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Abstract: In this paper, a combined experimental-numerical based work was undertaken to 

investigate the Bragg wavelength shift response of an embedded FBG sensor when 

subjected to different conditions of multi-axial loading (deformation). The following cases 

are examined: (a) when an isotropic host material with no constrains on planes normal to 

the embedded sensor’s axis is biaxially loaded, (b) when the same isotropic host material is 

subjected to hydrostatic pressure and (c) when the hydrostatically loaded host material is 

an anisotropic one, as in the case of a composite material, where the optical fiber is 

embedded along the reinforcing fibers. The comparison of the experimental results and the 

finite element simulations shows that, when the axial strain on the FBG sensor is the 

dominant component, the standard wavelength-shift strain relation can be used even if 

large lateral strains apply on the sensor. However when this is not the case, large errors 

may be introduced in the conversion of the wavelength to axial strains on the fiber. This 

situation arises when the FBG is placed parallel to high modulus reinforcing fibers of a 

polymer composite.  

Keywords: fiber optic sensor; optomechanical constant; biaxial loading; hydrostatic 

pressure; epoxy; carbon/epoxy 
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1. Introduction 

Monitoring the internal strain state of fiber-reinforced polymer materials has become an important 

issue in many performance demanding engineering applications (e.g., aerospace, naval, civil). Fiber 

Bragg grating (FBG)-based sensors are excellent candidates for that purpose as they combine many 

advantages over conventional sensors (e.g., strain gages). Such advantages are, for example, their 

small size, immunity to electromagnetic interference, multiplexing capabilities, resistance to corrosion 

and self-referencing ability, together with an often linear response that is encoded in the change of 

their reflected resonance wavelength. The possibility of embedding optical fibers in anisotropic 

materials has already been demonstrated in numerous investigations [1–4]. Most of the work published 

so far has focused on axial load and temperature variations in addition to out-of-plane strain, which is a 

key parameter in the structural integrity of anisotropic materials [5–7]. In recent years substantial 

research efforts have also attempted to develop multi-parameter FBG sensors. Several reports have 

described the characterization of gratings subjected to transversal strains which can induce 

birefringence to the optical fiber and therefore split the reflected Bragg peak into separate ones, each 

relative to polarization axis [8].  

Although the FBG sensor provides the benefits of in situ, real-time monitoring, it can also produce 

ambiguous results due to its sensitivity to all strain components. Understanding the strain state on an 

embedded optical fiber is not straightforward. Due to multi-axial sensitivity of a fiber Bragg grating 

sensor there are cases where a simplification of the governing optomechanical equations based on the 

assumption that the transverse strains are related to the longitudinal strain by the Poisson’s ratio of the 

glass fiber can result in an incorrect interpretation of a single wavelength shift. For instance, in the case 

of the thermal expansion of an anisotropic material like a carbon-polymer composite, the transverse 

strains may become large relative to the longitudinal strain since the coefficient of thermal expansion 

of the fiber is close to zero. As a result the above assumed optomechanics theory relationship 

(described in Section 2) cannot be applied. This can lead to significant errors in the axial strains 

measured by the sensor. Such a strain state could be easily overlooked since no peak split in the 

recorded wavelength could appear. 

Furthermore, high relative transverse loads may develop during the potential application of FBG 

sensors in high pressure environments found in well and deepwater applications. For instance, real 

time monitoring of fluid pressure in bare-holes is crucial for the control of oil production in offshore 

oil fields [9]. A resolution of about 10 kPa (0.1 bar) or better is required at pressure levels up to  

100 MPa (1,000 bar) [10]. Consequently, measurement reliability is essential to realizing the full 

benefits offered by the deployment of FBG sensors for monitoring purposes. 

This paper presents the characterization of a typical FBG sensor in applied strain fields where the 

transverse strains around the fiber are equal or significantly higher than the one along the fiber 

direction. Experimental and numerical results are presented.  

2. Optomechanics Principles 

When a Bragg grating, written on the core of a conventional single mode (SM) optical fiber, is subjected 

to strain along its z axis, (see Figure 1), the wavelength strain relation is expressed as follows ([11], 

and references therein): 
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Here x y z,   are the applied homogeneous strains on the fiber (Figure 1); B0, B are the 

reference and shifted (i.e., after straining) Bragg wavelengths, respectively; neff is the effective 

refractive index of the core of the unstressed fiber; p11 and p12 are the Pockel’s strain-optic coefficients. 

If a temperature difference is applied on the fiber, a compensation to the wavelength changes should be 

added to the right hand side of Equation (1).  

In cases where a three dimensional strain field with z x y     is present at the location of the 

grating, a non-negligible sensor response to transverse strains must be accounted for. When two 

different transverse strains, namely x and y, are applied to a FBG the reflective index changes and 

splits into two values. This appearance of birefringence leads to the separation of the single reflected 

Bragg peak into two distinct ones [8,12,13]. The wavelength shifts are given by: 
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where z x y, ,    are the principal homogeneous strains in the core of the SM fiber, directed along the 

axial and the two polarization axes. It is noted that the peak separation is proportional to the difference 

between the transversal strains x andy only, easily expressed as: 
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In the case of equal transverse strains x andy, the previously discussed birefringence is removed 

and Equations (2) are reduced to Equation (1). 

Figure 1. Schematic of an optical fiber with an FBG sensor subjected to strains. 

 

In most cases of practical interest, the FBG is subjected to axisymmetric homogeneous strains, i.e., 

x y  . Assuming further that the lateral strains are related to the axial one by a standard Poisson 

relation x y f z      , Equation (1) is reduced to the following simplified relation: 
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is the effective optomechanical constant and f is the fiber’s Poisson ratio. Equation (4a) has been 

used by several researchers to measure strains in various experimental configurations by monitoring 

the wavelength shift 
  since 

0 e, p are known parameters for a given sensor. While 
0  is known 

from the FBG inscription, 
ep  is calculated by inserting the values of the parameters. In this work, 

these parameters are taken as follows: neff =1.468 (typical value for an optical fiber, i.e., the Corning 

SMF-28™ fiber) and p11 = 0.121, p12 = 0.270 for silica [14]. As for Poisson’s ratio, it was assumed as 

f = 0.19. Accordingly, it is found that 
ep = 0.2108. Note that 

ep  can also be measured experimentally 

using Equation (4a) at ambient temperature since the fiber properties can vary according to the 

manufacturer.  

Implicit to using Equation (4a) for an embedded fiber is the assumption that the axial strain on the 

sensor is the dominant one and the lateral ones are simply due to Poisson as initially proposed by 

Butter and Hocker [15]. However, if the experimental conditions are such that the axial component is 

not the dominant one and the lateral strains are significant, use of Equation (4a) is not realistic. 

Figure 2. Evolution of normalized axial strains according to Equation (7). See text for details.  

 

To examine the effects of relatively large lateral strains on the FBG sensor, the transversal strains 

are assumed homogeneous and equal (x=y) but they are not related to z by a simple Poisson’s 

relation but by a biaxiality ratio defined as: 

x
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Thus Equation (4a) can be expressed as: 
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is now an effective photo-elastic coefficient. To illustrate the effects of B on eff

ep  Equation (6a) is 

rewritten as: 
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where ̂  is a normalized parameter introduced for convenience. The evolution of the right hand side of 

Equation (7) as function of  B is shown in Figure 2. Also shown in Figure 2 are the two asymptotes 

exhibited by Equation (7): (a) a vertical one at   1eff

ep B   for     2 2

12 11 122 / /eff effB p n n p p  
 
and 

(b) a horizontal one at  (/ 1 0 )1 eff

e Bp  for ( )eff

ep B   . The grey band corresponds to an error of 

±20% from the strain value given by Equation (7) with fB   . This is the case where Equations (4) 

and (7) give the same results. The strain value, at 1B   corresponds to the FBG sensor subjected to 

hydrostatic pressure and the strain at 3.1170 B   to a uniaxial composite under hydrostatic pressure 

where an FBG sensor is embedded parallel to the reinforcing fibers. These two cases are discussed in 

the next sections of the paper.  

Note that the importance of the lateral strains on the response of the FBG is discussed in [16]. The 

authors define an effective Poisson’s ratio (similar to parameter B, Equation (5)) and examine 

numerically the effects of the FBG’s coating modulus, the host’s material properties and thickness, as 

well as the length of the sensor on the sensor’s response. Although the numerical simulations shed 

light on the influence of these parameters on the effectiveness of the sensor under uniform applied 

thermal strains, the results are not verified experimentally. In the present work, a combined 

experimental-numerical approach is undertaken to explicitly and quantitatively assess the influence of 

the lateral strains on the sensor’s response (i.e., the limits of Equation (4)). Experimental configurations 

including isotropic and anisotropic host materials are investigated without the sensor’s coating since 

the latter can limit the efficiency of the strain transfer between the sensor and the host material. 

3. Materials and Methods 

To examine the effects of relatively high lateral loads on the FBG strain response, two conditions 

were realised experimentally. The first one was a biaxial loading on an epoxy block and the second 

one a hydrostatic pressure applied on the bare fiber, epoxy cylinder and uniaxial carbon epoxy plate. In 

all experiments SM optical fibers, with 125/9 μm cladding/core diameters and a 5 mm FBG sensor, 

without any coating, operating at the wavelength of 1,550 nm, were used. The Bragg wavelength peak 

shifts were recorded using a Micron Optics sm130 optical sensor interrogator. Note that the uncertainty 

in the wavelength measurement was 14pm which, according to the value of photoelastic constant, 

resulted in an uncertainty in strains between 11 (for 
ep  = 0.2108) and 30με (for eff

ep  = 0.7122). These 

uncertainties are not shown in the figures with the results for better clarity. All experiments were 

simulated using linear elasticity based finite element (FE) models in the Abaqus solver v6.8. 

3.1. Biaxial Loading 

For the biaxial loading, an epoxy block with dimensions 12 mm × 12 mm × 38 mm was prepared 

with the sensor at its center. The material was a mixture of the DER330, DER732 resins and the 

DEH26 hardener in weight proportions of 70:30:10, respectively, from Dow Chemical Company. The 



Sensors 2013, 13 2636 

 

 

block was fabricated in a specially designed vertical mould that kept the optical fiber with the 

embedded sensor axially aligned within the resin [6]. Curing took place at 30 °C for 24 hours.  

An additional post-curing treatment was applied at 70 °C for 9 hours in order to increase the degree  

of polymerization.  

The epoxy block was placed and tested in an Instron biaxial (cruciform) testing machine equipped 

with four in plane independent actuators, as shown in Figure 3(a). The testing fixtures mounted on the 

actuator arms provided nearly equal transversal compressive loads on the lateral sides of the specimen. 

Failure or slip on one side of the specimen could seriously damage the servo-hydraulic cylinders and 

load cells. For that reason the actual compressive area on the long sides of the specimen was reduced 

from 12 × 38 to 10 × 38 mm
2
. The test was performed at room temperature in load control mode in 

order to generate equal radial loads on the sensor and also avoid the need to account for the stiffness of 

loading arms. The horizontal and vertical loads were simultaneously increased from 0 to 10 kN on 

steps of 1kN/min and the vertical and lateral displacements imposed on the specimen were 

simultaneously measured using a digital image correlation (DIC) technique. These displacements were 

used as boundary conditions in the numerical modelling (Section 4.1). 

Figure 3. (a) FBG equipped specimen and loading actuators for biaxial testing,  

(b) Schematic of the pressure chamber setup (dimensions in mm). 

 

The actuators were stopped at each applied load increment for a sufficient period of time to allow 

for stabilization of displacement and wavelength recordings.  

3.2. Pressure Chamber Loading 

A specially designed pressure chamber was built to apply hydrostatic pressure on the specimens. 

Different pressure levels were applied while simultaneously recording the water temperature with a 

thermocouple and the FBG wavelength peak shifts. The experimental setup is shown in Figure 3(b). To 

avoid any water leaks due to the relatively high pressure applied to the water, special insulating plugs 

were placed around the thermocouple and optical fiber at the exit points. Pressure was provided to the 

chamber via a piston and actuator system. By rotating the actuator, the piston was forced inside the 

chamber providing pressure on the specimen through distilled water inside the chamber. 
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In this work three experiments were carried out in the pressure chamber: (1) a bare optical fiber 

with the FBG sensor was tested without any special support since the surrounding water kept it 

straight; (2) a cylindrical epoxy specimen, of 12 mm in diameter and 40 mm in length, with a centrally 

located FBG was fabricated using the special casting fixture [6] with the same curing and post curing 

conditions as in the case of the epoxy block. The cylinder was placed in the cylindrical chamber with 

its axis parallel to that of the chamber; (3) a 4.2 mm thick carbon/epoxy unidirectional [024] composite 

laminate was cured in an autoclave with conditions similar to ones reported elsewhere [17]. At the end 

of the curing process, a composite specimen of 28 mm in width, 36 mm in length and 4.2 mm in 

thickness was prepared having an FBG sensor at the specimen center. For the testing, the specimen 

was placed horizontally in the chamber with its long sides parallel to the chamber’s axis without any 

special support. 

3.3. Modeling and Data Analysis  

All experimental conditions were simulated using three dimensional (3D) or axisymmetric linear 

elasticity based finite element (FE) models, in the Abaqus solver v6.8 with a reduced integration 

scheme. With these models, the strains x y,   and z  
on the core of the fiber, as well as parameter B 

and 
eff

ep (Section 2) were calculated for an applied pressure of 1 MPa. Afterwards, the wavelength 

shifts on the FBGs sensor, in all experimental conditions, were recorded as a function of the applied 

hydrostatic pressure and the corresponding strains were evaluated using Equations (4) and (6). The 

strains for selected pressures were also extracted from the numerical models and compared with the 

strains given by Equations (4a) and (6a). To examine the effects of the lateral pressure only, 

simulations were also carried out on the bare fiber, cylindrical epoxy specimen with the embedded 

FBG and on the composite plate with the embedded FBG sensor. 

4. Results and Discussion 

4.1. Biaxial Compression: Epoxy Block 

Stress analysis of the epoxy block was conducted in order to establish the degree of biaxiality 

exerted on the fiber when the block is subjected to equal biaxial loading. The specimen was modeled 

taking advantage of the specimen’s three planes of symmetry planes as well as the symmetric applied 

loads. Thus, one eighth of the specimen was modeled with ~19,400 3D quadratic elements. The 

domain was divided in 2 regions in order to model explicitly the presence the fiber along the specimen 

z-axis. The Young modulus of the epoxy in compression, measured independently, was 
mE  = 1.9 GPa 

and its Poisson’s ratio was assumed equal to 
m = 0.38. For the glass fiber, the corresponding 

properties were fE = 72 GPa and f  = 0.19. Refinement of the mesh was also imposed around the 

fiber-matrix interface to avoid excessive mesh distortion. In addition, perfect adhesion of the fiber to 

matrix was imposed. Three types of contact conditions between the specimen and the grip were 

considered: (a) contact with zero coefficient of friction f = 0; (b) contacts with coefficient of friction  

f = 0.1; (c) contact with coefficient of friction f = 0.2. 

The axial and lateral deformations of the fiber as function of the specimen z- coordinate are reported 

in Figure 4(a), for a 0.1 mm displacement applied on the specimen’s loading surfaces. It can be noted 
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that the contact conditions influence remarkably the axial deformation of the fiber especially at the 

specimen middle plane where the FBG was placed. At this location, the biaxiality ratio B was 

calculated and used to determine the corresponding values of
 

eff

ep . The following values were found:  

( 0 0.2239fB    , 0 0.1966eff

e fp   ); ( 0.1 0.2535fB    , 0.1 0.1841eff

e fp   ), ( 0.2 0.3263fB    ,

0.2 0.1535eff

e fp   ). The three values of eff

ep  were used in the Equation (6a) to convert the recorded 

wavelength shift to axial fiber strains which are reported, as function of the applied load, in Figure 4b. 

Also shown in the same figure is the fiber deformation calculated using 0.2108ep  . The results of the 

simulations in Figure 4(b) were obtained by imposing the corresponding displacements (to the applied 

loads) on the specimen’s loading surfaces, measured using the DIC technique during the experiment 

(Section 3.1). 

The results in Figure 4(b) indicate that the contact at the specimen-grip interface is realistically 

modeled with a friction coefficient of f = 0.1. In addition, this loading condition, with all three above 

sets of parameters, resulted in sufficiently close strain values to the ones calculated from Equation (4a) 

despite the relatively large lateral pressure. This is because the axial strain component is dominant with 

respect to the lateral ones because the epoxy specimen is not constrained axially and deforms easily 

due to its relatively low elastic modulus. 

Figure 4. (a) Simulated axial and lateral deformations of the sensor in terms of z,  

(b) simulated axial strains at the specimen’s center with different friction coefficients 

between epoxy block and grips compared to experimental data shown by the blue lines. 

 

4.2. Hydrostatic Compression: Bare Fiber 

The bare fiber was modeled as an isotropic linear elastic material with properties reported in 

Section 4.1. A uniform pressure of 1 MPa was applied to the external surface of the fiber and the axial 

and transversal deformations at the fiber axis were calculated. The results are reported in Figure 5(a) 

and as expected they are all equal with B = 1 corresponding to a 0.7122eff

ep   calculated using 

Equation (6b) (see also Figure 2). The strain response, calculated from Equations (4a) and (6a), with 

the corresponding parameters ep  and eff

ep and the experimental peak shift  , are reported in Figure 

6 for different applied pressure levels.  
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Figure 5. Simulated strains in the fiber core in the case of, (a) bare fiber, (b) embedded in an 

epoxy cylinder, (c) embedded in a composite. The pressure is 1 MPa and the units are mm.
 

 

In the same Figure the corresponding prediction of the FE model at a pressure of 10 MPa is also 

reported. Note that use of the corrected formulation (Equation 6a) dramatically reduces the error in the 

determination of the fiber axial deformation. In fact, the simplification introduced considering  

the lateral deformations equal to f z 
 
generate an underestimation of the deformation by ~170%. 
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The ~10% difference between the simulated strains and the ones from Equation (6a) is attributed firstly 

to an uncertainty in material properties of the glass fiber and secondly to random instrumentation noise. 

Figure 6. Bare fiber subjected to hydrostatic pressure: comparison between strain 

calculated from the wavelength shift measurements and Equation (4a) with 0.2108ep 
 
as 

well as Equation (6a) with 0.7122eff

ep  . The vertical dashed lines indicate the application 

time of each pressure step. The FE prediction for 10 MPa pressure is also shown.  

 

Interestingly, if only the lateral surface is loaded and the circular sections are free, the numerical 

simulations give B= −2.1310 and Equation (6b) 0.6069eff

ep    which indicates that since the axial 

strain is not dominant, Equation (4a) is not appropriate. Comparing this case with that of the epoxy 

block, described in Section 4.1, the main difference here is the much greater elastic modulus of the 

glass which limits the axial strain in the core.  

4.3. Hydrostatic Compression: Epoxy Cylinder 

Taking advantage of the specimen symmetry only one half of the cylinder was modeled with ~6600 

axisymmetric quadratic elements with reduced integration. The domain was divided in two regions in 

order to model explicitly the presence the fiber along the specimen z-axis. In addition, perfect adhesion 

between the epoxy matrix and the fiber was imposed and the material properties used are the ones 

given in Section 4.1. On the entire surface of the specimen, a constant pressure of 1MPa was applied 

and the evolution of the axial and lateral deformation of the embedded fiber was calculated along the  

z-axis (Figure 5(b)). The FBG was centrally placed with respect to the specimen’s symmetry plane 

where an extensive strain plateau is noticeable. In this region the calculated biaxiality ratio and 

effective photoelastic coefficient were B = −0.0930 and 0.2515eff

ep  , respectively. This latter value is 

used to compute the axial deformation of the fiber as function of the applied pressure.  

The comparison of these calculations with the results given by Equation (4a) is reported in Figure 7 

showing that little improvement is introduced by the Equation (6a) with respect to Equation (4a). 

Moreover, if only the pressure on the lateral surface is accounted for (i.e., the pressure on circular 

sections of the specimen is set equal to zero), the simulations result in B = −0.2200 and 0.1982eff

ep   
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from Equation (6b). Interestingly this value is practically equal to 0.2108ep   (i.e., 5.62% lower) and 

is explained from the fact that since there are no lateral constrains, the material is easily deformed 

along the axial direction. Thus the axial strain is dominant and reduces the effects of the lateral strains. 

This is similar to the loading case of the epoxy block in biaxial compression where the effects of the 

lateral strains on the calculated value of eff

ep were found negligible. Note also that the ~10% difference 

between the simulated strains and the ones from Equation (6a) is attributed firstly to small 

uncertainties of elastic modulus of the epoxy under compression and secondly to random 

instrumentation noise. 

Figure 7. Epoxy cylinder subjected to hydrostatic pressure: comparison between strain 

calculated from the wavelength measurements and with Equation (4a) and 0.2108ep   as 

well as Equation (6a) and 0.2515eff

ep  . The vertical dashed lines indicate the application 

time of each pressure step. The FE prediction for 9.2 MPa pressure is also shown. 

 

4.4. Hydrostatic Compression: Unidirectional Composite 

The unidirectional composite was modeled using ~17,400 3D quadratic elements. The reinforcing 

fibers were aligned along the z direction and the material properties are reported in Table 1 [17]. 

One eighth of the specimen was modeled due to symmetry conditions with respect to the xy, xz and 

yz planes (Figure 5(c)). The external surfaces were loaded with a constant pressure of 1MPa and the 

corresponding transversal and axial strains as function of the z-coordinate are reported in Figure 5(c). 

Note here the large difference in the lateral strain as compared to the axial one. This is due to the fact 

that the composite is much stiffer along the fiber direction (Table 1). In this case the biaxiality ratio 

reaches the value of B = 3.117 leading to a 1.6040eff

ep   (Equation 6b). 

Table 1. Composite elastic properties. 

Elastic Property  

Ezz 

[GPa] 

Exx 

[GPa] 

Eyy 

[GPa] 
zx νzy νxy 

Gzx 

[GPa] 

Gzy 

[GPa] 

Gxy 

[GPa] 

96.0 8.7 8.7 0.30 0.

33 

0.

38 

4.0 3.6 2.2 
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Figure 8. Unidirectional composite subjected to hydrostatic pressure: comparison between 

strain calculated from the wavelength measurements and Equation (4a) with 0.2108ep  as 

well as Equation (6a) with 1.6040eff

ep  . The vertical dashed lines indicate the application 

time of each pressure step. The FE prediction for 10MPa pressure is also shown. 

 

The fiber axial deformation calculated from the wavelength recorded during the experiment is 

shown in Figure 8. One can notice that Equation (4a) predicts a positive deformation of the composite 

material that is not physically possible under hydrostatic pressure conditions. On the contrary, the axial 

deformation computed by accounting for the actual strain environment of the fiber is well captured. In 

fact, in this condition the lateral strains dominate and, recalling Figure 2, such a high biaxiality ratio 

belongs to the negative branch of the normalized deformation equation (Equation 7) explaining the 

change in sign of the deformation. It should be noted that the results of the simulations are practically 

the same if the pressure is applied on the yz and xz planes (Figure 5(c)). This is explained from the fact 

that, (a) the area of the other two sides (i.e., xy planes) of the specimen is considerably smaller than the 

rest of the specimen’s area which results in a comparatively small applied force on the specimen,  

(b) the modulus of the composite is more than one order of magnitude greater in the z direction as 

compare to the transverse one (Table 1) which limits the axial deformation significantly. This is also 

validated by the numerical simulations. The nearly identical experimental and numerical results are 

due to the fact that the material properties of the composite are obtained by an identification technique 

of the material used [17].  

5. Conclusions 

The results of the combined experimental numerical analysis presented in this report demonstrate 

that the wavelength shift-strain relation (Equation 4a) from embedded FBG sensors gives accurate 

results only in cases where the axial strain dominates. This could be the case of an isotropic host 

material with relatively low modulus (as compared to that of the fiber). However, when the isotropic 

host material is of high modulus, use of the conventional optomechanics constant ep  in Equation (4a) 

may not be realistic. Instead, an effective parameter eff

ep  should be introduced whose values can be 

obtained from numerical simulations of the experimental setup. The results of this work also 
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demonstrate that use of Equation (4a) can result in erroneous data when the host material is anisotropic 

as in the case of a composite material with the optical fiber along the reinforcing fibers. Due to the 

large elastic modulus along this direction, as compared to the transversal ones, the axial deformation is 

limited and the lateral strains become dominant. Thus the interpretation of ep  in Equation (4a) is no 

longer valid. Instead an effective one should be introduced whose values can be calculated numerically 

using the properties of the host material. In practice, such a situation arises during processing of a 

composite reinforced with carbon fibers. Since these fibers have almost zero coefficient of thermal 

expansion, the axial strains during processing are very small as compared to the transversal ones.  

Regarding the choice of the material parameters, in particular the strain-optic coefficients and 

refractive index of the fiber, it should be noted that for another set of these coefficients, p11 = 0.113,  

p12 = 0.252 [14] and neff =1.450, the vertical asymptote in Figure 2, changes its position slightly. As a 

consequence, the two parts of the curve towards the vertical asymptote (i.e., for vales of B in the range of 

0.5 and 5) give different results for eff

ep  as compared with the results when p11 = 0.121, p12 = 0.270 [14] 

and neff =1.468. However, as long as the same coefficients are used to compare the results of the 

different experimental conditions, the conclusions on the importance of the lateral strains as compared 

to the axial one do not change.  
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