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Abstract: Isocontour mapping is efficient for extracting meaningful information from a 
biomedical image in a topographic analysis. Isocontour extraction from real world medical 
images is difficult due to noise and other factors. As such, adaptive selection of contour 
generation parameters is needed. This paper proposes an algorithm for generating an 
adaptive contour map that is spatially adjusted. It is based on the modified active contour 
model, which imposes successive spatial constraints on the image domain. The adaptability 
of the proposed algorithm is governed by the energy term of the model. This work  
focuses on mammograms and the analysis of their intensity. Our algorithm employs the  
Mumford-Shah energy functional, which considers an image’s intensity distribution. In 
mammograms, the brighter regions generally contain significant information. Our approach 
exploits this characteristic to address the initialization and local optimum problems of the 
active contour model. Our algorithm starts from the darkest region; therefore, local optima 
encountered during the evolution of contours are populated in less important regions, and 
the important brighter regions are reserved for later stages. For an unrestricted initial 
contour, our algorithm adopts an existing technique without re-initialization. To assess its 
effectiveness and robustness, the proposed algorithm was tested on a set of mammograms. 

Keywords: biomedical image processing; active contours; level sets; contour map; 
Mumford-Shah energy functional; level set evolution without re-initialization; initial 
contour problem; local optimum problem 
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1. Introduction 

The extraction of meaningful information from images by means of digital image processing 
techniques is an important task in many application domains. To identify significant information in an 
image, one can exploit distinctive features of objects (e.g., shape, location, margin) and uncover 
significant regions or patterns by analyzing the topological and geometrical properties of the image.  
In the biomedical sector, medical imaging techniques, such as X-rays, magnetic resonance imaging 
(MRI), and tomography are used to visualize internal structures of the body. Medical images, such as 
mammograms, have inherently complex and variable features with blurred object boundaries, which 
make the use of explicit features of objects in image analysis difficult. Hence, image analysis methods 
based on isocontour mapping are better suited to complex medical images as mentioned below. 

Meaningful information can be extracted efficiently from a digital image on an isocontour map. In 
biomedical image processing, isocontour mapping is used extensively to perform the topographic 
analysis of medical images. An isocontour map consists of a set of curves of equal value (e.g., height 
or intensity). Analyses based on isocontour maps can provide the association between image inclusions. 
They detect a region of interest (ROI) by analyzing the correlation (or the enclosure relationship) 
between objects. ROI analysis that highlights suspicious regions in medical images is an essential step 
in computer-aided diagnosis systems. Thus, isocontour maps can provide a robust topographic 
representation of medical images for ROI analysis [1]. 

To our current knowledge there is no deterministic way to find parameters like the number of 
quantization levels (contour interval and the difference in elevation between successive contours) that 
yield the best results for isocontour generation. However, the determination of contour generation 
parameters is an open question and adjustable. Hong and Sohn [1] proposed a multiscale approach for 
ROI segmentation, which extracts isocontours at multiple scales and analyzes mammographic features 
in a hierarchical manner from a coarse scale to a fine one. This multiscale approach was necessary 
because the information provided by isocontour maps with fixed parameters was sometimes either too 
excessive or scarce due to varying image conditions. This paper aims to produce an adaptive contour 
map that provides “not too much and not too little” information by adapting active contours spatially 
during the curve evolution. 

A number of active contour models have been developed. Kass et al. [2] proposed a successful 
method based on variational and partial differential equations (PDE), the well known active 
contour/snake model, to extract interesting objects in an image. Various active contour models and 
enhanced versions are employed in various image processing applications, as well as medical images. 
The active contours are represented as parameterized curves in a Lagrangian framework [2] and the 
implicit curves are given in an Eulerian framework [3–6]. 

Geodesic active contour (GAC) models in [3,4] are geometrically intrinsic and embed the level set 
function [7], which involves the representation of the implicit curve. The curve evolution with the level 
set function naturally splits and merges the contours during the evolution, and therefore automatically 
handles topological changes. The curves evolve based on the minimization of the energy functional 
from the image, the curve, and the level set function. Energy functionals are used in the energy of  
edge-based model [2–5] and the region-based model [6]. 
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The classical active contour model [2–8], which detects objects in an image, starts with a given 
initial contour and performs the curve evolution to find the optimal contour. In the algorithm for 
adaptive contour mapping proposed in this paper, the initial contour divides the image domain into 
sub-regions in which a new optimal contour is found. In subsequent iterations, the contour would have 
a different spatial domain from that of the previous contour. This domain segmentation (or the curve 
evolution) is repeated until the stopping criterion is met, thereby creating an adaptive contour map of 
the image. The adaptability of the proposed algorithm is governed by the energy term of the active 
contour model, so it is important to employ one that is both effective and reliable. 

The proposed algorithm for adaptive contour mapping is based on two previous active contour 
models: active contours without edges (ACWE) and level set evolution without re-initialization 
(LSEWR). From the ACWE concept, we used force image terms to get regional information, whereas 
in LSEWR we selected penalizing terms to eliminate re-initialization. The ACWE model proposed by 
Chan and Vese [6] considers the intensity distribution of an image to establish an optimality criterion 
for segmenting the image into sub-regions; therefore, it is suitable for use in analyzing mammographic 
intensities. The ACWE model finds an optimal partition from the energy of a region in an image that 
has a weak edge and heavy noise. The ACWE method converges relatively faster than edge based 
active contours [2–5] because the merging of similar regions occurs broadly while contours move 
narrowly. The level set function partitions a region into an inside and outside of a zero level curve. An 
extension of the ACWE model is proposed for a multi-phase segmentation. Vese and Chan [8] 
proposed the multi-phase segmentation model with n level set functions. This method always presents 
2n regions from the combination of each phase by level set functions. The curve evolution with the 
level set function requires costly re-initialization because the level set function deviates from a signed 
distance function (SDF) in each evolution. Li et al. [5] proposed the LSEWR model, which consists of 
an internal energy term that penalizes the deviation of the level set function from an SDF, and thus 
eliminates re-initialization. 

Our algorithm is designed with a similar manner of isocontour mapping to detect an arbitrary 
number of contours for spatial adaptive isocontour mapping. The existing multi-phase method, which 
detects contours at multiple level sets, always produces 2n regions. This indicates that many 
insignificant features might be included in the contour map, thereby influencing the image analysis 
results. Our approach divides a region into two sub-regions using the base contour. It then divides one 
of the segmented sub-regions into two sub-regions in successive iterations. The proposed algorithm 
detects sub-regions by minimizing the new energy model, restricting it to the characteristic function of 
a base sub-region. The iterative segmentation process automatically terminates when the stopping 
criterion is met. Note that only one of the two sub-regions is further segmented in successive iterations. 
This is associated with the characteristics of the mammographic image in addition to problems in 
initialization and local optimum of the active contour model. 

In mammograms, bright regions contain information that is more significant (e.g., candidate masses). 
Our algorithm takes advantage of this mammographic characteristic to address the problems in 
initialization and local optimum of the active contour model. That is, the proposed algorithm starts 
with the initial contour found in the darkest (low intensity) region so that the local optima encountered 
during the contour evolution is placed in less important low intensity regions. In terms of initialization, 
this enables the our approach to start its operation with an initial contour in the darkest region of the 
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2. Active Contours 

Active contours are a core component of computer vision and medical imaging, and they can be 
divided into three areas: boundary driven, region driven, and hybrid contours that combine the boundary 
and region driven areas. 

Malladi et al. [4] presented an approach to shape modeling in which a speed term synthesized from 
the image is used to stop the contour near object boundaries. They used geometric flows for boundary 
extraction in which distance transforms were used as embedding functions. Caselles et al. [3] proposed 
a geodesic approach for object segmentation, which allows connecting classical “snakes” based  
on energy minimization and geometric active contours based on the theory of curve evolution. 
Paragios et al. [9] proposed an edge-driven bidirectional geometric flow for boundary extraction. They 
combined the geodesic active contour flow and the gradient vector flow external force for snakes. The 
resulting motion equation is considered within a level set formulation that can deal with topological 
changes and important shape deformations. Weickert et al. [10] presented fast algorithms based on the 
semi-implicit additive operator splitting (AOS) scheme for both geometric and geodesic active  
contour models.  

In 2001, Chan and Vese [6] proposed a new model for active contours to detect objects in a given 
image, based on the techniques of curve evolution, Mumford–Shah functional for segmentation, and 
level sets. Their model can detect objects whose boundaries are not necessarily defined by gradients.  
We minimize an energy that represents a particular case of the minimal partition problem. In the level 
set formulation, the minimal partition problem becomes evolving the active contour, which will stop at 
the desired boundary. However, unlike the classical active contour models, the stopping term does not 
depend on the gradient of an image, but instead is related to its homogeneity. Paragios et al. [11] 
introduced a frame partition paradigm within the level set space, which can account for boundary and 
global region-driven information. In 2005, Li et al. [5] presented a new variational formulation for 
geometric active contours, which forces the level set function to be close to a signed distance function, 
thus eliminating the need for the costly re-initialization procedure. 

Vese and Chan [8] proposed a new multi-phase level set framework for image segmentation using 
the Mumford and Shah model for application in piecewise constant and piecewise smooth optimal 
approximations. The proposed method is also a generalization of an active contour model without 
edge-based two-phase segmentation. They introduced classifications according to a combination of all 
level sets at a given pixel. Cremers et al. [12] presented a novel variational approach for segmenting 
the image plane into a set of regions of piecewise constant motion based on only two consecutive 
frames from an image sequence. They proposed the implementation of this functional using a  
multi-phase level set framework. Minimizing the functional with respect to its dynamic variables  
results in an evolution equation for a vector-valued level set function and an eigenvalue problem for 
motion vectors. 

Our algorithm is performed in such a way that it partitions an image into two sub-regions. One of 
the sub-regions is then iteratively partitioned into two more sub-regions. The sub-regions are determined 
by the minimization of a new energy model restricted to a characteristic function of a sub-region, and 
no re-initialization is needed. Our method segments the image into any number of regions, and the 
process automatically terminates at the stationary solution. In this paper, the proposed approach is 
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( )
0

( ) ( )

: 1

k kM x H x

M

ϕ⎧ = −⎪
⎨

Ω →⎪⎩
 (7)

The energy of sub-region kw  only affects E by the region restriction function kM , which is 
calculated from kϕ . The weighted arc length functional Lg with univariate Dirac Delta function 

Hδ ′=  in the level set method [7] is: 

( ) ( ) | |gL g dxφ δ φ φ
Ω

= ∇∫  (8)

where the edge indicator function g  is a positive and strict decreasing function. For example: 

2

1
1 | |

g
I

=
+ ∇

 (9)

The zero level curve C is driven into a smooth curve from a complicated curve to minimize the 
functional Lg. By the level set method, the weighted area functional Ag is expressed as: 

( ) ( )gA gH dxφ φ
Ω

= −∫  (10)

The small energy of Ag accelerates the curve evolution. By definition, an SDF satisfies a desirable 
property | | 1I∇ = . Li et al. [5] proposed the functional: 

( )21( ) | | 1
2

P dxφ φ
Ω

= ∇ −∫  (11)

as a metric. The functional P  characterizes how close a function φ  is to an SDF. The energy 
functional ( )gA φ  in Equation (10) is introduced to speed up the curve evolution. Note that when the 
function g is constant 1, the energy functional in Equation (10) is the area of the region 

{ | ( ) 0}x xφ φ−Ω = <  [13]. The energy functional ( )gA φ  in Equation (10) can be viewed as the weighted 
area of φ

−Ω . The coefficient v  multiplying ( )gA φ  can be positive or negative, depending on the 
relative position of the initial contour to the object of interest. For example, if the initial contours are 
placed outside the object, the coefficient v  in the weighted area term should take a positive value to 
allow the contours to shrink more quickly. If the initial contours are placed inside the object, the 
coefficient v  should be negative to speed up the contours’ expansion. 

For the minimization, it is necessary to find the zero point of differentiation of the functional

1 2( , , )E c c φ . By the calculus of variations [14], the Gateaux derivative (first variation) of the functional 

1 2( , , )E c c φ in Equation (4) can be written as the gradient flow: 

( ) ( )2 2
1 1 2 2( ) ( )

| |

0 
| |

k kQ I c M I c M div g vg

div

φφ δ φ λ λ μ
φ

φα φ
φ

⎡ ⎤⎛ ⎞∇− = − − − − + +⎢ ⎥⎜ ⎟∇⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∇− Δ − =⎢ ⎥⎜ ⎟∇⎝ ⎠⎣ ⎦

 (12)

where Δ is the Laplacian operator. Therefore, the function φ , which minimizes this functional, 
satisfies the Euler Lagrange equation / 0E φ∂ ∂ = . This gradient flow is the evolution equation of the 
level set function in the proposed method. The first and second terms on the right hand side of 
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Equation (12) correspond to the energy functional F1 and F2, which partitions a region inside and 
outside of the zero curve C based on the energy functional values. The third and the fourth terms 
correspond to the gradient flows of the energy functionals ( )gLμ φ  and ( )gvA φ , respectively, and are 
responsible for driving the zero level curve towards the object boundaries. The fifth term, which is 
associated with the penalizing energy ( )Pα φ , represents the gradient flow: 

11
| | | |

div divφφ φ
φ φ

⎡ ⎤⎛ ⎞ ⎛ ⎞∇Δ − = − ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∇ ∇⎝ ⎠ ⎝ ⎠⎣ ⎦
 (13)

which has the factor ( )1 1/ | |φ− ∇  as the diffusion rate. If | | 1φ∇ > , the diffusion rate is positive and the 
diffusion affects φ , and therefore closer to the desirable property | | 1φ∇ =  of SDF. If | | 1φ∇ < , the 
term acts as a reverse diffusion. 

A classic iterative process to minimize the functional E is the following gradient flow with an 
artificial time t: 

( 0) 0

( )

t

Q
t

φ φ
φ φ

= =⎧
⎪
⎨∂ =⎪ ∂⎩

 (14)

where 0φ  is the initial level set function. The means 1c  and 2c  of regions 1kw +  and 1kw +  are calculated 
from the mean of intensity values on image I  with restriction of level set function φ  on the sub-region 

kw  and expressed by: 

1

( ) ( ( )) ( )
( )

( ( )) ( )

k
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c

H x M x dx

φ
φ

φ
Ω

Ω

=
∫

∫
 (16)

If one of the sub-regions 1kw +  or 1kw +  is empty, then the formulation degenerates, and therefore the 

algorithm automatically terminates. Finally, the principal steps of the algorithm are: 

• Initialize 0k =  
• Compute kM  by Equation (7) and initialize φ  by 0φ  
• Solve the PDE for φ  with Equation (14) to obtain 1kϕ +  
• Check whether the solution is stationary. If not, 1k k= +  and repeat from step 2 

In this paper, we note that the stationary problem obtained directly from the minimization problem 
could also be solved numerically using a similar finite difference scheme. 
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4. Experimental Implementation Section 

4.1. De-Noising Image Field 

Medical images are affected by artifacts due to device noise and inhomogeneities in the body. The 
noise affects the segmentation process. The noise changes the mean of a region and behaves like a 
strong edge. We use an image de-noising technique to reduce the interference of noise. In Rudin, 
Osher, and Fatemi (ROF) [15] their famous denoising model was based on total variation minimization 
and PDE. The ROF model preserves the edge while removing the noise. Let Ω be an open set 
representing the image domain and 0I  be a given image. The denoised image I minimizes:  

2
0( ; ) | | | |ROFE I I dx I I dxλ λ

Ω Ω

= ∇ + −∫ ∫  (17)

where a parameter 0λ > controls the balance of minimization between the spatial change term  
on I and difference term to 0I . We diffuse the 0I  by changing λ . The denoised image I is obtained 
using the gradient decent with the Euler-Lagrange equation, which is the minimization condition of 
Equation (17). 

4.2. Numerical Scheme 

In our work, the Dirac function ( )zδ  and the Heaviside function ( )H z  used in Equations (12), (15) 
and (16) are the smoothed versions of the Dirac function and the Heaviside function over the entire 
region. The approximations ( )H zε  and ( )zεδ , as proposed in [6], are: 

1 2( ) 1 arctan
2

zH zε π ε
⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (18)

2 2( )
( )

z
zε

εδ
π ε

=
+

 (19)

We use the regularized Dirac ( )zεδ  and the Heaviside ( )H zε  with 1.5ε =  for all the experiments 
in this paper. All the spatial partial derivatives /d dxφ and /d dyφ  are approximated by forward, 
backward, and central differences. The characteristics of the term indicates whether to use a forward, 
backward, or central difference method should be used for φ . In numerical implementation, we try to 
use each element of φ  equally. The forward difference ,x yD D+ + , the backward difference ,x yD D− −  and 
the central difference ,c c

x yD D  for φ  can be computed as follows: 
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(20)

where the indices of φ  denote the coordinate of the image domain. Computing x  and y  components 

xN  and yN  of term { }/ | | ,x yN Nφ φ∇ ∇ =  is shown below: 



Sensors 2013, 13 3734 
 

 

( ) ( ) ( ) ( )2 2 2 2
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φ φ ε φ φ ε
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+ + + +
 (21)

where dε  is a small constant value to prevent dividing-by-zero and ,x yD D are difference operators. 
The divergence of / | |φ φ∇ ∇  in Equation (12) is approximated by:  
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 (22)

The Laplacian operator has been implemented in a similar manner. 

4.3. Selection of Time Steps and Other Constants 

In our experiments, we choose the following parameters: 1 2 100λ λ= = , 2200 / 255μ = , 0v = , 
0.2 /α τ= , 1τ =  where τ  is a time step in the numerical implementation of Equation (14). We know 

that the time step τ  and the coefficient α  must satisfy 1/ 4τα <  to maintain stable level set  
evolution [5]. Using a larger time step can speed up the curve evolution, but may cause errors in the 
boundary location if the time step chosen is too large. There is a tradeoff between choosing a larger 
time step and accuracy in boundary location. In our case, we use 0.2τα = . 

4.4. Initialization of Level Set Function 

In outmoded level set methods, it is essential to initialize the level set function φ  as an SDF 0φ . If 
the initial level set function is expressively different from a signed distance function, then the  
re-initialization schemes are not able to re-initialize the function to a signed distance function. In our 
formulation, not only is the re-initialization procedure eliminated, but the level set function φ  also no 
longer requires initialization as a signed distance function by the penalizing energy in [5]. We propose 
the following functions as the initial level set function 0φ , where the denoised image ( )I x  and ( )kM x  
is the calculated value of mask for every calculated 1kϕ +  value, that is, for every evolved level set 
function. Performing from the lowest intensity region, the initial level set function 0φ is defined as: 

{ }
0

for ( ) 0 or ( ) min ( ) | ( ) 1
( )

otherwise

k kM x I x I x M x
x

ρ κ
φ

ρ

+ = < = +
=

−

⎧⎪
⎨
⎪⎩

 (23)

where 0ρ >  is a constant and 0κ >  is a small constant. In this section, we use 0φ  with 4ρ ε=  and
1κ = . By definition, this initial level set function 0φ  takes only two values: 4ε− and 4ε . 
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5. Results and Discussion 

The proposed multi-phase segmentation algorithm has been applied to synthetic and real 
mammographic images from the mini-MIAS database [16]; the range of intensity in all images is 
represented from 0 to 255 and the images are 1,024 × 1,024 pixels in size. We show the approximated 
circle enclosing the abnormality from the database, and the two-phase segmentations in each pass k  of 
Equation (3) with a number of iterations of Equation (14). 

In Figures 4 and 5, we illustrate the result of real mammographic images and the approximated 
region of abnormality from the database. As represented, the proposed algorithm partitions the images, 
including weak and blurred edges. The recursive segmentation on the higher intensity region finely 
segments the region. In Figure 5, we consider a more difficult case, which is an abnormality region in a 
high intensity region. Our algorithm reduces the number of contours in the map from an average of 
206 contours to 11 contours. 

Figure 4. The mini-MIAS database of mammogram number 028. (a) The approximated 
region of abnormality from the database. (b) Contour 1 after 9 iterations of (14).  
(c) Contour 2 after 7 iterations. (d) Contour 3 after 7 iterations. (e) Contour 4 after 12 
iterations. (f) Last contour 5 after 17 iterations. (g) Final contour map. 

  
(a) (b) (c) 

 
(d) (e) (f) (g) 
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Figure 5. The mini-MIAS database of mammogram number 063 (a) The approximated 
region of abnormality from the database. (b) Contour 1 after 8 iterations of (14). (c) 
Contour 2 after 12 iterations. (d) Contour 3 after 9 iterations. (e) Contour 4 after 11 
iterations. (f) Last contour 5 after 12 iterations. (g) Final contour map. 

  
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 6 shows the segmentation results of each pass on a synthetic image with 5% uniform noise. 
The red regions represent the inside partition, and the other regions indicate the outside partition. Each 
two-phase segmentation pass is converged after a number of iterations of Equation (14). The proposed 
algorithm works well on sharp-edged objects. 

Figure 6. Results of a synthetic image with 5% uniform noise. (a) Contour 1 after  
3 iterations of (14). (b) Contour 2 after 7 iterations. (c) Contour 3 after 7 iterations.  
(d) Contour 4 after 7 iterations. 

 
(a) (b) (c) (d) 
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4. Conclusions 

This paper presents an adaptive contour map that captures topographic information in mammograms 
characterized by blurred object boundaries. The proposed multipass active contour algorithm for 
adaptive contour mapping is based on the two-phase piecewise constant segmentation model (ACWE) 
proposed by Chan and Vese [6] and the variational level set formulation of curve evolution without  
re-initialization (LSEWR) proposed by Li et al [5]. Our algorithm performs spatial segmentation 
iteratively to find the optimal contours. It starts with the initial contour selected in the darkest region of 
a mammographic image so that the brighter regions of the image can be segmented and analyzed in a 
more refined way at later stages. The proposed algorithm provides an optimized topographic 
representation of mammograms that can increase the computational efficiency and accuracy of  
the analysis. 

Our algorithm produces an arbitrary number of regions, and it automatically terminates when its 
stopping condition is met. The proposed algorithm was tested using synthetic and real mammographic 
images that include masses varying in size and subtlety. The experimental results showed that our 
approach yields an accurate contour map of both distinctive and subtle masses in mammograms. It also 
successfully produced an adaptive contour map in synthetic images that have relatively clear edges. 
The experimental results show sensitive segmentation on the important region as well as intuitive 
segmentation structure. 
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