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Abstract: CdZnTe detectors have been under development for the past two decades, 
providing good stopping power for gamma rays, lightweight camera heads and improved 
energy resolution. However, the performance of this type of detector is limited primarily 
by incomplete charge collection problems resulting from charge carriers trapping. This 
paper is a review of the progress in the development of CdZnTe unipolar detectors with 
some data correction techniques for improving performance of the detectors. We will first 
briefly review the relevant theories. Thereafter, two aspects of the techniques for 
overcoming the hole trapping issue are summarized, including irradiation direction 
configuration and pulse shape correction methods. CdZnTe detectors of different 
geometries are discussed in detail, covering the principal of the electrode geometry design, 
the design and performance characteristics, some detector prototypes development and 
special correction techniques to improve the energy resolution. Finally, the state of art 
development of 3-D position sensing and Compton imaging technique are also discussed. 
Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved 
even to approach the statistical limit on energy resolution with the combination of some of 
these techniques. 
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1. Introduction 

Semiconductor nuclear radiation detectors have experienced a rather rapid development in the last 
few decades. A major characteristic of this type of detector is the capability of converting γ-rays 
directly into electronic signals. In comparison to scintillators, semiconductor detectors avoid the 
random effects associated with scintillation light production, propagation and conversion to electrical 
signal in such a way that they represent the main alternative to scintillator-based single photon imaging 
systems. Compared to established use of Si and Ge, cadmium zinc telluride (CdZnTe) is the most 
promising material for radiation detectors with high atomic number (good stopping power), large 
band-gap (room-temperature operation), and the absence of significant polarization effects [1,2]. The 
incident gamma-ray interacts with the semiconductor and excites electron-hole pairs, that are 
proportional to the deposited energy and drifts apart under the applied electric field. Electrons drift 
towards the anode and holes drift towards the cathode (Figure 1). Charge signal is induced on the 
electrodes of the detector by the moving charge carriers. It is due to the direct conversion from the 
energy deposition by gamma-ray interaction to electric signal that semiconductor detector can easily 
achieve high energy resolution and spatial resolution [3]. In practice, CdZnTe materials exhibit varying 
degrees of charge carrier trapping, which in fact is the dominant problem that has limited their energy 
resolution. Our group at the Molecular Imaging Lab of Peking University is developing micro  
single-photon emission computed tomography (SPECT) for small animal imaging. This paper reviews 
the techniques of overcoming hole trapping problems for CdZnTe detector, including particular 
irradiation configuration of the same, electronic methods to distinguish events from a large 
contribution of the holes and the various electrode designs. We also review the state of art 
development of 3-D position sensing and Compton imaging techniques using CZT detectors. 

Figure 1. Planar configuration of a semiconductor detector. The cathode is applied with a 
negative voltage and anode grounded. Electron-hole pairs excited by gamma rays are swept 
by the bias voltage. 
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2. Theoretical Principles  

The collection efficiency of charge carriers is a crucial property that affects the energy resolution  
of semiconductor detectors. This efficiency is always reduced by charge carriers trapping that results 
from crystal defects and the poor charge transport properties of charge carriers. For example,  
grain boundaries that are generated during crystal growth can seriously trap charge carriers [4]. It has 
been shown that spatial non-uniformity of semiconductor materials will cause a loss of energy 
resolution [5,6]. In addition, the mean drift length of electrons is typically of the order 1 cm while this 
length of holes is much lower than that of electrons with values around 0.1 cm under typical electric 
fields of 1,000 V/cm. With poor charge collection, the charge signal induced on the electrode is 
reduced, which is more pronounced for events that occur further away from the collecting electrode. 
This is how the position-dependent signal variation is produced. 

Figure 2. A typical 241Am spectrum obtained with 4 × 4 × 2 mm3 CZT detector, which is 
irradiated from the cathode side (dashed line) and anode side (solid line). The photopeak 
can be resolved if gamma rays are irradiated from the cathode side but not from the anode 
side [7] (©IEEE, 2001). 

 

Figure 2 shows two typical spectra obtained with a CdZnTe planar detector when irradiated from 
anode and cathode side, respectively. The anode-irradiating spectrum has no peak because most of the 
holes are trapped due to a long drift distance to the cathode. However, the peak can be clearly resolved 
on the cathode-irradiating spectrum. Since the amplitude of the induced charge signal depends on the 
depth of interaction (DOI), the cathode-irradiating spectrum still shows a tailing. 
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2.1. Shockley-Ramo Theory  

As already stated, the charge carriers that are generated by γ-photon energy deposit drift towards the 
corresponding electrodes. Shockley and Ramo proposed a method in 1940s to calculate the induced 
charge by introducing a concept of “weighting potential” [8–10]. The charge variance (ΔQL) that is 
achieved by a moving charge q from interaction position xi to xf and induced on the electrode (L), can 
be calculated according to Equation (1): 

0 0 0[ ( ) ( )].f

i

x

L f ix
Q qE dx q x xϕ ϕΔ = ⋅ = − −∫  (1) 

where xi to xf is the initial and final position of q, and E0 and φ0 correspond to the weighting electric 
field and weighting potential respectively. Weighting potential (electric field) is defined as the 
potential (electric field) that would exist in the detector when the collecting electrode is biased at unit 
potential and all other electrodes are held grounded. It does not really exist inside the detector but is 
only for calculation convenience. Note that the induced charge is independent of the applied bias 
voltage on the electrodes. That voltage only determines the trajectories of charge carriers.  

2.2. Static Charge Analysis and Capacitance Coupling Method  

Another approach to calculate the output charge on the electrode, called “static charge analysis and 
capacitance coupling method”, was introduced by Lingren and Butler [11]. What is shown in Figure 3 
is a typical amplification circuit model. The total amount of charge (Qtotal) that is generated on the 
feedback capacitor consists of two parts—free electrons that are collected directly by the electrodes 
and the charges induced by trapped carriers within the detector (Equation (2)): 

total hi ei efQ Q Q Q= + +  (2) 

where Qhi and Qei are charges that are induced by trapped holes and electrons respectively on the 
feedback capacitor and Qef is the free electrons collected on the anode and conducted onto the feedback 
capacitor. Suppose that the free charge carriers that are created by photons absorbtion are +Q0 (holes) 
and -Q0 (electrons) and that the interaction position is at a distance of x0 from the cathode. When these 
carriers drift towards the respective electrodes with initial velocities of μhE (holes) and μeE (electrons), 
the number of them is decreased due to charge trapping within the detector. Here, E is the applied 
uniform electric field, μh the hole mobility and μe the electrons mobility. Moreover, there is an 
assumption that a loss of charge caused by charge trapping proceeds exponentially with time 
(Equations (3) and (4)) and detrapping is ignored. Thus the amount of free charge of electrons (Qef) 
and holes (Qhf) with the change of the position x in the drift path, can be then obtained as: 

0( )/
f 0( ) ex x

eQ x Q e λ− −= −  0( )x x≥  (3) 

and: 
0( )/

f 0( ) hx x
hQ x Q e λ−= +  0( )x x≤  (4) 

The amount of charge, which is induced on an anode by infinitesimal charges dQef(x) and dQhf(x), is 
equal to the infinitesimal charge multiplied by a weighting factor. This weighting factor is a ratio of 
the capacitance from the interaction point to the collecting anode to the total capacitance from that 
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point to all electrodes. Thus the infinitesimal induced charges (dQei(x) and dQhi(x)) on the anode can be 
given as: 

f
( )( ) ( )
( )

a
ei e

t

C xdQ x dQ x
C x

= −  (5) 

and: 
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where Ca(x) is the capacitance from the interaction point x to the collecting anode, Ct(x) is the total 
capacitance from that point to all electrodes. Here we use an example of a planar detector to verify 
Lingren’s method. For a planar detector, the weighting factor Ca(x)/ Ct(x) is equal to x/L [12], where L 
is the detector’s thickness. Then the total induced charge (Qi) on anode is obtained as: 
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Qtotal can be obtained by pluging Qef(L) (Equation (3)) and Qi(x) (Equation (7)) into Equation (2). 
The result (Equation (8)) is identical to that obtained by the Hecht equation, thus, verifying  
Lingren’s method: 

0 0( )/ /0 [ (1 ) (1 )]hL x e x
total e h

QQ e e
L

λ λλ λ− − −= − − + −  (8)  

Figure 3. Typical amplification circuit of a semiconductor planar detector. The total charge 
on the feedback capacitor consists of two parts: free electrons that drift to the anode and the 
charges induced by trapped electrons and holes within the detector. Positive charges 
induced on the anode will add electrons and negative charges will reduce electrons on the 
feedback capacitor. The amplitude of output signal is proportional to the charges that are 
generated on the feedback capacitor. 
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3. Techniques to Reduce Hole Trapping 

Energy resolution is one of the main performance parameters for gamma ray detectors. As seen 
from Figure 2, the low energy branch in a typical spectrum always presents as a tailing. This tailing 
primarily results from hole trapping and degrade energy resolution; it is a necessary requirement to 
overcome hole trapping in order to improve detector performance. Three ways to achieve this: 
configuring irradiation direction, distinguishing events with a large contribution of holes using 
electronic methods and minimizing the sensitivity to holes through detector geometry design.  

3.1. Irradiation Direction Configuration  

As mentioned previously, hole trapping limits detector performance. This is because a long tail is 
produced in the measured spectrum due to incomplete charge collection. It was observed that 
irradiation from cathode side can contribute to reducing this effect [7] because the counts of events that 
are excited near the cathode are increased, thus minimizing the probability of hole trapping. This 
irradiation configuration is more effective for low energy rays in thin detectors. Another advantage of 
using the cathode-irradiating configuration is the uniform trigger rate effect, since using a cathode 
electronic signal to trigger the acquisition of electrode pulse heights can lead to much more uniform 
event acquisition response than using anode pixel signal [13].  

Another irradiation configuration, in which the irradiation direction is orthogonal to the applied 
electric field, was being considered as a way of overcoming the compromise between good 
spectroscopy and acceptable detection efficiency [14,15]. In configuration of this type, the interaction 
position information can be obtained experimentally due to the fact that the photopeak centroid value 
is correlated with interaction position. And different detector thicknesses can be chosen in order to get 
the required detection efficiency. Nevertheless, a tradeoff between the required energy resolution and 
irradiated area should be considered. This method is particularly useful for developing detectors when 
high detection efficiency is required.  

3.2. Pulse Shape Correction  

Electronic methods have also been used to improve the spectrometric performance of CdZnTe 
detectors, such as pulse shape discrimination (PSD) [16–19] and pulse rise-time compensation  
(PRC) [17,20]. Both of these techniques are implemented in combination with hardware and software. 
PSD method was developed to distinguish events with a large contribution from hole trapping since 
events with a large degree of hole trapping always present an output pulse with a long rise-time. These 
events can be eliminated in such a way that high spectral resolution can be achieved at the cost of 
rejecting a fraction of the pulses, thus resulting in a drastic loss in detection efficiency. Alternatively, 
PRC method was developed to allow for reducing the loss of efficiency while obtaining energy 
resolution improvement. The aim of PRC is to compensate pulse amplitude of those events with severe 
hole trapping according to pulse shape characteristic. Different approaches were reported to realize 
PRC through different bi-parametric spectrums (BPS), such as “pulse amplitude & pulse rise-time” 
spectrum [17] as well as “fast/slow ratio & slow signal” spectrum [20]. BPS is a useful analysis tool 
and has a real advantage in spectrum correction, e.g., scattering rejection [2,21]. 
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A novel algorithm, used for rejecting incomplete charge collection (ICC) events in CdZnTe detectors, 
was proposed by Bolotnikov et al. [22]. This method is based on a BPS that is reflected in R-T 
function and features for reducing the Compton continuum in the energy spectrum. The R-T function 
is a unique function of the detector correlating the ratio of cathode to anode signal and drift times 
measured for each detected event. Some events falling out of a curve that represents the correlation 
function were regarded as ICC events and thus rejected. In this way, the Compton continuum and the 
low-energy tail of the energy spectrum can be greatly reduced without affecting the photopeak 
efficiency significantly. This algorithm is much more effective in correcting virtual Frisch-grid 
CdZnTe detectors and can also be employed practically for any single charge sensing type detectors.  

4. Unipolar Detectors of Different Anode Geometries 

To some extent, both of the methods mentioned in Sections 3.1 and 3.2 can reduce hole trapping 
effect on the charges that are collected by electrodes; these methods still remaining insufficient to 
obtain a good quality energy resolution. In addition, drastic losses in detection efficiency are caused 
with a limited improvement in energy resolution, especially with thicker detectors. Therefore, the 
approaches mentioned above could be adjunct methods to obtain better energy resolution or 
furthermore could be used in certain occasions where efficiency is a less important parameter. 
Unipolar detector designs, however, have been developed to overcome the deleterious effects of hole 
trapping problem. The most effective and successful prototype models, listed and mentioned below, 
include the Frisch-grid device, pixelate detectors, coplanar grid detectors, hemispherical electrodes and 
strip detectors. 

4.1. Frisch Grid Device  

Frisch grid effect: Frisch-grid-based design that was introduced by Frisch [23] was originally used 
for gas-filled ion chambers. The aim of this design was to make the induced charge on the collecting 
electrode insensitive to the carriers with lower mobility. Thus the induced charge can be measureed 
primarily from the carriers with higher mobility. A general configuration of a Frisch grid ion chamber 
is shown in Figure 4. A Frisch grid is placed in the vicinity of the anode so that three distinctive 
regions are formed. The region between cathode and Frisch grid is called interaction region where 
most gamma rays interact, and the region between anode and Frisch grid is the measurement region 
where the induced charges are measured. The pervious region, where charge carriers pass through, is 
underneath the Frisch grid. According to Shockley-Ramo theory, the weighting potential (Figure 5) 
can be obtained by setting the potential of the anode to 1 and the cathode and Frisch grid to 0 [24]. 
From this viewpoint, the weighting potential in the interaction region is invariable so that charge 
motion in this region has no contribution to the induced charge on the anode. As a result, the detector 
is primarily sensitive to the electron charge carriers passing through the measurement region. 
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Figure 4. Schematic of the basic configuration for the Frisch grid detector. Three regions 
that are separated by the grid can be seen. Charge carrier e.g., qe which drifts into the 
measurement region will induce charges on the anode, while qh in the will not. 

 

Figure 5. Weighting potential distribution of the Frisch grid detector. X- and Y-coordinate 
are indicated in Figure 4. left: caculated weighting potential projected on the X-coordinate. 
D (p) are the distance between the cathode (anode) and the grid. d is the distance between 
the grid elements and r is the half length of the element. As expected, weighting potential 
value for x < 0 is nearly zero and abruptly changes for x > 0. A slight y-dependence of 
weighting potential is shown in the inset map that zooms into the origin of X-coordinate. 
Right: 2-D map of weighting potential around the Frisch grid (X: −1 to +1, Y: 0 to 1.0) [25] 
(Image courtesy of Elsevier). 

 

Frisch grid detectors: The most studied structures for such semiconductor detectors include the 
Frisch strip detector [24,26], trapezoid prism detector [27,28] and insulated Frisch ring detector [29–34]. 
The first single model was built by McGregor et al. [24,26] with two parallel metal strip electrodes on 
opposite faces of the device. The metal strips, similar to Frisch grid, have a small width and are placed 



Sensors 2013, 13 2455 
 

 

near the anode so that the measurement region is considerably smaller than the interaction region. In 
addition, a negative voltage can be applied to both of the two side strips to assist electrons in drifting 
towards the anode. Energy resolution of 5.91% FWHM at 662 keV gamma rays was obtained with this 
configuration. This result is less-than-ideal; nevertheless, it was a great improvement in energy 
resolution in comparison with planar detectors. It was also observed that energy resolution results were 
correlated with width-to-length ratio of the strip. Another version of the Frisch grid device, called the 
trapezoid prism detector (Figure 6), was developed by combining geometric weighting effect, small 
pixel effect (mentioned in Section 3.3.2) and Frisch grid effect [27]. Main characteristic of this device 
is its geometric shape design, e.g., a larger volume of interaction region. This allows the fraction of 
events occurring in the interaction region to become dramatically increased. Accordingly, the gamma 
ray sensitivity in this region is enhanced. The energy resolution achieved with this device is 2.68% at 
FWHM for 662 keV gamma rays without any correction or processing, and that performance exceeds 
the Frisch strip detector by an enormous amount. The additional study have also demonstrated the 
soundness of this design [28]. 

Figure 6. Left: 3-D geometric diagram of trapezoid prism detector. The anode has a 
smaller area with two parallel strips at along sides as the Frisch grids. The trapezoid height 
is often several times longer than the distance between the Frisch grid and the anode so that 
a much smaller volume of measurement region is generated. A cross-section cut through 
the width in the device center is shown; Right: weighting potential distribution of the 
cross-section as shown in the left diagram [28] (Image courtesy of Elsevier). 

 

Both of the two structures mentioned above suffer from severe surface leakage currents between the 
grid and anode, especially under conditions of higher applied voltage. This problem is definitely a 
limitation for detectors when trying to gain better performance. The capacitive Frisch grid detector (or 
“insulated Frisch ring detector”, Figure 7) designed by McGregor and colleagues [29,30,33] was based 
on the concept of screening effect [34].  
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Figure 7. The capacitive Frisch grid device and its components: a bar-shaped detector, an 
insulating coating and a conductive Frisch ring. (a) The detector bar with Teflon coated 
outside is non-contacted with the Frisch ring. (b) When the detector is inserted into the 
Frisch ring, the special weighting potential near the anode is generated and thus effectively 
eliminating the induction from charge motion in the region extending from the ring edge to 
the cathode [29] (Image courtesy of American Institute of Physics). 

 

This design consists of a bar-shape detector and a conductive ring with a thin layer of dielectric 
material between them, which greatly reduces the leakage current between the grid and anode due to 
the non-contacting effect. Excellent results of energy resolution were obtained of 1.7% FWHM at  
662 keV. It should be noted that a problem of poor detector response in the pulse-height spectra often 
occurs due to the slow-rising events phenomenon, and that a chemical treatment for surface processing 
can be applied to solve this problem [30]. Several design parameters were investigated using  
finite-element analysis (FEA). These design parameters focus on the anode areas, the ratio of screen 
length to device height, the ratio of anode diameter to device height and the ratio of insulator thickness 
to relative permittivity [31,32]. The aim of the FEA simulation is to derive a compressed weighting 
potential toward the anode and thus improving energy resolution. 

4.2. Pixelate Electrodes  

Small pixel effect: Pixelate detectors are the best choice for use in medical imaging since they allow 
directly for position determination, and semiconductor pixel arrays are more attractive than 
scintillators in that they can obtain better energy resolution easily [35]. The basic structure of pixel 
arrays is shown in Figure 8(a). The basis of this design is that charge extraction becomes more 
localized near the anode as the ratio of width to thickness of the pixel cell (aspect ratio) is decreased. 
This effect is called “small pixel effect” or “near-field effect”, which is explained in detail by  
Barrett et al. in [36]. The weighting potential distribution is shown in Figure 9. 
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Figure 8. Geometry design of pixelate, coplanar grid and orthogonal strip detector [37] 
(©IEEE, 2007). 

 

Commonly, the small-pixel-effect device can deliver good energy resolution with the required 
corresponding pixel size, and has the advantage of rendering information on spatial interaction 
locations. Therefore, it allows for operation as an imaging array similar to some scintillation crystal 
imaging arrays. Experimental results confirm the single charge carrier sensing property of CdZnTe 
pixelate detectors based on this small pixel effect [38,39]. Among the design considerations are 
optimal detector thickness [38] and optimal contact geometries [40]. A suitable “aspect ratio” can 
obtain good energy resolution and detection efficiency; and optimal contact geometry, including pixel 
size and width of gap and grid, will enhance the charge efficiency on the pixel contacts and reduce 
charge collection differences resulting from interaction depth variations. 

Figure 9. The shape of weighting potential in a pixelate CZT detector with pixel size of 
1mm. Left: 2-D distribution of the weighting potential. The small pixel effect can be seen 
clearly in the vicinity of the pixel’s anode. Right: the correlation between weighting 
potential and interaction distance from the anode [41] (Image courtesy of American 
Association of Physicists in Medicine).  
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Figure 10. CdZnTe pixel imager prototype by CEA-LETI [42] (©IEEE, 2004). 

 

Recently, prototypes of pixelate detectors were developed by several groups, such as the detectors 
by Electronic, Technology, and Instrumentation Laboratory, French Atomic Energy Commission 
(CEA-LETI) [42,43] and University of Arizona (UA) [44,45]. A detector developed by CEA-LETI has 
a large active area (180 × 215 mm2, see Figure 10) and reaches an energy resolution of 4.7% FWHM 
at 140 keV with BP correction [42]. A semiSPECT detector reported by UA is characteristic of small 
pixel size (typically 0.38 mm) and high sensitivity. The spatial resolution along the axis is 1.45 mm 
and the energy resolution is 10% FWHM at 140 keV. There was also a kind of pixelate CdZnTe drift 
detector reported by Kuvveletli and Budtz-Jørgensen in 2005 [46]. Energy resolution of this drift 
detector is 3% FWHM at 122 keV with pixels of 0.2 mm dimensions. A commercial micro-SPECT 
system using a CdZnTe pixelate detector was reported in 2006 [47,48]. 

One drawback of pixelate detectors is that the pixelate devices suffer from charge sharing problem 
among pixels. The electronics to solve this problem can be challenging. A data correction method 
(Figure 11) was reported to correct two-pixel charge sharing events [49]. According to this method, the 
output signal reduction results from two aspects: induced charge dependence of DOI and the influence 
of lateral interaction location on charge collection efficiency. The induced charge is dependent on the 
DOI because of some electron trapping and non-zero weighting potential distribution in the region far 
away from the anode. The charge inefficiency phenomenon due to the lateral interaction location can 
be seen in Figure 11(c). The events distribution does not follow a diagonal line as it should have 
because charge sharing occurs between two adjacent pixels. The sum signal of the two charge sharing 
pixels between the anode pads has more electron loss. Therefore, both corrections, including a DOI 
correction and a lateral interaction correction, should be applied together to solve charge sharing 
problem (Figure 11). 
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Figure 11. The bi-parameter spectrum (a) and the correcting steps for two-pixel charge 
sharing events. The events plot based on the DOI (b) is used to extract different 
subdivision of pixel-to-pixel plot (c). Each subdivision is corresponding to a cluster of 
events with a certain DOI that is based on the cathode/anode signal ratio. For each subset 
of events, a correlation curve can be fitted, illustrating the lateral position dependence of 
charge sharing, thus a family of curves are generated (d). Then a table of correction 
coefficients is obtained and applied to the subsets to correct the energy of each event. Each 
anode spectrum is shifted after correction (e) and an improvement in the charge sharing 
spectrum is obtained (f) [49] (Image courtesy of Elsevier).  

 

4.3. Coplanar-Grid Detectors  

The coplanar-grid electrode concept, first reported by Luke [50,51] and based on the principle of 
Frisch grids, was an innovative single charge sensing method using parallel strip electrodes on the 
anode. These strip electrodes are connected in an alternate manner to form two banks of grid electrodes 
(Figure 9(b), here we call them electrode 1 and 2). One set of the grids, electrode 1, are applied by a 
slightly higher positive voltage than that of electrode 2. Thus the selected charge carriers are always 
collected by electrode 1. The output signal can be obtained by reading the difference signal between 
these two sets of electrodes. 

The weighting potential distribution that is obtained using finite element analysis is shown in  
Figure 12. It is obvious that there is an abrupt variance for weighting potential distribution in the 
vicinity of anode. Hence, only the carriers drifting to the area near the anode will contribute a lot to the 
induced charge on the electrode. The weighting potential distribution effect, which is formed in this 
structure, is equivalent to that formed by two parallel strips on side surfaces (dashed line in Figure 12) 
on a Frisch grid detector. Therefore, the charge collecting effect is much similar to that of Frisch grid 
detector. From the perspective of “capacitance coupling method” analysis, the weighting factor 
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Ca(x)/Ct(x) is equal to x/(2L) since the area of collecting electrodes is just one-half of that of the similar 
planar detector. With this version of detector, an energy resolution of 3.1% FWHM at 662 keV was 
obtained initially [50,51] and the most promising result was as good as 1.3% FWHM in [52]. 
However, that result is still much worse than theoretical predicted value of ~0.3% FWHM. 

Figure 12. Weighting potential model of one set of coplanar grids. The effect of potential 
distribution is equivalent to a Frisch grid detector with two parallel strips (in dashline) on 
side surfaces. 

 

The key for coplanar grid design is that the weighting potential of the two anode grids are almost 
equal inside most of the detector volume except the vicinity of the anode. Therefore the subtraction of 
the two anode grids signal achieves a near-zero weighting potential inside most of the volume. As a 
result the subtraction signal is only sensitive to the motion of electrons in the vicinity of the anode. 
Several factors resulting in performance degradation have been studied [4,50,53,54], including electron 
trapping due to the spatial non-uniformity of the CdZnTe materials and coplanar grid electrode 
patterns. Luke solved the electron trapping problem that affects the detector performance by reducing 
the gain of non-collecting grid signals, however, such a compensation method only provides a 
correction in the circumstance that electron trapping is linear with interaction depth [50,51,53]. A 
further study by He's group proposed a correction method for electron trapping in the non-linear case 
using a position sensing technique [52,55]. This technique also shows that better energy resolution can 
be obtained for those events near cathode than that near anode, whereas electron trapping would be the 
most severe for events generated near cathode since they drift the longest distance to reach the anode. 
From this viewpoint, it can be inferred that the primary limiting factor that results in resolution 
degradation is not the electron trapping. He et al. verified this point and identified the problems of non-
symmetric effect that causes detector performance degradation. By adding a boundary electrode and 
then adjusting the strip width of the outermost grids [56], the detector performance was more uniform 
at different interaction depths. 

A drawback of coplanar-grid detector is that it requires two sets of output readout electronics, which 
inevitably will import more electronic noises. In addition, there is a trade-off between the excessive 
noise and collection efficiency of the coplanar anodes. The bias voltage should be sufficient to collect 
enough carriers but cannot reach a very high level before electric noises and leakage currents begin to 
overwhelm the effective signals. 
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4.4. Hemispherical Electrodes  

The basic concept of hemispherical electrodes is to increase the electric field in the region of the 
detector where carrier trapping is more frequent, thus attaining a uniform charge collection across the 
whole area of the detector [57–59]. As shown in Figure 13, this version of electrode is designed with 
such a shape that there is a small plane anode and a nearly spherical surface as the cathode.  

Figure 13. Geometry diagram of hemispherical detector. 

 

Such a design has two primary effects: one is that a higher electric field near the anode can sweep 
holes more effectively; the other effect is that more charge carriers are generated near the cathode and 
the holes concentration near the anode is very small. The combination of these two effects renders the 
hemispherical electrodes as a single-charge-sensing electrode. With this configuration, energy resolution 
of 6% FWHM at 662 keV was obtained using a detector with dimensions of 10 × 10 × 5 mm3 [60]. 
This kind of detector, which was designed by Parnham et al. [61] with a full-area anode and an 
extended cathode, is commercially available. The dimension of this detector is 5 × 5 × 5 mm3 with 
energy resolution of less than 1.9% FWHM at 662 keV achieved with the optimal configuration. 

4.5. Strip Electrodes  

A research group at the University of New Hampshire Space Science Center developed the earliest 
prototype of CdZnTe strip detector [62–64]. This device was designed using a monolithic CdZnTe 
substrate with orthogonal strips on each surface, so that a “pixel” is generated in the overlapping area 
of two cross orthogonal strips. Position determination can be achieved with this design and good 
spatial resolution could be obtained with small width strips. Furthermore, a concept of signal analysis 
was proposed in which the pulse height of neighboring strips can be used to locate individual events 
more precisely and their sum is a more accurate measurement of gamma ray energy. The drawbacks of 
this two-sided electrode design are that the signal on cathode, which has a comparatively slow  
rise-time, still suffers from hole trapping and that it needs electronic readout on both of the two sides.  

Three-electrode model: The new concept of “three-electrode model” or “coplanar pixel and control 
electrode model”, which was reported in 1997 by Lingren et al. [65] and Butler [66], aimed at 
suppressing the long spectrum tail at low energy. This model consists of three electrodes: the cathode, 
the anode (the collecting electrode) and a control electrode (Figure 14). Many of such models can be 
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connected together to form a gamma ray detector (Figure 8(c)). The control electrode has two 
functions: one is to assist the anode in focusing most of the charge carriers from the entire volume of 
the detector; the other function is to reduce electron trapping by shaping the electric field in the 
detector in such a way that electrons will reach the anode much faster. The real electric field and 
weighting potential distribution of the three-electrode are shown in Figure 15. Both of the electric field 
and weighting potentials near the anode are intensive so that the induced charge is independent of 
interaction position. Therefore, both of the energy resolution and photopeak efficiency can be greatly 
improved by mitigating the contribution of hole trapping on the output signal. Based on this basic 
three-electrode idea, a multiple electrode detector model that was equipped with five electrodes was 
reported in 2007. (more details can be seen in [67].  

Figure 14. Schematic diagram of three-electrode model gamma ray detector. 

 

Figure 15. Calculated weighting potential (a) and real potential distribution (b) of the 
three-electrode detector. The dark area represents the electric field strength above 2,500 
V/cm. The drift path of carriers is determined by the electric field distribution. Charge 
carriers with a trajectory of path 1 are prone to be trapped due to the weak electric field; 
path 2 and 3 tend to induce a complete signal on the collecting electrode and path 4 will be 
similar to that of the planar detector. A commercial simulation program, QuickfieldTM by 
Tera Analysis, was used for both calculations [68] (©IEEE, 2004).  
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Detector design: Two kinds of strip detector (Figure 16), an orthogonal coplanar strip  
detectors [69,70] and a charge-sharing strip detector [13], were developed by the University of New 
Hampshire and based on the concept of the three-electrode model metioned above. Both of these 
designs belong to single-sided detector that can contribute N2 pixels but only need 2N electronics, 
which greatly reduce the power requirement and complexity of the device electronics. As for the 
orthogonal strip detector, a bias voltage difference is required to be applied between the anode and 
control electrode. This difference value is dependent on its geometric design [68,71]. A higher 
difference value would result in more leakage current. Typical signals generated in this version 
detector are shown in Figure 17. X- and Y-coordinates of the event interaction location could be 
identified by the “strip signal” and “pixel row signal” respectively. Furthermore, the interaction depth 
(Z-coordinate value) can be inferred qualitatively from the characteristics of the cathode signal or 
quantitatively from the ratio of the cathode signal to the largest “pixel row signal”. With this design, 
energy resolution of 1% FWHM at 662 keV was obtained with a 5 mm thick detector [13].  

Figure 16. Schematic of the orthogonal coplanar strip detectors (a) and the charge-sharing 
strip detector (b). Both of them have a single planar cathode electrode on the opposite side. 
The anode pixels in (a) and pixel pads in (b) are interconnected in rows to collect the 
electron charge carriers. The strips in (a) register signals that are induced by electrons as 
they drift towards to the anode pixels; while the pixel pad columns in (b) are the same as 
the pixel pad rows but provide signals about their columns information [13,69] (Image 
courtesy of SPIE and IEEE).  

 

Compared to an orthogonal strip detector, the advantages of the charge-sharing strip detector 
include: (1) the electronics are simplified due to fact that the row and column electrodes are identical 
and therefore their output signals are of the same shape; (2) the grid electrodes have a larger area and 
thus they can provide a more effective non-collecting signal than that provided by the individual strip 
electrodes in orthogonal strip detector. The disadvantage, however, is that electronic noises are 
generated from so many pads and also by adding the signal of these pads. Further design details for the 
two versions of detectors, including the analog processing circuits design [72], edge and corner effect 
problems [73], and how to balance the pad dimensions and the detector thickness (electron clouds 
effedt) [13,74–76], can be referred in corresponding references.  
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Figure 17. Typical signal shape of the strip and pixel anode signals generated by a single 
interaction in the orthogonal strip detector. Three features, such as risetime, time-over-threshold 
and residual value, can be utilized to infer the DOI [69] (Image courtesy of SPIE). 

 

Another kind of strip detector concept, which is called drift strip detector, was first introduced in 
1987 and developed using silicon material [77]. Then Patt et al. [78] applied this design to developing 
a high-Z compound semiconductor detector using HgI2 and fabricated a detector prototype that 
achieved an energy resolution of 0.9% at 662 keV. 

The first CdZnTe drift detector was developed in the Danish Space Research Institute [79,80] and 
its schematic diagram is shown in Figure 18. This type of detector is single-sided with a planar 
electrode on one side and strip electrodes on the other side. An readout anode is in the center 
surrounded by several drift electrodes, which provide an electrostatic shield to the readout anode so 
that the sensitivity to hole trapping is reduced. The best energy resolution performance obtained with 
this detector is 0.8% at 356 keV with spectrum correction for hole trapping [81]. In such a detector, 
DOI can also be derived by analyzing a parameter R, which is the ratio of the signal on the cathode to 
that on the readout anode. Compared with a coplanar grid detector, this drift strip detector has simpler 
electronics since no summing and subtracting circuits are needed.  
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Figure 18. Schematic diagram of CdZnTe drift detector [81]. Such detector has a planar 
electrode as the cathode, while the anode and drift strips are biased by a voltage divider 
(Image courtesy of Elsevier).  

 

Table 1. Summary of the features and energy resolution performance of CdZnTe detectors 
with different geometries. 

Geometry Type Advantages Disadvantages 
Best Performance in 
Energy Resolution 

(FWHM) 
Planar electrode Simple structure Severe hole trapping problems — 
Frisch strip and trapezoid 
prism electrode 

Simple structure 
Existing leakage currents 
between the grid and anode 

2.68% 
at 662 keV 

Insulated Frisch ring 
electrode 

Eliminating leakage currents 
between the grid and anode 

More complicated design and 
fabrication technique 

1.70% 
at 662 keV 

Pixelate electrode 
Higher charge collection 
efficiency; suitable for 
medical imaging 

Charge sharing problems 
<3%  

at 140 keV 

Coplanar grid electrode 
Overcoming hole trapping 
more effectively 

Needing more output readout 
electronics; more electronic 
noises 

1.3%  
at 662 keV 

Hemispherical electrode Uniform charge collection  Complicated geometry design 
<1.9%  

at 662 keV 
Orthogonal coplanar strip 
electrode 

Less complexity for the 
device electronics 

Leakage current in anode 
1.0%  

at 662 keV 

charge-sharing strip 
electrode 

Simplified electronics  
and more effective  
non-collecting signal 

More electronic noise 
<6%  

at 122 keV 

Drift strip electrode 

The sensitivity to hole 
trapping is reduced due to 
the electrostatic shield to the 
readout anode 

More electronic noises 
0.8%  

at 356 keV 
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A summary of the features and performances of CdZnTe detectors with different geometries 
mentioned above is shown in Table 1. Some studies focus on the effect of different electrode 
geometries, aiming to compare the performance of them. For example, the performance of detectors 
with different anode contact geometries was investigated in [82] using the same crystal and same 
output electronics. The results show that it is the detector with single pixel geometry that presents the 
best performance for both low- and high-energy gamma ray sources.  

5. 3-D Position Sensing Technique and Compton Imaging Detector 

Electron trapping problems: Although hole trapping is the key factor in degrading spectrum 
performance, electron trapping does exist in practice. It was observed experimentally that around  
5–10% of electrons that are generated by γ-ray interactions are trapped on a 1 cm thick CdZnTe 
detector [52]. The electron trapping effect on the signals on electrodes was found in Luke’s coplanar 
grid detector because the subtraction signal is dependent of DOI [51]. Luke solved this problem by 
reducing the gain of non-collecting grid signal in order to compensate for the electron charge losses. 
However, this compensation method is based on an assumption that the electron trapping is a linear 
function of DOI. Therefore, it can only be used on occasions where electron trapping is not too severe 
and is spatially uniform. A more accurate method for correcting electron trapping in the non-linear 
case was first reported by He et al. [52] using the depth sensing method. The DOI can be inferred by 
the ratio of the cathode to anode signal and a position resolution of 0.9 mm FWHM at 122 keV was 
obtained. With electron trapping correction, detector performance would be further improved. 

The first prototype of 3-D position sensing spectrometer was developed and introduced by  
He et al. [83,84] based on the 2-D position sensing method and depth sensing technique using a 
pixelate detector array. This 3-D position sensing technique can be effectively used for correcting 
material non-uniformity and electron trapping. It also has advantages in analyzing detector response so 
that the possible defects that significantly degrade the energy resolution can be identified clearly. For 
example, it was demonstrated experimentally that small lateral size electron-trapping defects do 
significantly degrade energy resolution of the corresponding pixels, but larger ones do not [85]. 
Another three generations of spectrometers were subsequently reported in 2004 [86], 2005 [87,88], 
2007 [89] and 2012 [90] with different generations of ASIC readout systems respectively. 

Depth sensing technique in CdZnTe enables Compton imaging [91–93], which can be used to 
localize the position of radiation source. Compton scatters generated in the CdZnTe detectors will give 
rise to two gamma-ray interaction events. When both of the energy and position of the two events are 
measured using 3-D position technique, the direction of the radiation source can be determined by a 
back projection cone. Compton imaging technique makes it possible to perform intelligent gamma-ray 
spectroscopy. A typical Intelligent Personal Radiation Locator (IPRL) system was developed and 
reported by GE researchers [94]. This IPRL detector consists of multiple CdZnTe modules and each 
module has a CdZnTe crystal with dimensions of 15 × 15 × 10 mm3. Having a tatal volume of 
approximately 700 cm3 and weighing under 900 g, the IPRL system (Figure 19) can achieve an energy 
resolution of 5% FWHM at 122 keV and a location accuracy of less than 4 m.  
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Figure 19. Photo of the GE prototype of IPRL system [94] (Image courtesy of SPIE). 

 

A corresponding networked system of IPRLs was also designed to improve the abilities of 
detection, localization, and identification for potential radiological threats [95]. For Compton imaging 
camera, the angular resolution is a key performance parameter. However, it is limited by the lateral 
position resolution that is always determined by the pixel pitch dimensions of the detector. A sub-pixel 
position sensing method was studied by Zhu et al. [96] based on non-charge-collecting transient 
signals [97,98]. The fundamental is that the peak amplitudes of the eight-adjacent neighboring 
transient signals are dependent of the lateral position of the electron clouds that enter the anode region. 
This method breaks though the limit of position resolution by pixel pitch of CdZnTe detectors and 
effectively improves the angular resolution of Compton imaging camera. 

6. Conclusions 

The CdZnTe semiconductor is now regarded as the most promising candidate for the next 
generation of gamma ray detectors, with the increasing demand for gamma ray imaging devices and 
significant progress in producing high quality crystals. For imaging devices, CdZnTe semiconductor 
can obtain good energy resolution easily in comparison with scintillation detectors. Furthermore, 
spectroscopic performance can be improved effectively by designing special electrode geometry and 
developing new electronic signal processing techniques. Some technique renders the energy resolution 
to be greatly improved to below 1% FWHM. However, there is still some room for improvement in 
real applications, including production of large and uniform crystals, design of very small electrodes 
(<100 microns), signal processing methods and Application Specific Integrated Circuit (ASIC) with 
low electronic noise and leakage current. The combination of these techniques will produce a gamma 
ray detector with good energy resolution and detection efficiency. 
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