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Abstract: Power consumption is the main concern in developing Wireless Sensor Network 

(WSN) applications. Consequently, several strategies have been proposed for investigating 

the power consumption of this kind of application. These strategies can help to predict the 

WSN lifetime, provide recommendations to application developers and may optimize the 

energy consumed by the WSN applications. While measurement is a known and precise 

strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible 

considering the (usual) large number of WSN nodes. Furthermore, due to the inherent 

dynamism of WSNs, the instrumentation required by measurement techniques makes 

difficult their use in several different scenarios. In this context, this paper presents an 

approach for evaluating the power consumption of WSN applications by using simulation 

models along with a set of tools to automate the proposed approach. Starting from a 

programming language code, we automatically generate consumption models used to 

predict the power consumption of WSN applications. In order to evaluate the proposed 

approach, we compare the results obtained by using the generated models against ones 

obtained by measurement. 
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1. Introduction 

Wireless Sensor Networks (WSNs) consist of a set of nodes (motes) capable of sensing, storing, 

processing, and communicating. The critical issue in developing WSN applications is the limited 

amount of energy usually available in the motes. An application can take years to drain the battery of 

the sensor node or consume it in a matter of weeks. Therefore, application developers must always 

adopt best practices in order to reduce the power consumption as much as possible. 

The developer shall evaluate the power consumption of applications prior their deployment in the 

field. By evaluating the power consumption, it is possible to estimate the application’s lifetime, be 

aware of application’s power consumption bottleneck, to adopt strategies to increase the network 

lifetime, to anticipate the time to replace the sensor node (to maintain always-on network) and so on.  

The best way to carry out the power consumption evaluation is directly on the physical hardware, 

by periodically measuring the remaining battery, as was used by [1–4]. This process, however, has 

several problems such as the need of high financial investment, reproducibility of the environment, 

inherent dynamism, complexity and size of WSNs (thousands of nodes), and the potential impact of 

hardware and human failures. 

Another way for conducting the power consumption evaluation is by adopting modelling. Such 

models may be analytically evaluated and/or simulated. Although modelling may provide less accurate 

results than measuring, it provides the designers the flexibility and agility to evaluate complex 

scenarios without interfering on the actual environment. Furthermore, evaluating WSN applications at 

higher level (software level) may have many advantages, but the most prominent is the time required 

to conduct the analysis. These are key attributes in mature and well defined power-aware design 

process [5]. 

In this context, this paper presents an approach for evaluating the power consumption of WSN 

applications through modelling. A set of basic models has been defined in order to express the power 

consumption of commands and structures of a programming language (nesC), whilst a translator takes 

responsibility of generating the respective model (coloured Petri net—CPN [6–8]) for the whole 

application. Starting from a WSN application written in nesC, its power consumption model is 

generated and evaluated in such way that enable us to automatically check the impact on the power 

consumption of every change in the application.   

Considering what is being proposed, this paper has the following unique contributions: (1) a fully 

automated process for evaluating the power consumption of WSN applications, (2) a complete set of 

reusable CPN consumption models of WSN applications, and (3) a tool that generates power 

consumption models from WSN application code written in nesC. It is worth observing that nesC is 

the programming language most used for implementing actual WSN applications, whilst Petri nets has 

been widely adopted as a powerful modelling notation used to many different purposes and in several 

application domains[9,10]. 

The rest of this paper is organized as follows: Section 2 introduces basic concepts necessary to 

understand the rest of the paper. Next, Section 3 presents the proposed models and tools. Section 4 

performs an experimental evaluation of the proposed solution, followed by the presentation of related 

work in Section 5. Finally, the last section presents conclusions and future work. 
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2. Background 

In this section, we describe some basic concepts in order to help to understand the paper’s 

contributions. Initially, we present coloured Petri nets, followed by basic concepts of WSNs. Finally, 

we conclude this section showing some notions of TinyOS and nesC. 

2.1. Coloured Petri Nets (CPNs)  

Petri nets (PN) [11] are a family of formal techniques used to model a wide range of systems 

through a graphical notation. Petri nets enables us to check properties about the proposed models, such 

as reachability, boundedness, liveness and reversibility [9]. Nowadays, there are many extensions (e.g., 

timed, stochastic, coloured) that have been defined with particular purposes. In common, all of them 

have four basic elements: places, transitions, arcs and tokens. The places represent the system 

variables, transitions represent actions (or events) that occur within the system, arcs denote relations 

between places and transitions and vice versa, and the tokens are the place’s values.  

CPN [6–8] is an executable model that is both state and action oriented, and combines the 

capabilities of Petri nets [9,10] with the capabilities of a high-level programming language (CPN ML). 

CPN ML is a functional programming language based on Standard ML [12] that provides the 

primitives for the definition of data types. CPN considers the concept of time that allows to capture the 

delay taken by events in the system. Therefore, CPN can be applied to evaluate performance measures. 

It worth mentioning that having the capability of programming languages is quite handy for  

stochastic simulation purposes and for random variation generation, in particular, so fundamental in 

performance studies. 

2.1.1. CPN Tools 

CPN Tools [13] is the main tool used to design coloured Petri nets. Each place has a name, a colour 

set and an initial marking. The name identifies the place, the colour set determines the types of tokens 

that can be stored, and the place may also have an initial value. This initial value is used to start the 

CPN model. Figure 1(a) illustrates a place (place01) containing one token set to zero. Outside the 

place there are an initial marking (set to 0) and a colour set (INT). 

Figure 1. (a) place and token, (b) arc and (c) transition representations in CPN Tools. 

 

Figure 1(b) shows an arc with a single annotation that is a variable (i) of the same type of the input 

place colour. Figure 1(c) illustrates a transition containing: identification (trans01), guard, time and 

code. The guard ([i = 0]) is a Boolean expression and must be true to enable the transition. When the 



Sensors 2013, 13 3476 

 

 

transition is fired, the time fragment (@+1) adds a certain amount of time in the CPN model and the 

code assigned to the transitions must be executed. The code is divided into three parts: input, output 

and action. The action contains the CPN ML code to perform some activity that processes the input 

(input) and returns a value (output). 

Hierarchical CPN aims to represent CPN models at different abstraction levels that that may be 

connected to each other. This feature is very useful for building large models (e.g., to represent an 

application). In practice, this feature enables us to divide the model into multiple modules, where each 

module has a CPN. In addition, it allows the reuse of modules, which reduces the size of the model. 

These independent models (called sub modules) are represented by a substitution transitions in the 

main module. These modules are connected through places and the connections always involve only 

two places: one in the sub modules (called port) and another in the super modules (called socket). A 

socket passes a token to its respective port, and vice-versa. There are three kinds of ports: input, 

output, and I/O. An input port receives a token from the socket; an output port sends a token to the 

super modules and I/O port can both send and receive tokens. 

The CPN Tools has an important mechanism to periodically extract information about marking of 

places and occurring biding elements: Monitor. A monitor may be used to observe, inspect, stop, 

control or modify the simulation of a CPN model. In practice, the monitor can observe and take 

appropriate actions based on the observations. There is support for four kinds of monitors, namely 

breakpoint (to stop a simulation), data collector (to extract numerical data from a net), write-in-files  

(to update files during simulations) and user-defined (used to any purpose).  

State space models, such as Petri nets, aim at automatic analysis and verification of the behavior of 

systems. The basic analysis methods build the system’s state space considering all state transitions 

(reachability graph). This process can be fully automated.  Unfortunately, such methods suffer from a 

problem that is fundamental that led many to believe that state space methods would never work well 

enough for large systems. Nevertheless, the great rewards of the state space models have stimulated 

researchers to undertake studies to lessen the problem [14]. There are many strategies and methods to 

tackle this problem, among them, it should be highlighted approaches that exploits structural attributes 

of the model [10,11], reductions in the reachability graph and at the net level [15], exploration of 

symmetries within the reachability graph [9], the adoption of partial state space generation  

methods [16,17], and simulation [6,18,19]. Simulation itself may be understood as a partial state space 

generation methods, since it stops generating new states when a criterion is reached. This particular 

work extensively uses reductions at the net level and adopts stochastic simulation as the fundamental 

strategy for conducting the evaluation. 

2.2. Wireless Sensor Network (WSN) 

Wireless Sensor Networks (WSNs) are an emerging technology which consists of the improvement 

of three technologies [20]: microprocessors, wireless communications and micro-electromechanical 

systems (MEMs). A WSN is typically formed by thousands of small nodes, with low computational 

power, few available resources (e.g., memory), a short-range communication and generally  

non-rechargeable battery. The set of nodes allows the network to be able to perform complex tasks, 

which may be difficult to be performed by a single node [21]. WSNs have usually a dynamic topology 
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and each node has a type of sensing equipment to analyze a given phenomenon (e.g., temperature, 

luminosity). Through this device, it can capture the phenomenon occurred, and transmit it to a sink 

node, responsible for disseminating the data to the observer (or the Internet). Due to the large number 

of participating nodes in the network, it can be considered as an advantage the short distance between 

them, using a multi-hop communication (as opposed to using long-range communication) to save 

energy in data transmission [22]. 

2.2.1. TinyOS and nesC 

TinyOS [23] is an open-source and event-based operating system specially designed to run in 

devices with low computational power and limited storage as WSN nodes. TinyOS executes in many 

different motes (e.g., IRIS [24], MICAZ) and provide facilities for the development of applications. 

TinyOS was developed in nesC [25], an extension to C, optimized to meet the limited storage of  

sensor nodes.  

In terms of programming, an application in nesC is built out of components that are wired together. 

A component has a specification and an implementation in which the specification defines 

provided/used interfaces, whilst the implementation consists of the nesC code that implements the 

specification. In practice, the provided interface characterises the functionality of the component and 

the used interface defines the functionality required by the component.  

An interface in nesC is bidirectional and used to communicate the components. The interface 

specifies a set of functions named command and events, in which commands must be implemented by 

the interface’s provider, whilst events must be implemented by the interface’s users. Task is another 

function present in the component, beyond commands and events. It is a special kind of function that 

neither returns anything (void) nor has arguments. A task works as an independent locus of control and 

unlike events and commands, are posted in a queue and lately executed by a schedule (following a 

FIFO policy). In this way, interactions between components may be very complex and typically a 

component registers the interest in some event that is signalized when it occurs. For example, a 

component that invokes a command like ―read temperature‖ must implement the event ―read 

temperature done‖ that is executed right after the completion of command ―read temperature‖. In 

practice, commands typically go ―downwards‖ (from application to closer the hardware) and events 

call ―upwards‖ (closer to the hardware to the application). 

nesC has an execution model consisting of run-to-completion tasks (non pre-empted) and interrupt 

handlers that are signalled asynchronously by the hardware. The aforementioned scheduler is 

responsible for executing the tasks in any order and, as the tasks cannot be pre-empted, they are atomic 

with respect to each other, but are not atomic with respect to interrupt handlers. As a consequence of 

this execution model, the code of a nesC application may be divided into two parts: synchronous code 

(SC) and asynchronous code (AC). The SC is only reachable from tasks and includes functions, 

commands events and tasks. On the other hand, the AC is reachable from at least one interrupt handler. 

In terms of programming, nesC has the same set of operators of the language C: math (+, ×, − , /), 

function call, assignment (=, +=, −=, ×=, /=), byte (<, >, &, |), logical (>, >=, <, <=, ==, != ), cast, and 

primary expressions (identifiers, constants, string literals, parenthesized expression). The function call 

has new operators in nesC: call α used to invoke a command (α); signal ε, for call an event (ε); and 
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post Ω, for invoking a task (Ω). Additionally, the language has statements divided into three 

categories: selection, iteration and jump statements. Selection statements choose one branch to execute 

based on the evaluation of an expression (called controlling expression). Selection statements may 

have many branches and each branch has a Boolean expression and a body. The selection statement 

executes the first branch whose evaluation of the controlling expression is true. This kind of 

statement has two representations (if-then-else and switch) as shown in the following‖.  

 

If( expression ){ 

  expression list; 

} 

Else if( expression ){ 

  expression list; 

} 

… 

switch( expression ) 

{ 

   case 0: expression list; 

   case 1: expression list; 

   … 

   default: expression list; 

} 

(a) (b) 

Iteration statements execute the attached statement (called the body) repeatedly until the controlling 

expression evaluates to false [26]. It has three statements: while, do-while and for. The controlling 

expression of a while statement is evaluated before each execution of the body. Whilst, the controlling 

expression of a do-while statement is evaluated after each execution of the body. Finally, for statement 

is used to execute many times the body. This statement has three expressions: first expression is 

associated with the initialization, the second expression is the controlling statement, which is evaluated 

before of the iteration, and last expression usually specifies the size of increment. 

 

While( exp ) 

{ 

  expression list; 

} 

do 

{ 

 expression list; 

} while( exp ); 

for( exp , exp , exp ) 

{ 

  expression list; 

} 

(a) (b) (c) 

The control flow in an iteration statement can be altered by a jump statement. Jump statements 

cause unconditional transfer of control [26]. It has three statements: continue, break and return. The 

continue statement ignores the instruction subsequent and pass the control to the controlling statement. 

The break statement terminates the switch (only selection statement) or iteration statements, whilst the 

return statement finishes the function. 

3. CPN Models 

In order to evaluate the power consumption of WSN applications, we have followed three main 

activities as shown in Figure 2.  
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Figure 2. Schematic view of the CPN models definition. 

 

Initially, we defined a set of reusable CPN models (referred to ―basic models‖) to express the power 

consumption of nesC operators (e.g., assignment) and statements (e.g., if-then-else). Each nesC 

statement/operator is modelled through a basic CPN model and has associated its respective power 

consumption (obtained by measurement using actual WSN motes). Next, these basic models are 

composed into a model (referred to ―function model‖) to express the power consumption of nesC 

functions (tasks, events and commands). Finally, as a nesC application consists of tasks, commands 

and events, we compose the function models to express the power consumption of the whole 

application in what we call ―application model‖. This model represents a nesC application independent 

from a particular hardware platform. These models are described in the next subsections. 

3.1. Basic Models 

First step towards the modelling of power consumption of nesC applications is to define CPN 

models for each statement and operator of nesC. As some of them have the same structure, it is 

possible to group them into five different groups: operators, calling commands, selection statement, 

iteration statement and event receive. Next subsections present details about these groups. 

3.1.1. Operators 

Due to their similar structures, operators such as arithmetic (+, −, ×, /, and the modulus operator 

%.), relational (>, >=, <, <=, ==, !=), logical (&& and ||), increment (++), decrement (−−), bitwise  

(&, |, ^, <<, >>,~), and assignment (=) have been modelled through a generic CPN model as shown in 

Figure 3. The transition op_1 represents the operator and has associated the power consumption 

calculations. 

An action (action) is executed when op_1 is triggered and consists of three calculations performed 

by the functions addEnergy(), calcTime() and addResourceEnergy(). The function addEnergy() 

calculates a random value following the normal distribution of the instruction’s power consumption at 

that time using its input parameters (energyMean and energyVariance). Next, this function updates the 

power consumption (global variable) of the entire application. By generating a random value, it is 

possible to define a confidence interval that must contain it. Function calcTime() calculates the time 
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consumed by the operation. Similarly to the previous function, calcTime() also uses the mean and 

variance to generate a random value to the time. Finally, the function addResourceEnergy() calculates 

the power consumed by the resources of the mote (radio and LEDs) that may be active while  the 

operation executes (see more details in Section 3.4). It is worth observing that the aforementioned 

mean and variance of time/power consumption are particular to each operator and are obtained by 

measurement. 

Figure 3. Generic CPN model of the nesC operators. 

 

This model has two properties (see Section 2.1): bounded, because place Operator does not store 

tokens; and it has not dead transition, because transition op_1 will always run. 

3.1.2. Selection Statements 

The selection statements if-then-else and switch are represented using the same CPN model as they 

have branches, and only one of them runs (see Section 2.2.1). As these statements have branches, it is 

necessary to associate the probability of each branch to be true. The application developer is 

responsible for manually associating this probability through a C comment. For example, in the 

following nesC code, the probabilities associated by the application developer to each branch are: 80% 

(E_SUCESS), 15% (E_ERROR) and 5% (otherwise). 

 

  switch( e ){ 

   case E_SUCESS:          //@0.80 

        value = v; break; 

   case E_ERROR:           //@0.15 

        value = -1; break; 

   default:                //@0.05 

        value = 0; 

 } 

 

Figure 4 shows the CPN model for representing the statements if-the-else and switch. The transition 

c1 decides the branch to be executed by generating a random value between 0 and 1 following the 

uniform distribution. The token value is the decided value by this transition and this value will be used 

by the subsequent transition. 
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Figure 4. CPN model of the commands if-then-else and switch. 

 

The places el_x (e.g., el_1 and el_2) and body_y (e.g., body_1, body_2 and body_3) have power 

consumption calculations related to the each branch. The place el_x represents the controlling 

expression and body_x represent the body. 

As mentioned in Section 2.2.1, a selection statement executes the branch when its controlling 

expression returns true. In other words, the controlling expression of a branch consumes energy 

before deciding if it executes the body (when return true) or passes the control to the next branch 

(when return false). The transition e_x (e.g., e_1 and e_2) represents this behaviour in the CPN 

model. This transition checks if it runs the body or passes to the next branch. For example, the place 

el_1 verifies the token value and move the token to place body_1 (when the value is equal to 0) or to 

place el_2 (when the value is nonzero). The transition e_2 has a similar behaviour. 

This model has similar properties to the previous model when all branches have a probability 

greater then zero. On the other hand, in the case a branch has associated a probability equal to zero 

(//@0.0), it means that its body will never be executed. Consequently, the transition associated to this 

branch (e.g., b_1, b_2 and b_3 in Figure 4) becomes a dead transition. 

3.1.3. Iteration Statements  

Due to their particularities, the loop statements (while, do-while and for) have different CPN 

models. The statement while has a control that (1) checks if an expression is true and (2) then executes 

the body (in case the Boolean expression is true). When the body terminates, the control checks the 

expression again. This cycle ends when the expression returns false. Similarly to the command  
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if-then-else, the command while also has an expression that must be evaluated in order to decide what 

to do next. Hence, a probability is associated to the control return, i.e., the probability of the loop 

repeats. Similarly to the selection statements (Section 3.1.2), the application developer must associate a 

probability (commands while and do-while) or a number of times the body runs (statement for) to the 

loop control. 

Figure 5 shows the CPN model for representing the command while. The transition c_l is similar to 

one adopted in the command if-then-else and decides whether the loops repeats (the token moves from 

place control to body) or not (token moves to next). The place body models the command(s) executed 

in the body. Similarly to the selection statements, this model may have dead transitions when the 

probability associated to the commands is zero. 

Figure 5. CPN model of the command while. 

 

Figure 6. CPN model of the command do-while. 
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Similarly to the previous commands, the power consumption of command while is also calculated 

using the functions addEnergy(), calcTime() and addResourceEnergy().  

The CPN model for representing the command do-while is very similar to the command while. The 

only and fundamental difference between them is that the do-while ensures that the body will be 

executed at least once. This feature means that this model has not dead transitions. Figure 6 depicts the 

proposed CPN model. 

Finally, the last loop command, namely for, consists of four parts: initialization, control, step and 

body. The first three ones may be modelled as shown in Section 3.1.1, i.e., by using the assignment, 

logical and increment/decrement operators. The body part is similar to those presented in the previous 

loop commands. 

Figure 7 illustrates the proposed CPN model for representing the command for. The places assign, 

control, inc and body model by the initialization, control, step and body, respectively. The initialization 

is performed before the loop itself and occurs only once. The transition c_1 decides the number of 

times (N) the loop must repeat based on a value set by the application developer. This model has dead 

transitions in the case a probability associated to the command is equal to zero.  

Figure 7. CPN model of the command for. 
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3.1.4. Calling Command: call 

As mentioned in Section 2.2.1, the calling command call α is used to invoke a nesC command (α), 

to signal an event (ε) or to post a task (Ω). As a consequence, the proposed model has some particular 

elements when compared to the previous one. Firstly, the power consumption depends on the function 

α being invoked; post command does not follow this rule because it only tells to scheduler what task 

should run next. Secondly, in the case an event ε (e.g., sendDone()) must be signalised after executing 

the function α (e.g., send()), the event ε must be pushed into a function queue (described in  

Section 3.3); while a task must always be queued. Additionally, the execution of call may 

enable/disable a mote’s resource (like radio or LED), which has an impact on the overall power 

consumption calculation. 

Figure 8. CPN models of the command call. 

 

Figure 8 depicts two CPN models for representing the call command. First model (a) is very similar 

(with the same properties of the model) to one shown in Figure 3, whilst the second one (b) models the 

situation in which an event or task will be signalised after the completion of the command being 

invoked. In the last case, the function addFunction() push the function (to be signalised) into the 

aforementioned function queue and has two parameters: the time (functionTime) the task or event must 

execute and the function identifier (functionId).   

3.1.5. Event receive  

Generally, the events in the nesC language represent responses to the execution of a command. For 

example, when an application executes the command start to enable a radio, it discovers if the radio is 

turned on through the event startDone. Another example is when the application collects a 

temperature. It executes the command read and receives a value through the event readDone when the 

temperature is collected. Additionally, there is an event, named receive, that depends on the occurrence 

of an external event. The event receive is triggered when a new message arrives in the sensor node. 

Unlike the previous events, this event has a probability associated that indicates the chance of its 

occurrence. Figure 9 presents the CPN model (called module receive) of this event. 

The module receive has a transition, named check, to decides if it receives a message by generating 

a random value between 0 and 1 following the uniform distribution. If the generated value is less than 

or equal to the probability this event occurs, the token moves from place in to receive. Otherwise, 

token moves to out. Places in and out are input and output ports, respectively (see Section 2.1.1). The 
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transition body models the command(s) executed in this event. The CPN model of the others events 

have the places (in and out) and the transition body. 

Figure 9. CPN model of the event receive. 

 

3.2. Function Models 

Prior to present what is a Function models, it is worth remembering that the implementation of a 

nesC application consists of a set of functions, named task, command and events (see Section 2.2.1), 

that are very similar to C functions. On the other hand, a function itself is a block of code containing a 

set of operators/statements such as assignments, loops and if-then-else. As presented in the previous 

section, these elements are modelled by the Basic models. Therefore, a Function model consists of a 

set of Basic models that are put together according to a proposed rule. In order to better illustrate this 

composition, consider the following nesC function (command): 

 

  command void Module.read(){ 

  SLEEP_TIME = 100;  //assign 

  call Temp.read();  //invocation 

 } 

 

This function has two elements, assignment (=) and invocation (call), that are executed sequentially. 

Hence, its respective Function model is simply the composition of the Basic models of these two 

operators as shown in Figure 10. 

The assignment operator is modelled through the place assign and the transition a_1, whilst the 

invocation operator is modelled by the place call and the transition c_1 (see Section 3.1.1). These Basic 

models are merged according to the following rule: the transition from the first model (a_1) is connected 

(connector) to the place in the second model (call). This rule is used to compose all Basic models.  
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Figure 10. CPN Model of the function. 

 

3.3. Application Models 

To understand how the application model is obtained, it is important to observe that applications 

written in nesC are event-driven in such way that the order the application executes is only partially 

defined at compile time (see Section 2.2.1) due to the occurrence of tasks and events (e.g., the arrival 

of a message sent by another WSN node). Hence, a modelling element, named scheduler, has been 

introduced to explicitly treat with the occurrence of these tasks or events, and serves as the key 

element in the application models. These features make the application model generic, allowing 

represent any nesC application independent from the hardware platform. 

Each application model is organized into CPN modules (see Section 2.1.1) and each module models 

nesC tasks, commands and events (see Section 2.2.1). Events that depends on the occurrence of an 

external factor (e.g., another WSN node sends a message), has a probability associated by the 

application developer that indicates the probability and time of this particular event occurs. Figure 11 

shows a schematic view of the Application model. 

Figure 11. Schematic representation of the Application model. 

 

The scheduler has the following basic elements: a function queue, five transitions (scheduler, start, 

end, sleep, boot) and two places (in, out). The tasks and events are stored in a queue and each one has 

associated an identifier and the time indicating when the task or event must occur. In this way, tasks or 
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events are removed from the queue based on this time, e.g., the queued function with shortest time is 

the next to occur. In the case two different functions have the same time, one first queued is the next to 

be triggered. 

The transition scheduler acts as an orchestrator that defines the next transition (or module) to be 

triggered according to the time associated to the task or event. Additionally, the task or event that is 

type AC will be selected by the transition scheduler and it can not preempt the execution SC. In other 

words, AC is executed like a SC (see Section 2.2.1). 

At this point, it is worth observing that the event receive (see Section 3.1.5) is never putted in 

queue, as it depends on an external event (when a third-party message arrives in the mote). We solved 

this problem by allowing the scheduler to alternatively select an event from the queue and the event 

receive. Additionally, the radio should be enabled to run the module receive. 

The places in and out are sockets and identify the beginning and the end of activities, respectively. 

The place in is also the starting point of the model, indicating that the first transition to be performed 

(the other transitions will be chosen by the transition scheduler). It worth observing that the 

combination of transition scheduler, that decides which activity should be performed, with the place in, 

starting point of the application model and beginning of activities, leads to a reversible model. In other 

words, the model will always return to the starting point of the model through the transition scheduler. 

In the case the queue is empty (no function is ready to be triggered), the transition sleep is triggered 

indicating that the application does not need to execute any task. The transition start is executed only 

once, it initializes all variables and puts the first function in the function queue. The transition end 

indicates the end of the application execution and may be executed several times. 

The transitions boot, timer, t1, and tn depend on the application being modelled. These transitions 

correspond to task or event implemented by the application and each transition serves as a bridge 

between the module scheduler and the respective function module. For example, the transitions boot 

and timer represents the respective boot and timer module. The transition t1 and tn represents other 

function (task or event) implemented by the application. 

3.4. Power-Related Functions 

The CPN models introduced in the previous sections use three auxiliary functions that we have 

defined to compute power-related measurements: addEnergy(), calcTime() and addResourceEnergy(). 

Functions addEnergy()and calcTime() are responsible for calculating the power consumption and 

performance, respectively, of an operator modelled. On the other hand, function addResourceEnergy()is 

used to calculate the power consumption of the resource (radio and LEDs). 

The pseudo-code (Due to the complexity of the syntax of CPN ML, we adopted a pseudo-code to 

facilitate the understanding of the function codes.) of the function addEnergy is presented in the 

following: 

 1 
 2 

 3 

 4 

 5 

Function addEnergy( real mean , real variance ){ 

   var energy = normal( mean , variance ); 

   energy_app = (!energy_app) + energy; 

   return energy; 

} 
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The parameters mean and variance are used to calculate a random value following the normal 

distribution (variable energy in line 2) that represents the power consumption of a transition. It is worth 

observing that function normal() belongs to the CPN Tools library. The generated value is then added 

to the variable (energy_app) used to store the application’s power consumption. Function calcTime is 

similar to addEnergy, but it generates a random time associated to each transition. 

The proposed infrastructure supports many distribution probabilities, among them exponential, 

Erlang, polynomials, normal, and so on [27]. The system considered in this work, however, being an 

embedded system in which each mote is mainly devoted to few local non interfering activities, makes 

the system quite stable as can witnessed through the measures collected. Nevertheless, variation still 

exits, since the system is not deterministic. In this study, the normal probability distribution was the 

one that best fitted the measured data.  Finally, the pseudo-code of function addResourceEnergy is 

shown in the following: 

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

function addResourceEnergy ( real time ) { 

   if( radioIsOn ) { 

     var energy = radio_power * time; 

     energy_app = (!energy_app) + energy; 

   } 

   if( led0IsOn ) { 

     var energy = led0_power * time; 

     energy_app = (!energy_app) + energy; 

   } 

   if( led1IsOn ) { 

     var energy = led1_power * time; 

     energy_app = (!energy_app) + energy; 

   } 

   if( led2IsOn ) { 

     var energy = led2_power * time; 

     energy_app = (!energy_app) + energy; 

   } 

} 

This function calculates the power consumption of the resources (e.g., LEDs) available in the sensor 

node. In this particular case, the adopted mote (IRIS mote) has one radio and three LEDs. Each 

resource has associated a global variable that indicates if the resource is active (on) or not. In the case 

the resource is on, the power consumption due to the resource is calculated and added to the variable 

that stores the application’s power consumption (energy_app). It is worth observing that as we do not 

know how long the resource is on, this function is associated to each transition present in the model.  

3.5. Translator 

In order to automatically generate the function and application models along with their power 

consumption evaluation, the nesc2cpn translator was implemented. The translator nesc2cpn generates 

the power consumption models from nesC programs and then interacts with the CPN Tools that 

simulates and yields power consumption metrics of these models. 

According to Figure 12, the nesc2cpn receives a nesC program as input (1a) and some 

configurations parameters such as hardware platform, level of confidence and batch length (1b) (see 

Section 4.2.1). Next, it accesses the repository of CPN basic models (2-3) and generates the respective 
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application model. The generated application model is then passed to the Evaluation Service (4) that 

simulates it in the Internet and yields the power consumption results (mean, variance and standard 

deviation) (5-6). 

Figure 12. Overview of nesc2cpn translator. 

 

The Evaluation Service is a Web service (implemented in Java, available at  

http://ec2-23-22-219-74.compute-1.amazonaws.com:8080/EvaluationService/ws?wsdl) that has two 

functions, named evaluateApplication and getResult. Function evaluateApplication is used to evaluate 

a model asynchronously as the evaluation can be take hours or days. When this function is invoked, it 

saves the model (to be evaluated latter) and returns a request id. This request id is used to get the 

results of the evaluation by invoking the function getResult.   

The nesc2cpn translator is an API (implemented in Java, available at https://github.com/sensor2 

model-group/nesc2cpn), which provides three methods: evaluateSync, EvaluateAsync, getResult. The 

first two methods are used to generate and evaluate the CPN models in a synchronous or asynchronous 

way; method getResult is used to retrieve the results when the model in evaluates in a asynchronous 

way. Finally, the Repository Manager enable us to include and update the basic models in the 

repository, e.g., to add a basic model of a new hardware platform. 

4. Experimental Evaluation 

The goal of this experimental evaluation is to compare the power consumption of nesC applications 

using two different techniques: measurement, by executing the nesC applications in an actual mote; 

and simulation, using the CPN models of the nesC applications generated by the nesc2cpn translator. 

Next sections present how the measurements were carried out using actual motes (Section 4.1) and 

the comparison between simulation and measurement results (Section 4.2). 
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4.1. Measurement Procedure  

The nesC applications used in the both experiments were deployed in an IRIS (the datasheet of the 

IRIS mote is available at http://www.memsic.com/products.html) mote, connected to a MTS400 basic 

environment sensor board. These applications were compiled by nesC version 1.3.1, built on top of the 

TinyOS 2.1.1. An oscilloscope (Agilent DSO03202A) was used to measure the power consumption of 

the mote executing the applications. A PC was connected to the oscilloscope that captures the code 

snippet execution start and end times by monitoring a LED of the mote, which is turned on/off to 

signal the execution start/end. The PC runs a tool named AMALGHMA[28] that was responsible for 

calculating the power consumption. 

In order to measure the power consumption of each nesC operator (see Section 2.2.1) and built-in 

nesC commands available in TinyOS (e.g., send, receive, read), it was created a generic application as 

shown in the following: 

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

implemention { 

 

  event void Boot.booted(){  

    call Timer.startPeriodic( 100 ); 

  } 

 

  event void Timer.fired(){             //start power measurement 

    operator;         //first time 

    operator;         //second time 

    … 

    operator;         //N - 1 time 

    operator;         //N time 

  }                                     //stop power measurement 

} 

To reduce the interference in the measurement process, this application does not enable any mote 

resource (e.g., radio and LED) and repeats the measuring until the average value achieves a specified 

error. The power consumption of a particular operator (operator) is obtained by dividing the obtained 

measurement by the number of repetitions.  

A similar approach was used to assess the power consumption of the mote’s resources (e.g., radio 

and LEDs).  However, in this case a simple application was executed with and without the particular 

resource active (on). The difference between both power consumption measurements is the resource’s 

power consumption. 

4.2. Application 

As the focus of this paper is to evaluate the application, we have implemented five nesC 

applications and generated their respective CPN models using the nesc2cpn. These applications have 

the following characteristics: an application only containing nesC statements (see Section 3.1.1), more 

specifically this application (named App1) calculates the average of five numbers; an application that 

has one invoke to collect the temperature, which is a typical WSN application (named App2); an 

application that uses a selection statement (see Section 3.1.2) for aggregating sensed values (named 

App3); an application that calculates the average of five sensed values (similar to App1), but used 
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together an iteration statement (named App4); and an application that collects the temperature and 

sends it to another sensor node  (named App5). 

We evaluated a small piece of code of App1 to App4 and an entire application was evaluated in 

App5. These applications serve to show how the tool and proposed model are flexible in such way that 

they can be used to evaluate a small piece of code or an entire application. Prior to present the 

evaluation itself, it is worth introducing the stopping criteria adopted in the simulations. 

4.2.1. Stopping Criteria 

The simulation of proposed application models is steady-state and takes a long duration. In practice, 

it is necessary to define a criterion to stop the simulation. The batch means is one of the best solutions 

to solve this problem and is widely adopted.  

The batch means divides the simulation parts (called batch) with similar sizes. Next, it computes the 

average of each batch and constructs a list (called batch means) with theses averages. We can 

determine the error of the simulation through batch means. The error is calculated with the  

following equation: 

   
            

  
  (1) 

where t is the value of the T-Student distribution with degree of freedom K-1 and level of confidence 

(defined by user) equal to 1-α, k is the size of the batch means and S is the standard derivation of the 

batch means. We compare the error of the batch means (E) with a value defined by the user, called 

―max error‖. The simulation stops when E is less than or equal to the max error. 

4.2.2. Result 

The first nesC application (App1) is showed in the following:  

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

implemention { 

  int8_t mean = 0, a = 8, b = 16, c = 32, d = 64, e = 127; 

 

  event void Boot.booted(){  

    call Timer.startPeriodic( 100 ); 

  } 

 

  event void Timer.fired(){             //start measure 

    mean = ( a + b + c + d + e ) / 5; 

  }                                     //end measure 
} 

This application would have only one assignment command (see Section 3.1.1). However, its power 

consumption would be equal to an application without any command. This occurs because as the 

variable will not used in the program (as the program has only one assignment), the compiler performs 

an optimization and discards this assignment in order to reduce the power consumption. Hence, the 

application App1, whose purpose is to evaluate the assignment command, also includes arithmetic 

operators (+ and /). 

Figure 13 shows the power consumption of App1 trough measurement and simulation. The mean 

difference between simulation and measurement is 0.35%. As the values are very close, we decided to 
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check if those means are significantly different. By applying the hypothesis testing, it returns a p-value 

equal to 0.520920. Hence, we concluded that there is no sufficient evidence to reject that simulation 

and measurement returned different values. 

Figure 13. Power consumption of App1. 

 

The second nesC application (App2) simply collects a temperature: 

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

… 

void readTemperature(){ //start measure 

   call Temp.read(); 

}  

 

event void Tem.readDone(error_t err, float value){ 

  // do nothing 

}                      //end measure 
… 

The initial code of this application is very similar to App1. App2 invokes the command read (3) to 

collect a temperature and the event readDone is triggered when the reading operation terminates, i.e., 

the sensor obtained the temperature. Figure 14 illustrates that the results obtained by measurement and 

simulation are very similar and they have a difference around 0.19%. Additionally, we confirmed that 

they are similar as the hypothesis testing returns p-value equal to 0.8276. 

Figure 14. Power consumption of App2. 

 

App3 has a function that uses three variables for aggregating data along with a selection statement 

(if-then-else): 
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 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

… 

void aggregate(int8_t value){  //start measure 

  total = total + value; 

  size = size + 1; 

 

  if( size == 5 ){ //@0.20 

  mean = total / 5; 

  total = 0; 

  size = 0; 

  } 

}                              //end measure 

… 

The declaration of variables and boot code (1) are similar to App1. The function aggregate(), 

as commonly found in WSN applications, makes a calculation (e.g., average) over obtained measures. 

The statement if-then-else has associated a probability of 20% (//@0.20) because it is executes once 

one in five. 

Figure 15. Power consumption of App3. 

 

The results obtained by simulation and measurement are illustrated in the Figure 15. The mean 

difference between two methods was of 23.30%. Again, we apply the hypothesis testing to them 

(generated p-values equal to 0.115351), which shows that there is not sufficient evidence to assert that 

the methods return different data. 

 

The fourth application, namely App4, is shown in the following:  

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

… 

void mean(){                      //start measure 

  total = 0; 

    for(i = 0; i < 5; i++){ //@5.0 

    total = total + value[i]; 

  } 

  mean = total / 5; 

}                                 //end measure 

Similarly to App1, this program calculates the average of five numbers, but it uses an iteration 

statement (for) to sum them (4-6). Figure 16 shows the power consumption obtained through 

measurement and simulation. In this case, the mean difference is around 3.09% and the hypothesis 

testing returned a p-value equal to 0.072628. Hence, there is no evidence that simulation and 

measurement values are different.  
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Figure 16. Power consumption of App4. 

 

Finally, the last application (App5) collects the temperature and sends it to another sensor node as 

shown in the following:  

 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

implemention{ 

   message_t pckt; msg_t* msg; 

 

   event void Boot.booted(){ 

      msg = (msg_t*) call Packet.getPayload( &pckt , size( msg_t ) ); 

      call RadioControl.start(); 

   } 

 

   event void RadioControl.startDone(error_t e){ 

      call Timer.startOneShot( 100 ); 

   } 

 

   event void Timer.fired(){ 

      call Temp.read(); 

   } 

 

   event void Temp.readDone(error_t e, float value){ 

      msg->error = e; 

      msg ->value = value; 

      call RadioSender.send( BASE_STATION , &pckt , 28 ); 

   } 

 

   event void RadioSender.sendDone(error_t e, message_t p){ 

      call Timer.startOneShot( 100 ); 

   } 

} 

The behaviour of this application consists of turning on the radio in the boot (4–7). When the radio 

is already started, the application collects a temperature (13–15) after 100 milliseconds (9–11). Next, 

the application creates a message and sends it to the base station (17–21). This behaviour is repeated 

each 100 milliseconds (23–25) in a loop. shows the scheduler (see Section 3.3) of App5. 
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Figure 17. module scheduler of App5. 

 

The results obtained by both methods are depicted in Figure 18. The mean difference between them 

was of 6.71%. The hypothesis testing returns the p-value equal to 0.083238. Hence, we can assume 

that, for this experiment, both methods return the same values. 

Figure 18. Power consumption of App5. 

 

The results of the evaluation of these five applications shows that the proposed approach is flexible 

by allowing the evaluation of either an entire application or just a piece of code (function). It is also 

possible to observe that the results obtained by measurement and simulation are very close in all cases. 

Additionally, this test also shows that for more complex codes (which likely consumes more power) 

and for small applications (which likely consume less power) there is no difference between both methods. 

5. Related Work 

In this section, we present and compare existing approaches for evaluating the power consumption 

of WSN applications. These approaches have been grouped considering the artefact available for the 

evaluation (source code, behaviour/states description) and evaluation technique adopted (measurement, 

simulation and analytical modelling). 
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5.1. Measurement 

Hiltunen et al. [2] evaluated the performance and power consumption of the POCOBOS 

middleware through measurement in Imote2. In particular, their objective was to show the impact on 

the middleware in the performance and power consumption.  

Lajara et al. [3] also used the measurement technique, but focused on comparing the power 

consumption of WSN operating systems (e.g., TinyOS, Contiki and others). In order to perform the 

comparison, two motes were used (Tmote Sky and MICAz) and four different applications, 

representing common task (e.g., read a temperature and send this value).   

Chan et al. [1] measured the power consumption of different encryption algorithms (e.g., RC5, 

RSA) in Mica2. They created an application that encrypts a message and send it. The resulting power 

consumption is obtained by adding the CPU’s power consumption (to execute the algorithm) and the 

power consumption due to the message transmission (to send the encrypted message).   

In all cases, the aforementioned approaches need to assembly an environment to perform the 

measurements: (1) the application, middleware or operating system code (2) the WSN motes (e.g., 

IRIS, MICAz) to deploy the programming code; (3) the power supply (e.g., Icel Manaus PS-1500) to 

maintain the constant voltage of the WSN mote; (4) one oscilloscope (e.g., Agilent DSO3102A) to the 

measurement data; and (5) one program that collects data from the oscilloscope (e.g., AMALGHMA). 

One initial limitation of measurement approaches is the setting-up of the environment that is composed 

by several elements. Additionally, WSNs are usually composed by thousands of nodes and it is usually 

unfeasible to measure the power consumption of individual nodes.   

5.2. Simulation 

Simulation approaches mainly focus on defining and simulating models of architectures (hardware 

platform), operating systems and applications. AVRORA [29] provides a cycle-accurate model of the 

MICA mote family and has been used to evaluate the power consumption of MICA and MICA2 

hardware platforms. 

While some simulations are related to a specific mote or mote family, Somov [30] presents a 

simulation framework to estimate power consumption of WSN applications for arbitrary hardware 

platforms. This framework describes the possible states of each component (e.g., memory and radio) 

separately and each state has the energy consumption and performance associated. A set of these 

components represents a particular hardware platform. 

The need of both evaluating new operating systems and testing real-code applications before their 

deployment motivated the appearance of operating system emulation environments [31]. A well-

known example is the TOSSIM [32] simulator for TinyOS. Its main propose is to execute TinyOS 

applications without their deployment in actual WSN nodes. TOSSIM ignores some hardware 

behaviours like interruptions of the CPU.   

Unlike the aforementioned approaches that simulate directly the programming code, existing 

researches also concentrate on defining behavioural models of WSNs. Shareef and Zhu [33] use 

Deterministic and Stochastic Petri Nets (DSPNs) to model the behaviour of IMote2’s CPU and radio. 

Each place represents a state of the processor or the radio. The number of tokens present in each place 
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at the end of simulation represents the time spent (in percentage terms) in that state. To find out the 

consumption of each state, it multiplies the amount of tokens by the average power consumption of the 

respective state. NS-2 [34] and OPNET [35] are well-known simulators that may be used to evaluate 

the power consumption of WSNs.  

Most of these applications are strongly coupled to a particular hardware platform, which makes 

difficult the adoption of the same approach for different WSN motes. In particular, our solution 

facilitates the evaluation of new platforms, as the presented models are generic and only need to be 

configured to a particular mote. Another advantage of the proposed approach is the generation of 

power consumption results from a programming language code in an automatic way.  

5.3. Analytical Modelling 

Current approaches that use analytical modelling focus on the evaluation of WSN networks and not 

in WSN applications: Shinghal et al. [18] estimated the lifetime of particular WSN motes developed 

by them; Rusli at al. [36] evaluated the performance of the Opportunity Routing (OR) protocol [37]; 

Manjeshwar et al. [38] modelled, evaluated and compared the energy consumption of two protocols, 

namely LEACH [39,40] and APTEEN [41]); Sahota et al. [42] proposed and evaluated a new MAC 

protocol name DS-MAC [43]; and Cano et al. [44] verify the benefits (overhearing and collision) of 

Low Power Listening (LPL) [45] of MAC protocols. 

6. Conclusions and Future Work 

This paper presented an approach for evaluating the power consumption of WSN applications 

through simulation. The proposed approach consists of a set CPN models that represents the power 

consumption of nesC operators, which are assembled together to model the power consumption of the 

whole application. Basic in this strategy is the development and implementation of the nesc2cpn 

translator that is responsible for both generating the CPN models and evaluating their power 

consumption by interacting with the CPN Tools. 

The main contribution of this paper is the proposition of an approach that automatically generates 

the power consumption of a WSN application straight from its nesC code. By composing the proposed 

CPN models, the translator is able to generate function and application models that allow a fine and 

coarse grained power consumption evaluation of WSN applications. The proposed models and the 

translator were evaluated in such way that the power consumption results obtained through simulating 

the generated models and actual measurement were very similar and it was not possible to make 

distinction between them. 

We have now started to solve the limitations of the model (e.g., asynchronous codes) and to extend 

the proposed solution in order to allow the power consumption evaluation of wireless sensor networks 

(e.g., thousands of WSN nodes, network protocols and lower power listening) using the generated 

application models. Due to the possible increase in the size of simulation models, the implemented 

tools are now being migrated to a cloud computing environment with a greater processing power. 

Finally, a nesC editor is now being developed and integrated into the proposed translator to allow a 

power aware development of WSN applications. 
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