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Abstract: This paper presents a novel way to address the extrinsic calibration problem for

a system composed of a 3D LIDAR and a camera. The relative transformation between the

two sensors is calibrated via a nonlinear least squares (NLS) problem, which is formulated in

terms of the geometric constraints associated with a trihedral object. Precise initial estimates

of NLS are obtained by dividing it into two sub-problems thatare solved individually.

With the precise initializations, the calibration parameters are further refined by iteratively

optimizing the NLS problem. The algorithm is validated on both simulated and real data,

as well as a 3D reconstruction application. Moreover, sincethe trihedral target used for

calibration can be either orthogonal or not, it is very oftenpresent in structured environments,

making the calibration convenient.
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1. Introduction

Multi-sensors are commonly equipped on mobile robots for navigation tasks. Currently, for instance,

ranging sensors such as high-speed 3D LIDARs are often used in conjunction with cameras for a robot to

detect objects [1,2] and reconstruct scenes [3–5]. In these sensor fusion-based applications, a prerequisite

is to extrinsically calibrate the relative transformationbetween the sensors. The result of extrinsic

calibration highly impacts subsequent fusion processes.
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A variety of methods have been developed to address the LIDAR-camera extrinsic calibration

problem. Among them, early interest focuses on systems consisting of a 2D LIDAR and a camera [6–9].

Wasielewski and Strauss [6] and Naroditskyet al. [7] calibrate a 2D laser scanner with respect to a

camera by making use of special calibration rigs, such as a white planar board covered with a black line.

The work of Zhang and Pless [8] relies on a planar checkerboard pattern. Corners of the pattern [10]

are first detected in images and used to determine the poses ofplanes in camera frames. Meanwhile, 3D

points falling on the checkerboard are taken into consideration to estimate the planes’ poses in LIDAR

frames. Using the geometric constraint of the planar targetin a couple of LIDAR-camera observations,

the extrinsic calibration problem is formulated as a nonlinear least squares (NLS) problem [11] and

solved iteratively.

In recent years, with the development of 3D laser ranging techniques, several methods were proposed

to calibrate 3D LIDAR-camera systems [12–18]. Unnikrishnan [12] and Pandeyet al. [13] extend the

checkerboard pattern-based method [8] from 2D to 3D LIDARs. Mirzaeiet al. [19] utilizes a planar

board covered with fiducial markers for calibration, which,in essence, is of the same rationale as the

checkerboard-based approaches. They further divide the NLS optimization problem into two least-square

sub-problems and solve them analytically. The checkerboard pattern is also used in the work of

Geiger et al. [20]. They calibrate a 3D LIDAR-camera system using a single shot containing

such multiple patterns. Instead of using planar checkerboard patterns, there are several alternative

methods that rely on correspondences of points [21], lines [22] or circles [14], or employ inertial

sensors [23,24]. Compared to plane-based approaches, most of these methods need to build

point- or line-wise correspondences between images and LIDAR points. However, due to the lower

and non-uniform resolution of LIDAR measurements, it is difficult to achieve high accuracy.

In this work, we propose a novel way to conduct the extrinsic calibration between a 3D LIDAR and a

camera. In contrast to most of the published techniques, ourmethod distinguishes itself in two aspects:

1. It takes advantage of a trihedron—which may or may not be orthogonal—for calibration. Such

trihedral targets are ubiquitous in both indoor and outdoorstructured environments, such as two

adjacent walls of a building together with the floor. Hence, it is quite convenient for a robot

to collect data for calibration. Compared to the aforementioned calibration rigs, the trihedral

configuration is less likely to be perturbed even under severe weather conditions, and is easier to

be captured.

2. In contrast to these calibration-rig-based methods that require a user to specify both the region of

a plane in 3D LIDAR and the corners in images, our method requires fewer user inputs. Only the

region of each plane of the trihedron in the sensors’ data is needed. Moreover, the precision of the

manual inputs does not make much of a difference.

To present the proposed method, we organize the remainder ofthis paper as follows. In Section2,

we first describe the extrinsic calibration problem via taking advantage of an trihedral calibration rig,

and introduce the associated geometric and motion constraints. Section3 presents the entire calibration

procedure. Experiments conducted on both simulations and real data are exhibited in Section4, followed

with conclusions in Section5.
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2. Problem Description

Let us formally define the problem of 3D LIDAR-camera extrinsic calibration. We are given a camera

and a 3D LIDAR that are rigidly mounted with respect to each other. Both sensors are assumed to be

pre-calibrated, meaning that their intrinsic parameters are known. A trihedron is observed synchronously

by them. Our objective is to determine the relative transformation between the two sensors, by taking

advantage of the constraints associated with the trihedron.

For the sake of clarity, in the remaining of this section, we introduce the related definitions and

notations, together with the geometric and motion constraints established between the measurements of

the two sensors.

2.1. Definitions and Notations

Figure 1 demonstrates a typical calibration configuration. It includes a system composed of a

Ladybug3 omnidirectional camera [25] and a commercially available high-speed Velodyne HDL-64E

3D LIDAR [26], as well as a trihedral target viewed by both sensors. In experiments, the trihedron is

fixed and the sensor system moves to obtain multiple configurations. In such configurations, several

reference frames are defined:

Figure 1. A typical calibration configuration. (a) is a Ladybug3 camera and (b) is a Velodyne

HDL-64E LIDAR. Both are rigidly assembled with respect to each other. A trihedral object

(c), which may or may not be orthogonal, is observed by both sensors.
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• Camera frame: The proposed method is not restricted to a specific camera type, as long as

the camera is of a single viewpoint [27] and pre-calibrated. The camera frame is set up to be
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coincident with the one defined in its projection model. The frame is represented by{Ci}, in which

i = 1 · · ·N indicates theith configuration.

• LIDAR frame: The LIDAR frame is also defined to be coincident with the one in its own

projection model, and is denoted by{Li}.

• World reference frame: The world reference frame is fixed on the trihedron. Since the trihedral

object can be either orthogonal or not, the reference frame is set up in such a way that the origin is

at the common vertex and the axisX aligns with one intersection line. The axisZ is aligned with

the direction of the planeP3’s normal vector, andY is further determined following the right-hand

rule, as illustrated in Figure1(c). The world frame is denoted by{W}.

Once the frames are defined, we represent the relative rotation and translation from one frameA to

another frameB byRAB andTAB, whereA,B ∈ {Ci, Li,W}. Then, given a 3D pointPA in the frame

A, the corresponding pointPB in B is computed viaPB = RABPA +TAB. In practice, the sensors are

rigidly mounted on a mobile robot, and the transformations from the LIDAR to the camera,i.e. RLiCi

andTLiCi
, are fixed in all configurations even when the robot moves. Hence, they are simply denoted

by RLC andTLC , which are the parameters we aim to estimate in the calibration task.

In addition, we know that a plane in a frame is specified byNTP − d = 0, whereP is an arbitrary

3D point lying on the plane, andN andd are, respectively, the normal vector and the distance. Hence,

we use{Nj
A, d

j
A} to describe thejth plane of the trihedron with respect to the frameA, j = 1 · · ·3, and

P
j,k
A specifies thekth point on the plane.

2.2. Geometric and Motion Constraints

The proposed method makes use of a trihedron as a calibrationrig. Hence, in order to address the

extrinsic calibration problem, several constraints are taken into consideration. They are summarized as

follows.

• Trihedral constraint: Let us consider the trihedron with respect to a sensor frameA. If

its three planes,{Nj
A, d

j
A}, are estimated, then the relative rotationRWA and translation

TWA from the world frame to the sensor frame are uniquely determined. We represent

RWA = [ rWA1 rWA2 rWA3 ], whererWA1, rWA2, and rWA3 are column vectors. Then,

we have


















rWA3 = N3
A
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rWA2 = rWA3× rWA1
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and the translation is

TWA =
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• Planarity constraint between two frames: This constraint implies that, if points in a frameA are

coplanar, then they must lie on a plane when transformed to another frameB. It means that, in the

absence of noise, we have a plane{NB, dB} such that

∑

k

||NT
B(RABP

k
A +TAB)− dB||2 = 0 (3)

for all coplanar pointsPk
A in the frame A.

• Planarity constraint between two images: This constraint describes the relationship between a

set of coplanar feature points and their correspondences intwo images. Given a single-viewpoint

camera, for the purpose of generality, we represent its projection model asp = F(P), whereP is

a 3D point in space andp is the projected image point. The inverse projection model is specified

byP = γF−1(p), in whichγ is an unknown scalar, meaning thatP lies on a ray determined byp,

but its distance stays unknown. Now, we consider two camera framesC1 andC2. In the first frame,

the plane on which all the features lie is defined by{NC1
, dC1

}. Then, pair-wise corresponding

image featurespC1
andpC2

satisfy

pC2
− F

(

RC1C2

dC1
F−1(pC1

)

NT
C1
F−1(pC1

)
+TC1C2

)

= 0 (4)

Note that this constraint is also known as the homography constraint [28] whenF is a pinhole

camera projection model.

• Motion constraint: When a robot platform moves from one location to another, the translation of

the camera and that of the LIDAR are equal to each other, as thesensors are fixed rigidly. Hence,

we have

TWC1
−TWC2

= RWCR
−1
WL(TWL1

−TWL2
) (5)

3. Algorithm Description

In order to estimate the relative transformation between a 3D LIDAR and a camera, we capture

N (N ≥ 2) observations of a trihedron by both sensors. The sensors are individually calibrated in

each configuration first to get their extrinsic parameters with respect to the world reference. Then, the

LIDAR–camera extrinsic calibration is formulated as a nonlinear least squares problem in terms of the

constraints introduced above. It is further solved by the Levenberg-Marquardt (LM) method [11] after

properly estimating the initializations. An overview of the entire calibration procedure is presented in

Algorithm 1. The details are subsequently introduced below.
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Algorithm 1: 3D LIDAR–camera extrinsic calibration procedure.
Input: N LIDAR–camera observations of a trihedron

Manually selected regions of the trihedron’s planes in the observations.

Output: RLC andTLC

for i = 1 → N do
for j = 1 → 3 do

Estimate thejth plane{Nj
Li
, djLi

} w.r.t theith LIDAR frame;

end

Estimate the transformation{RWLi
,TWLi

};
end
Refine{Nj

Li
, djLi

,RWLi
,TWLi

} based on all observations;

Detect features on the first image;

for i = 2 → N do
Detect and match features on theith image;

Estimate the transformation{RC1Ci
,TC1Ci

};

Estimate{Nj
C1
, djC1

,Nj
Ci
, djCi

};

Estimate the transformation{RWC1
,TWC1

,RWCi
,TWCi

};
end
InitializeRLC andTLC ;

Refine the estimates ofRLC andTLC .

3.1. 3D LIDAR Extrinsic Calibration

Given theith LIDAR observation, this step is to estimate the transformation,RWLi
andTWLi

, from

the world to theith LIDAR frame. To this end, we first estimate the trihedron’s planes according to

the LIDAR observation. When a user specifies a set of 3D pointsthat mostly lie on the trihedron’s

jth plane, the plane’s parameters{Nj
Li
, djLi

} are estimated by minimizing the following linear least

squares problem:

arg min
N

j
Li

,d
j
Li

M(i,j)
∑

k=1

||Nj
Li

T
P

j,k
Li

− djLi
||2 (6)

whereM(i, j) is the number of points on the plane. Once the three planes aredetermined with respect

to theith LIDAR frame, RWLi
andTWLi

are computed according to the trihedral constraint given in

Equations (1) and (2).

When more than one observation is available, we can further refine the results by using the planarity

constraints established between each pair of the LIDAR frames. Thus, we get

arg min
N

j
L1

,d
j
L1

,N
j
Li

,d
j
Li

N
∑

i=2

M(i,j)
∑

k=1

||Nj
L1

T
(RLiL1

P
j,k
Li

+TLiL1
)− djL1

||2

+
N
∑

i=2

M(1,j)
∑

k=1

||Nj
Li

T
(RL1Li

P
j,k
L1

+TL1Li
)− djLi

||2
(7)

It is obtained by forming the first LIDAR frame with each of theremaining frames as pairs. Since

RLiL1
, TLiL1

, RL1Li
, andTL1Li

are the functions of the planes’ parameters, Equation (7) is a nonlinear
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optimization problem with respect to the planes’ parameters. This problem takes the previously

estimated results as initializations and is solved by LM.

Let θ = {Nj
L1
, djL1

,Nj
Li
, djLi

} be the parameters estimated in Equation (7), andf be the function that

is optimized. Then, the Levenberg–Marquardt method startsfrom a given initial guessθ0 and iteratively

updates the parameters via

θt+1 = θt +∆θt (8)

where∆θt is obtained by solving the following equation

(JTJ+ λdiag(JTJ))∆θt = JT (−f(θt)) (9)

Hereλ is a damping parameter determined adaptively andJ is the Jacobian matrix which is obtained

conveniently by symbolic computation in MATLAB.

3.2. Camera Extrinsic Calibration

This step is to determine the transformations,{RWCi
, TWCi

}, from the world to the camera frames,

together with the planes{Nj
Ci
, djCi

}. In contrast to the LIDAR sensor, it is incapable of recovering

all parameters from one image since no metric information isavailable. Hence, two LIDAR-camera

observations are needed.

Given two LIDAR-camera observations, we first estimateRC1C2
andTC1C2

between the two camera

frames. Once a user delimits the regions of the planes on two images, a set of point features are

detected by SIFT [29] within the regions in the first image and then matched to the correspondences

in the second one. The two sets of features are represented by{pk
C1
} and{pk

C2
}, which satisfy the

epipolar constraint [28]

F−1(pk
C1
)TEF−1(pk

C2
) = 0 (10)

Here,E is the essential matrix. The estimation ofE and the recovery ofRC1C2
andTC1C2

from E

are the fundamental problems in computer vision, which are solved by the well-known eight-point

algorithm [28]. However, the recoveredTC1C2
is of unit norm. We hence use the motion constraint

defined in Equation (5) to get its scale.

Once the relative motion between two views is determined, weare able to determine the planes by

taking advantage of the planarity constraint established between two images, as defined in Equation (4).

Hence, in the presence of noise, we estimate the pose of a plane by

arg min
NC1

,dC1

NC2
,dC2

RC1C2
,TC1C2

M
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

pk
C2

− F

(

RC1C2

dC1
F−1(pk

C1
)

NT
C1
F−1(pk

C1
)
+TC1C2

)
∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

pk
C1

− F

(

RC2C1

dC2
F−1(pk

C2
)

NT
C2
F−1(pk

C2
)
+TC2C1

)
∣

∣

∣

∣

∣

∣

∣

∣

2

(11)

in which RC1C2
,TC1C2

are also refined. It is a nonlinear least squares problem solved by LM. The

estimates ofNCi
anddCi

are simply initialized with the corresponding parameters in the LIDAR frames

for the simplicity. It is reasonable considering that the relative transformation between the two sensors

is small when compared with those to the trihedron.
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3.3. 3D LIDAR–Camera Extrinsic Calibration

With the above-estimated parameters, we now formulate the LIDAR-camera extrinsic calibration task

as a nonlinear least squares problem. In terms of the planarity constraints established between the LIDAR

and the camera frames, we get the form

arg min
RLC ,TLC

N
∑

i=1

3
∑

j=1

M(i,j)
∑

k=1

||Nj
ci

T
(RLCP

j,k
Li

+TLC)− djci||
2 (12)

It is solved by LM with the initializations obtained from






RLC = RWCi
R−1

WLi

TLC = TWCi
−RWCi

R−1
WLi

TWLi

(13)

with anyi = 1 · · ·N .

4. Experiments

We implement the proposed method in MATLAB. The running timeof our algorithm is coarsely

measured on a laptop with an Intel Core2Duo 2.26 GHz processor and 3 GB memory. Except for the

manual input procedure, it takes about20 seconds in average to perform the entire calibration when

9 LIDAR-camera observations are considered. Each contains5,000 LIDAR points and 100 registered

image points. In order to evaluate the proposed method, a series of experiments have been carried out.

The algorithm is first tested on simulated data to validate its correctness and explore its sensitivity with

respect to noise. Then, it is used to calibrate a real system composed of a 3D LIDAR and a camera. The

calibration results are subsequently used for 3D reconstruction.

4.1. Simulations

The first experiment validates the correctness and numerical stability of our algorithm. We hereby

generate sets of data to simulate multiple observations of atrihedron obtained by a 3D LIDAR-camera

system. The system is of the following properties. The rotation and translation from the LIDAR to the

camera are set, respectively, asE(RLC) = [11.46◦, 5.73◦, 85.94◦]T andTLC = [0.4,−0.08, 0.2]T m,

whereE(RLC) is the Euler angle ofRLC . An unorthogonal trihedron is synthesized, whose planes

are defined byN1
C1

= [−0.342, 0.937, 0.067]T , d1C1
= −3.837 m, N2

C1
= [−0.325,−0.930, 0.171]T ,

d2C1
= −7.710 m, andN3

C1
= [0.181, 0.028, 0.983]T , d3C1

= −2.466 m, with respect to the first camera

frame. Each plane contains 5,000 LIDAR points and 100 registered image points. The simulated camera

uses the following Mercator projection model:






u = (180− atan2(Y,X))M/360

v = acos(Z/
√
X2 + Y 2 + Z2)N/180

(14)

where(u, v) denotes a pixel, andM × N = 1024× 1024 is the resolution of an image. This projection

model is one of the models that the Ladybug3 [25] camera has.
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4.1.1. Performance w.r.t. the Number of Observations

The extrinsic calibration can be conducted with two or more LIDAR-camera observations. In this

experiment, we investigate the impact of the observation number on the calibration performance. Nine

LIDAR-camera observation pairs are generated, in which Gaussian noise with zero mean andσ standard

deviation is added. We randomly selectσ from the range of[0, 0.2] m for LIDAR points and from the

range of[0, 1] pixels for image features. We vary the number of observations from 2 to 9. For each

number, 200 independent trials are carried out. The estimated parametersRLC andTLC in each trial are

compared with the ground truth and measured, respectively,by the displaced Euler angle of the rotation

and the absolute error of the translation. Figure2 plots the mean and standard deviation of the errors.

Figure 2. Errorsvs. the number of observations. (a) presents the translation’s absolute errors

in X, Y , andZ directions. (b) shows the displaced Euler angle[α, β, γ]T .
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Figure2 shows no obvious benefits achieved when the number of observations increases. The reason

is that, even when we use two observations, in total there arealready six planes taken into consideration.

In our simulations, there is even a peak on the error corresponding to 3 observations, partly because

the impact of noise is larger than the benefit achieved from the increase of observations. Hence, on the

leverage of complexity and performance, throughout all thefollowing experiments, we continue using

two LIDAR–camera observations.

4.1.2. Performance w.r.t. the Noise on LIDAR Points

Real ranging sensors produce noisy measurements. Hence, this experiment explores the sensitivity

with respect to noise on LIDAR points. We conduct the experiment on the first two simulated

observations. Zero mean Gaussian noise is added to points ofthe LIDAR observations, withσ varying

from 0.02 to 0.2 m. Analogous to the previous case, we conduct 200 independent trials for each noise

level. The errors on the translation and rotation are evaluated and plotted in Figure3.
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Figure 3. Errorsvs. the noise level on LIDAR points. (a) presents the translation’s absolute

errors inX, Y , andZ directions. (b) shows the displaced Euler angle[α, β, γ]T .
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Figure3 shows that the errors increase linearly with the noise level. Whenσ = 0.1 m, which is a

noise level of a practical LIDAR, the translation errors arearound0.005 m in Y andZ directions, and

0.01 m inX direction. The rotation errors are about0.01◦. In our simulated configurations,X represents

the direction of the optical axis, along which depth information degenerates so that larger errors

are resulted in [30].

4.1.3. Performance w.r.t. the Noise on Image Points

The feature detection and matching algorithm we use in this work is SIFT [29], which is of sub-pixel

accuracy. In this experiment, we investigate the sensitivity with respect to the noise on matched image

features. Zero mean Gaussian noise withσ ∈ [0.1, 1] pixels is added to each feature point on the first

two simulated image data. Analogously to above cases, 200 trials are conducted for each noise level.

The performance is evaluated and plotted in Figure4.

Figure 4. Errorsvs. the noise level on image points. (a) presents the translation’s absolute

errors inX, Y , andZ directions. (b) is the displaced Euler angle[α, β, γ]T .
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Figure 4 also presents a linear relationship between the errors and the noise level. When

σ = 0.5 pixels, which is a noise level higher than the normal noise, the translation errors are smaller than

0.04 m and the rotation errors are around0.2◦.

4.2. Real Data

To further evaluate the proposed algorithm, we employ it to calibrate a real system and use the

calibration results to reconstruct 3D scenes. The system iscomposed of a 3D Velodyne HDL-64E

LIDAR [ 26] and a Ladybug3 spherical vision system [25], which are rigidly mounted on the roof of

a vehicle, as shown in Figure5. Both sensors produce omnidirectional measurements.

Figure 5. The robotic platform and the sensors in our experiment. (a) is the robotic platform,

which is equipped with a Ladybug3 camera and a 3D Velodyne HDL-64E LIDAR, (b) shows

the front view of the two sensors, and (c) is the side view.

(a) Robot platform (b) Front view

(c) Side view

In the experiments, we collect two LIDAR-camera measurements of a scenario containing a trihedral

object. The trihedron consists of two adjacent walls of a building, together with the ground plane,

as shown in Figures6 and7. Due to imperfect construction techniques and noise, the planes of the

trihedron are not strictly orthogonal to each other. Duringthe calibration procedure, regions of the

planes are manually marked out on both LIDAR and image data, and features on the imaged trihedrons

are detected and matched by SIFT [29]. A portion of the matched feature points are shown in Figure8.

Table 1 lists the calibration results of our method. For the purposeof comparison, we also include

the results obtained by the checkerboard pattern-based method [12] using six observations. From the

results, it is difficult to determine which one is more accurate, since no ground truth is available.

Our proposed method, however, is more convenient, as it is easier to collect calibration data and

requires less manual input.

In order to validate the calibration results, the determined extrinsic parameters are further used for 3D

reconstruction. With the calibratedRLC andTLC , 3D LIDAR points in a view are first transformed into
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the camera frame and then registered to the image. The colorsof registered image pixels are taken to

render the corresponding upsampled LIDAR points. Figure6(c) and Figure7(c) demonstrate the colored

3D scenes of the two calibration views (only the data within a180◦ field of view are shown for a better

visibility), from which we see that the walls and the bushes are reconstructed well.

Figure 6. The first LIDAR-camera view used for calibration. (a) is the panoramic image

captured by a Ladybug3 camera, and (b) is the 3D point cloud collected by a Velodyne

HDL-64E LIDAR. (c) shows the reconstructed 3D scene.

(a) Panoramic image

(b) 3D point cloud

(c) Colored 3D point cloud
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Figure 7. The second LIDAR-camera view used for calibration. (a) is the panoramic image

captured by a Ladybug3 camera, and (b) is the 3D point cloud collected by a Velodyne

HDL-64E LIDAR. (c) shows the reconstructed 3D scene.

(a) Panoramic image

(b) 3D point cloud

(c) Colored 3D point cloud
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Figure 8. A portion of matched features on the trihedron. The matched feature pairs on the

three planes are marked with lines in different styles.

Table 1. Calibration results of a real 3D LIDAR-camera system.

TX (m) TY (m) TZ (m) α (deg) β (deg) γ (deg)

The proposed method 0.257 0.007 –0.323 –1.788 1.446 –88.542

The method in [12] 0.203 0.036 –0.285 –1.358 1.799 –88.996

5. Conclusions

In this paper, we have presented a new method of conducting the extrinsic calibration for a 3D

LIDAR-camera system. Specifically, instead of using planarcheckerboard patterns, we take advantage

of arbitrary trihedral objects, which might be either orthogonal or not, for calibration. This kind of

configuration is ubiquitous in structured environments, sothat it is very convenient for a mobile robot

to collect data. We have validated the algorithm on both simulated and real scenarios. Although the

experimental results are presented from 3D LIDAR and omnidirectional camera systems, the algorithm

is applicable to systems composed of any kind of 3D LIDARs andcameras. Our method is interesting

for both indoor or outdoor mobile robots equipped with such sensors. The calibration results can be

further used for data fusion applications.
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