that in the latter cases, the motion sensed by the
IMU is primarily due to the lower part of the body. For this reason, in the above situations, the sensor
signals present patterns that are similar to the one experienced with body fixed. It was also found that
texting, phoning and bag carrying present the same ésaturd can be grouped in a unigue state.

Figure 2. Energy of the gyroscope signal (norm) for a walking user with the IMU in the
swinging and phoning hand.
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6.2.2. SignaVariance

In order to improve the robustness of the classification processfetitares are considered. They
are principally the variansef the gyroscope and accelerometer signals. The variance of a signal is a
statistical measurement defined as the average of the squared differences from the mean. For th
accelerometer and the gygcope signal, they are expressed as

p . . P . .

” l’)T l € l’)T l € (6)
p . P . .

” g i € g i € ()

In Figure 3 the variance of the gyroscope signal for a subject walking with the IMU in the bag and
in the swinging hand is reported. This feature adds useful information for identifying the swinging
mode, since it assumes these values, for both gyroscabacaelerometer, to be bigger than the one
estimated in the texting, phoning and bag cases. Finally this feature is used for recognizing irregular
motions occurring when a rapid increase of the variance is observed for inertial data without
periodicity inthe signals. Indeed the frequency analysis completes the motion recognition process.
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Figure 3. Variance of the gyroscope signal (norm) for IMU in the swinging hand and IMU
in the usero6s bag.
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6.2.3.FrequencyAnalysis

Human walk presents a particusignature due to the periodic repetition of two main phases: the
stance phase, when the foot is in contact with the ground, and the swing phase, when the foot is in the
air [5]. As shown in[22], the analysis in the frequency domain of inertial signalsrdsad with
handheld devices allows capturing the periodi
activity. In fact, periodicities in the time domain produce peaks in the frequency domain. Observing
the presence or absence of the above péaksxample in the accelerometer signal, it is possible to
test the signal periodicity and, subsequently, understand if the inertial force sensed by the IMU is
really related tomramlmen moen @ wdl kihmgusrer 6s har

The frequency malysis of the accelerometer signal is performed using the Short Time Fourier
Transform (STFT)[38] in order to take into account the nstationary nature of the signal. This
technique assumes that a generic non stationary signal can be considereahsfaticmort periods of
time. Then the spectrogram can be obtained by squaring the absolute value of thenFigire 4,
the spectrogram of the accelerometer while the subject is walking with MEMS in the hand is reported.
In this case the user is watig carrying the IMU alternatively in the texting mode and with the hand
swinging. The periodicity of the walking is visible in the frequency peaks of the spectrogram.

Figure 4. Spectrogram of the accelerometer signal for a walking user with the IMU
in the hand.
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In order to better analyse how these frequency peaks change over time, the three main frequencies
obtained by evaluating the first three maxima in the spectrogram, are reported over time. The estimatec
three dominant frequencies for a pedestiiest are reported in Figure 5 and are now further analysed.

Figure 5. Dominant frequencies of the accelerometer signal over time. The IMU is carried
in the useroés hand
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When the user is walking, the first two frequencies are almost stationarytsaaeeser is not
significantly changing speed. However when the user is performing an irregular metiohe is
looking for his mobile phone im bag, the two main frequencies show a very irregular trend. In
opposition, when the user is static the freogies are almost equal to zero. As illustrated, the
frequency analysis can be used to distinguish irregular motion modes from normal walking. Similar
anal ysis is also performed on the gyroscopeods
In fact, during hand swing a periodic rotation of the arm is observed in the gyroscope signal inducing
evident peaks in the frequency domain and that would not be observed when the subject is texting ol
phoning. Subsequently, the presence of the above maak$elp distinguishing between different
sensor carrying modes. Indeed as shown in Figure 6, for the texting cases and in opposition to the
swinging mode, no frequency peak is present except in the case when the user is making a rapic
change of direction

Figure 6. Spectrogram of the gyroscope signal for a walking user. The IMU is alternatively
carried in the texting and swinging hand of the user.
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6.3. DecisiorMaking

In general a classification process can be considered as a mapping f{Bdtihiat given an input
pattern characterized by a setdfeaturesf :[fl,fz,...,fd] assigns each feature vector to onenof

possible classes= [cl,c2 c,;] In our case, the features are the attributes defined in Section 6.1 and

A

the classes are the usero6s motion modes.
Classifieralgorithms are traditionally divided in two groups:

1 Supervised classifier: the labelled data, whose class is known, is used to train the classifier and
then to assign unlabeled data to one of the known classes.

1 Unsupervised classifier: here the classesat&known a priori but are defined when the
classification is completed, this is the case, for example, of the clustering classification.

For the proposed classification algorithm using handheld MEMS signals, the classes and their
characteristics are defe d during the <c¢classifierés design p
adopted. The classification of t he TheeHectdenesst at
of the decision tree classifier for motion mode recognition has sfemmn previously22,33].

A decision tree is a neparametric classifier with the form of a tree whose leaves consist of all the
possi ble cl asses. I n correspondence of each
decision tree) or more feats (multivariate decision tree) is specified. Traversing the decision tree
from the root to the leaves, any input observation can be classified. The multivariate decision tree,
shown in Figure 7, initially distinguishes static and dynamic activities asirapproach that evaluates
the energies and variances of gyroscope and accelerometer $@8@jal¥he periodicities of the
accelerometer signal reflect the periodicities of human gait allowing recognition of the walking state.
Subsequently, the gyroscopeasurements are evaluated to identify walking with a swinging hand. In
fact, due to the periodic rotation of the arm during the swinging mode, the gyroscope signal shows
frequency peaks that are not present when the arm is almost stationary. In alidiioralues of the
gyroscope and accelerometer variances induced by the motion of the arm, characterize the swinging
mode. Conversely, when the user is texting, phoning or walking with his/her mobile device in a bag,
the arm is not moving significantly drthe IMU experiences low energies and variances. The latter
cases show a similar pattern for both accelerometer and gyroscope signals. Consequently, for
adequately tuning the step detectadgorithm proposed in Sectiaf the mentioned motion modes can
be considered as a unique class, as shown in Figure 7. However, it is worth mentioning that for other
aims, beyond the focus of this paper, it could be of interest to assign the above motion modes to
different classescor exampl e, di fn§ modesnduch dsetextiing @nd phonng cany i
strongly influence the orientation information provided by the handheld sensor and, consequently, the
distinction of these two states could improve the heading estimation. Finally, irregular motion modes
areident f i ed anal yzi ng t Ihndactith®above clagsnsachatasterized by veayinighe .
values of the gyroscope and accelerometer variances in short temporal periods.
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Figure 7. Decision tree for motion mode classification.
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7. StepDetection Algorithm

Once the pedestrian motion mode is identified, it is of interest to track effective displacements by
detecting stepg$or a pedestrian deagckoning navigation strategyndeed contrary to strapdown
filtering, deadreckoning is less sensitive to the errors inherent to low cost inertial sendors b
dependant to the correct detection rate of step evEngsefore the next step toward handheld based
navigation using embedded inertial sensors consiststecting the steps performed by the user. When

the sensor is placed on the usero6s foot, step
phases of the foot corresponding to zero velocity periods. This approach cannot be applied when the
sensor is in the hand since in this canschanit her

studies €.9.,[39]) show that the swinging of the arm is synchronized with the foot mdtlmamks to
this relationship betmweermnar hd £ mmd thieors wamdy fod c
events can be detectdd.fact, the periodic rotation of the arm produces an evident sinusoidal pattern

in the gyroscope signal. Consequently, identifying the peaks of the gyroscope signal, thedpropose
algorithms are able to detect the wup and for\
swing phase of the userds foot.

During activities, such as walking on a straight line while texting a message, phoning or carrying
the mobile phone in thealy, the signal recorded by the gyroscope is mainly due to the noise
components and to random motions of the hand. Therefore gyroscope signals provide less usefu
information about the motion of the subjects and tend to perturb the detection of steplevbpte
cases only the accelerometer signals are used in the step detection algorithm. In fact, in these situatior
the accelerometer signal shows also a sinusoidal pattern due to the up and down motion of the
s ubj ec tldloth tases,sstep detestican be considered as a peak detection problem. In this
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paper, signal peak detection is performed by recognizing a local maximum or minimum within the
sliding window and using an algorithm based on adaptive thresholds. The use of adaptive threshold
rendes the peak detection algorithm immune to variations of the signal energy and consequently to
any change of the userds pace.

In addition, for minimizing the probability of false detection a dedicateeppyeessing phase of
IMU signals is first performedsimilar to preceding préltering, accelerometer and gyroscope signals
are lowpass filtered using a fif9order Butterworth filter with a 3 Hz cutff frequency. The purpose
ofaboveprgor ocessing phase is to extr atidindiceédedy step gn a
events only and therefore only from an undistorted sigrtan the algorithm evaluates the maximum
value within the sliding window that is assumed as a threshold value for the peak detection. In other
words, if a sample in the windoexperiences a bigger value than the evaluated mean, a peak is
identified In the upper part of Figure 8, the norm of the gyroscope signal recorded by the IMU in the
swinging hand of the user is reported and the bottom part shows the norm of the actelgyadiis
recorded on the foot. Signals recorded in the hand and on the foot are synchronised.

Figure 8. (Upper) Gyroscope signal (norm) recorded by the IMU in the swinging hand.
The dots represent the detected step events. (Down)Accelerometer sigmalrégumrded
by the IMU on the foot (the mean has been removed).
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The magenta dots mark the minima extracted from the signal. From the comparison between the
signals recorded in the hand and on the foot, it is clear that these minima are directly related to the
stride events that have been identified from the acceleesrs&gnals recorded by the IMU on the
user6s foot . I ndeed each minimum corresponds
minimum points a stride can be identified. In Figure 9 (upper part), the norm of accelerometer signals
recorded by the IM in the texting hand is reported. Again in this case the magenta dots identify
the minimum values of the signal that are related to the step events in the same way as for the
swinging case.
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Figure 9. (Upper) Accelerometer signal (norm) recorded byl¥e in the texting hand.
The dots represent the detected step events. (Down) Accelerometer signal (norm) recorded
by the IMU on the foot (the mean has been removed).
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8. Field Tests

Several tests have been conducted in order to obtain a sufficient avhdaté for the training and
the testing phaseof the designed and implemented motion mode detector. In addition, using a
reference that is extracted from foot mounted IMU data, the performance of the step detection
algorithm was also assessédhe data ollections were performed usirige Navcubea multi-sensor
navigation platformncluding a Novatel receiver and able to support up to l@egpee of freedom
Analog Devices ADIS16375 inertial sensdi)]. All data are synchronised with GPS time and
therefore can be used for comparative analyses. For the data collettieastwo IMUs were used,

one in the hand

and

one ri

attached to th

gidly

Figure 10.IMU attached on the fo@nd used as a reference for step deteassessment.
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The wires connecting the NavCube to the inertial sensors were firmly fixed to tiie lbsdy in
order not to disturb the userds motion and ke
foot was used as reference fssessing the performance of the proposed algorithms using handheld
| MUs . ATrueo pedestriandés gait cycle was <char
foot mount ed ac [bleBvenrfthenidentdicatiors of the stamces|phadethe foot by
using foot mounted sensor is not immune by errdissd errors can be neglectedth good
approximationwhen the user is performing a normal walk on a flat plakdirst data collection was
performed indoor for obtaining the data requiredthe training phase of the motion mode classifier.
Two women and two men were equipped with the above hardware setup and walked along two curved
routes of about 50 and 120 metres each. The subjects were requested to walk with swinging hand, the
texting, phoning and carrying the IMU in a bag. Finally the subjects were requested to simulate a
phone call. The users started walking with the IMU in the bag, answered a phone call while walking
and then putted back the IMU in the b&d. performed motions wereegistered annotating the exact
time of occurrence for each motion mode. This set of data was used for the toditheghresholds
reported in Figure 7 in correspondence éach nodeof the classification decision treéhen, two
different types of fe d t est s wer e performed for the al gol
data collections where the subjects could freely chose the sequence of mobiepeitimornmed and a
secondfield test where the subjects were instructed regarding the sequenuetions. The data
collectionsperformed for the assessistpgeare described in Sectionsl&nd 8.2.

8 . IFreeMotiono Data Collection

Thefi f r e e da@ cdllestiprowas performed in a parking lot with four different subjects, two
men and two womernThis environment was selectéol usethe GPS data as reference for the user
travelled path. However, it is worth underlining that since the algorithmsphepesed are only based
on accelerometer/gyroscope data the same performances would be obtained Asdsimown in
Figure 11, the test subjects, equipped with the same hardwsack for the training phasevere
requested to perform a free motioRracticdly, pedestrians were walking over a distance of about

300 metres freely carrying the I MU in their
orientation and freely choosing one among the carrying modes described in Seclidni5s A f r
moton 0 data coll ection was perf or me dThessuljetts werle e p

nevertheless requested to perform all considered motion modes. Again the time of occurrence of eact
motion mode was carefully annotated. This last data astused to test the performance of the motion
mode classifier reported in Section 6.

8.1.1 Motion Mode Classifier Performance

The performances of the motion mode detector are summarized in the confusion matrix given in
Table 1.The rows of the confusion matrix report the performed activities while the columns report the
predicted activities. Along the principal diagonal of the confusion matrix, the accuracy (in light blue),
i.e, that is the percentage of correctly classified gas) is reported for each motion mode. Instead
along the off diagonal elements the percentages of misclassified activities are reported (in green). The
percentage of occurrence for each motion mode is also reported.
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Figure 11.Handheld data collection sgt. One IMU is located in the hand and the other
one is rigidly attached to the foot. Data is recorded by the NavCube placedt he user

backpack
Table 1.Confusion matrix for the motion mode classifiethefifree motiomm dat a .col | ec
. Classified as:
Activity . . . .
Swinging Texting/Phoning/Bag | Irregular motion

Occurrence 42% 53% 5%

Swinging 95% 2% 3%

Texting/Phoning/Bag 1% 98% 3%

Irregular motion 6% 0% 94%

Globally the proposed motion mode recognition algorithm based on signals collected with handheld
IMU classifies the activity in the correct category more than 94% of the time no wh#tactivity is
performed by the pedestrian.

The percentage of irre@r motions detection is equal to @ As previously explained, when an
irregular motion is identified the step detection algorithm is not applied, since this ststeodo
correspond to a real change of geographical user position. Consequently, tifieatientof this class
is essential to avoid/rongly propagating the us@rposition leading to unbounded position errors in
any PDR algorithm. Howevendm Téable 1,onecan observe th&@% of irregular motios are wrongly
classified as swinging motiormhe explanation comes from the fact that swinging and irregular
motions have the closest features, therefore when irregular motion happens during hand swing, it may
be miss detectedlhe analysis of the periodicities of the gyroscope signal for both matiodes
allows reducing this ambiguity in most of the cases. Indeed one motion mode is periodic whereas the
other is expected to be random.these 6%, the step detection will still be appled¢asewhereit



