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Abstract: A unitary transformation-based algorithm is proposed fop-tlimensional
(2-D) direction-of-arrival (DOA) estimation of coherenfgsals. The problem is solved
by reorganizing the covariance matrix into a block Hankeé dar decorrelation first
and then reconstructing a new matrix to facilitate the upitdbansformation. By
multiplying unitary matrices, eigenvalue decomposition &ingular value decomposition
are both transformed into real-valued, so that the comjomi@tcomplexity can be reduced
significantly. In addition, a fast and computationally attive realization of the 2-D
unitary transformation is given by making a Kronecker prdaof the 1-D matrices.
Compared with the existing 2-D algorithms, our scheme isen@dficient in computation
and less restrictive on the array geometry. The procesdirtheoreceived data matrix
before unitary transformation combines the estimationigia parameters via rotational
invariance techniques (ESPRIT)-Like method and the foaweackward averaging, which
can decorrelate the impinging signals more thoroughly.ufation results and computational
order analysis are presented to verify the validity andotiffeness of the proposed algorithm.
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1. Introduction

Two-dimensional (2-D) direction-of-arrival (DOA) estita@n of coherent signals has received much
attention in many applications, such as radar, wirelessnmonication and sonar in the multipath
environment I-5]. There are several high resolution techniques proposedlt@ the rank deficiency
of spatial covariance matrix caused by the presence of eaohsrgnals. The conventional solution to
this problem is the spatial smoothing meth&/], which partitions the original array into a series of
overlapping subarrays. Although it is efficient to decatelthe incoming signals, peak searching of the
spectrum in a 2-D space is required, which costs a large aned@omputations. In order to reduce the
computational complexity, an efficient method is perforrogdHua [B]. This method, called the matrix
enhancement and matrix pencil (MEMP) algorithm, explditsstructure inherent in an enhanced matrix
from the original data. It estimates the azimuth and elevageparately in each dimension and combines
them using a pairing method. However, the pairing resulbisatlways correct when there are repeated
parameters. Fortunately, a modified MEMP (MMEMP) meth@jdq proposed to successfully solve the
pairing problem.

In order to decorrelate the coherent signals thoroughtgny, Haret al. [10] proposes an estimation
of signal parameters via rotational invariance technig#3PRIT)-like algorithm for coherent DOA
estimation. By reconstructing a Toeplitz matrix from the&eance matrix, this approach can decorrelate
the impinging waves thoroughly. Inl]], Chen extends it to the 2-D situation, namely the 2-D
ESPRIT-like method, in conjunction with the MMEMP methodhieh outperforms the spatial
smoothing method significantly in terms of the estimatiocuaacy. Although there is no peak searching
existing in this algorithm, the computational burden idl $teavy, due to the complex eigenvalue
decomposition (EVD) and singular value decomposition ($Wivolved.

In this paper, we present a 2-D unitary ESPRIT-like (2-D UR8PFlike) algorithm to reduce the
computation complexity. Based on the block Hankel matrixaoted from [L1], we preprocess it
through a forward-backward average-like method convefegrunitary transformation. It can therefore
transform the complex computations into real-valued ondgaovide significant computational savings.
The following DOA extractions are achieved simply by the-aliensional (1-D) unitary ESPRITLY],
avoiding the computations of 2-D matrices. Simulation hsswill show that the real computations
required for our new algorithm are much less than that of t#ie RESPRIT-like method. It becomes
especially obvious when the dimensionality of the Hankelrim&ends to be large. We also show that
the variance of the estimates from our proposed method g dio the Cramer-Rao bound, and the
resolution ability is superior to the others for the forwdnackward average processing.

2. Background

2.1. Sgnal Model for URA

ConsiderK narrowband, far-field and coherent radiating sources wéthehkength\ impinging on a
URA of N x M identical and omnidirectional sensors with interelemeaicéng,d, = d, = /2. Using
analytic signal representation, the received signal atithe:)th sensor can be expressed pij:
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K
T (t) =D k(0B ™™ + N (1) (1)
k=1
wheres,(t) is the complex envelope of thigh wavefront,(5;, vi) = (el™ @k costk oimsindesindi) gnd
¢ andd, are the elevation and azimuth angles of ktiesource, respectively, and ,,,(¢) is the additive
spatially white noise with variance?. Figurel shows the sensor-source geometry configuration in the
2-D scenario. For simplicity, we define:

Uy, = 7 sin ¢y, cos 0, andwvy, = 7 sin ¢y, sin 6y, (2)

Figure 1. Sensor-source geometry configuration for 2-D directiofwival (DOA)
estimation.

Therefore, (S5, v.) can be expressed ds“*, ¢/*+) . Rewriting Equation 1) in vector notation,
we get:

x(t) = As(t) + n(t) (3)
wherex(t) is the NM x 1 the data vector:

Qﬁ(t) = [ZL‘070(t), ey ZL‘Q7M_1(t), ey

Tn_1,0(t), .., fol,Mfl(t)]T

s(t) isthe K x 1 signal vector:

AistheNM x K steering vector matrix:
A= [al, ey G,K]
with a;, as theN M x 1 steering vector of théth source:

—(N—-1 —(M—1
ap=11,...8; VT, ..y MY
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andn(t) isthe NM x 1 noise vector:
n(t) = [n070(t), ey ’fLoval(t), ey
ny_1,0(t), s nv—1,a—1 ()]

Here. we denoté- | as the transpose amdas the Kronecker product.
From Equation3), it follows that the covariance matrix of the received sigis given by:

R, = E[z(t)xz(t)""] = AE[s(t)s" (t)|A"™ + E[n(t)n" ()] 4)

whereE| - ] denotes the expectation and! represents the complex conjugate transpose.

According to the derivation in1[1], the element ofR,, for example, the cross correlation of the
signals received at th:, m)th and(p, ¢)th sensor fom,p = 0,.... N — 1 andm,q = 0,...,M — 1is
given by:

K
70(7/1/7 m;p7 q) = Z de,n,MBl€27]Z2 _'_ O-i(snvpéqu (5)
ko=1
K i} I e : I n=p
wheredy, nm = > -1 Elsk (t)si, (1)]5, "y, With (-)* being the conjugate ang , = . , :
n#p

2.2. Real-Valued Processing for 1-D ULA

As the real-valued processing with a uniform linear arralzAlUprovides the important preliminary
knowledge to our new algorithm, we give a quick review of thefirdtion of the unitary matrix
and the real-valued processing based on it, which have bédiywsed in certain kinds of unitary
transformation algorithms 1R,13] etc.). Suppose there are only sensors located on theaxis; left
in Figurel. N is odd, and the center of the ULA is the reference. The DOA efititoming signal is
denoted by(¢, » = 7/2). Then, theN x 1 steering vector of ULA can be written as:

@) =[e ™ 2T 1, e T

(6)
which is conjugate centro-symmetric. Such a property caexpeessed mathematically as:
IIya(f) = a* ()

wherelly is the N x N exchange matrix with ones on its antidiagonal and zerosvekses:

[0 0 ... 0 1]
00 ...10
Iy = :
0
-1 - 0 - NxN.
Define
I¥ 0 JI¥
UN—L2 of v2 0" (7)
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as the 1-D unitary matrix. By multiplying it, the elementsi(¥) can be transformed into real quantities,
such that:

Ula()
= V2[cos((N — 1) cos(#)/2), ..., cos(m cos ),
1/v2, ..., —sin((N — 1)m cos(8)/2),
..., —sin(7 cos 0)]* (8)

If N is even, a similar result can be obtained using:

Uy =~ [I ©)

=

w|Z N
1o
um|2
z

| S

3. Proposed Algorithm

3.1. Sgnal Decorrelation

The proposed method is developed in the 2-D scenario, wlaslblen introduced in Section 2.1. In
order to resolve the rank deficiency problem caused by saptarency, we first construct the following
Hankel matrix from Equatiorg] [11]:

r(n,m;p,O) T(Tl,m;p,l) T(nvm;vafQ)
r(n,mip,1)  r(n,mip2) .. r(nmp,M—Q+1)
R(n,m;p) = : . :
r(n,m;g.),Q—l) r(n,rr;;p,Q) r(n,m;g;,M—l)

Then arranging a series of the above Hankel matrices intockidankel one, we have:

R(n,m;0) R(n,m;1) ... R(n,m;N—P)
R(n,m;1) R(n,m;2) ... R(n,m;N—P+1)
R(n,m) = : L : (10)
R(n,m;P—1) R(n,m;P) R(n,m;N—1)

The analytic expression d®(n, m) is given by fL1]:

R(n,m) = BD(n,m)B" (11)
where B = [by,...bg] with b, = [1,8...607" @ Ly, ...72 ", D(mn,m) =
diag{d ,m, ..., dic.nm} @A B = [by, ..., b with b, = [1, Bg, ..., BT @ [1, 9k, ..., 7o 9T, It has
been proven thaR(n, m) is full-rank, provided the values df and(@ are selected properly. In this case,
the rank ofR(n, m) equals the number of incoming signals. Therefore, lots g hesolution methods
for 2-D DOA estimation of the uncorrelated or partly cortethsignals can be used.

It should be noted that the following derivation will be parhed under the assumption that there
IS N0 noise existing in the received data, which can be sesn Equation {1). Further study on the
complex situation with spatially white noise will be cadieut in Sectiorb through several simulations.
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3.2. Real-Valued Processing

Although we can apply the eigenstructure techniques toneséi 2-D DOA based on the full-rank
R(n,m), the computational burden is much heavier, because of timplex computations involved in
it. In this note, we develop a 2-D unitary transformation neet to reduce the complex computations to
real ones.

If we premultiply and postmultiplyR(n, m) with unitary matrices directly,R(n, m) cannot be
transformed into real-valued, because the mabij, m) is complex. Therefore, we need to construct
a new matrix associated witR(n, m) before unitary transformation to guarantee this propetigt
us define:

Y =[R(n,m) IIpgR*(n,m)] (12)

Then we have:

Ry = YY"
= R(n,m)R"(n,m) + pg(R(n,m)R"(n,m)) Tpq
= BD(n,m)BTB*DH(n,m)BH+
I1p0B* D" (n,m)B" BD" (n,m)B" I (13)

With the property of the Kronecker produeta, (B ® Bjy) = a3 B1®as B, , wherea; anda; represent
any constant and3,; and B, represent matriced3 can thus be converted into:

B=BC (14)

Furthermore, we have
II,oB* = B'C* (15)

whereC = diag{e/(P~Du+@-Dul/2 " oil(P=Dux+(@-Dvxl/2} ' B" = [b] ..., b}] with b}, = b(u;) ®

B(vp), bluy) = [eIP-Du/2  GP-Du/2T andbv,) = [ @-Dw/2, 6@ Du/2]T B(y,) and

b(v;) are both conjugate centro-symmetric, the same as thersgearctor given by Equatiory.
Substituting Equationdld) and (5) into Equation 13), R, can be rewritten as:

Ry = B'(F + F*)B" (16)

where F + F* is real, with F = CD(n,m)B' B"D"(n,m)C". Compared with Equation,
B’ in Equation (6) can be viewed as a new array response matrix BEng F* as the equivalent
covariance matrix of the incoming signals. Notice that tbki@vement ofRy is consistent with the
forward-backward average processifig,15. Compared withR(n, m), Ry decorrelates the coherent
signals more thoroughly and, therefore, can provide higeBmation accuracy.

Sinceb(u;) and b(v,) in B’ have the similar form as EquatioB)( we can make use of the 1-D
real-valued processing-like Equatio8) o perform the 2-D unitary transformation. Define the 2-D
unitary matrix as:

UP7Q =Up® UQ
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whereU p andU ¢, use the definition of Equation7) or (9). Premultiplying and postmultiplying;- by
Up,, yields:

o =Up,RyUprg (17)
According to the useful property:
A1A, ® BiB, = (A, @ By)(A; @ By) (18)
 becomes:

¢ = (UpeUg)"'B'(F+F)B"(UpxUyp)
= BY(F + F*")B,

with Bl = [(Upb(u1)) ® (Ub(v1)), ..., (Upb(uk)) @ (Ub(vk))]. As the vector in each column of
B!, for examplelU 2b(u, ), satisfies Equatiors], the matrixB,, is real. Combined with the real-valued
F + F*, we can easily deduced thatis real.

3.3. Extracting 5, and

To avoid peak searching, to retain the 2-D DOA estimatiohvahied and reduce the computational
complexity, we develop a simple implement of the 2-D unita§PRIT based on the 1-D solutiotd].

Let eigenvectors associated with thelargest eigenvalues dRy be denoted byE,p, € CPO*K,
Since E,r, and B’ both span the signal subspace Bf-, as Equation¥6) has shown, there exists
a unique, nonsingular matrixI’ € CX*X  such thatE.,z, = B'T. Define E,, = J,E.x,
and E,, = J.E g, as the first and last(P — 1)@, rows of matrix, E,g,, respectively, with
J1 = I (p_1)0,0(p-10x0] @andJ s = [0(p_110x0, I (P-1)0]. Then, replacingZx, by B'T, we have:

E, =J,BT, E,=J,B'T (19)
Observing the structure d8’, we can find that:
J,B' =J,B'Q, (20)

with Q,, = diag{e™, ..., ¢ }. Combined with Equationsl@) and @0), we can write the relationship
betweenFE,, andE ., as:
E,=E,%¥,, where¥, =T"'Q,T (21)

It is clear that¥,, is the total least squares (TLS) solution of Equatidh)( The eigenvalues o¥,, are
equal to the diagonal elements@f,. Thereforeu, corresponding t@, can be extracted by an EVD
of ¥,. In [12], the author has proved that the TLS problem can be solvedigira SVD of E;, E ).
Here, we define:

Up-1)o=Up-1®Ug (22)

By reconstructing the matrixE,;, E,|, and performing the unitary transformation, the TLS prable
can be solved by computing the SVD of the real matrix:

T, =Ulp_y olEa, Eollg]Usk (23)
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with U, defined by Equationd). Note the eigenvectors are associated withAhkrgest eigenvalues
of matrix, ¢, asFE,. From Equation17), we have:

Esgo - UI]-;QESRY (24)

Substituting Equation22@) and @4) into Equation 23) and rearranging it, yields:

1 |Ix jIk
Ty = Ulp_yoJ1UpoEs,. J2UP,QEs<p]ﬁ [HK _jHK]
1

- E[KlEsngQEsgo] (25)

whereK, = U{p_ ) o(J1 + J2)Upg and K, = jU(p_; o(J1 — J2)Upq. Since the computations
of K,, K, require a large amount of multiplies, we intend to simplifeit expressions with lower
dimensions. Let

Jy =T p_1,00p_1)x1] @ndJ} = [0(p_1)x1, I p_1]

which are selection matrices used in the 1-D cd€ [t follows thatJ, = J ®IgandJ, = J5 @ 1.
Using the property Equatiori@), K; can be simply determined by:

K, = (Up,@UQ)J1®@Ig+J,01g)(UpeUg)

whereK'| = UZ | (J| + J,)U p. As [12] stated, the matri¥’, is real. Similarly, we have:
K,=K,®I, (27)

with K, = jUS_,(J| — J5)U p. Therefore, the computations @f, in Equation @5) can be greatly
simplified by using Equation26) and 7).
Denote the right singular vector matrix @f;, by W, and partition it into submatrices:

W, = [wull wu12] c RRKx2K

W21 Wy22
Finally, we get the real-valued TLS solution correspondm@¥,, as:
Tu = —wu12w77212 (28)

To extract the parametey,, we define different’(Q) — 1) rows of E g, asE.,; = J3E g, and
E, = J4E3Rya in WthhJ3 =Ip® Jé andJ4 =Ip® le with:

Iy = [Tg_1,00-1)x1); ) = [0-1)x1Lq-1]
Similar to the derivation of Equatior2{), we have:

E, = E ¥, with¥, =T"'Q,T
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where 2, = diag{e,...,¢’x} and T are the nonsigular matrix in Equatiod9). ¥, is the TLS
solution, which can be obtained by the SVD of real matrix:
T2 - L[I(g.E
V2

whereK; = Ip ® K3, K, = Ip ® K, with:

K4Es<p] (29)

Elep

Ky =Ugq (J5+J)Uq, K} =jUg 1(J5 — J})Uq
Partitioning the right singular vector matrix of the reBl(Q — 1) x 2K matrix T, into a block
one, we obtain:

Wy11 Wy12
W’u _ c R2K><2K
Wy21 W22

Then, it follows that the real-valued TLS solution assamlawith€2, can be computed by:
Tv = —wvlzw;;Q (30)

Employing the existing automatic pairing methddfl 7], the estimatesy; andv,, can be achieved
by computing the EVD of the “complexified” matriX, +jY,. Denote the real and the imaginary parts
of the K eigenvalues aér,; }+_, and{r,; }+_,. The estimation ofi;, andv;, will be:

up = 2arctan(ryg), vy = 2arctan(ryy) (31)
From EquationZ), we can get the final result:

0r = arctan(vg/uy), ¢ = arcsiny/u? + vi/w (32)

3.4. Summary of the Algorithm

The steps of the proposed method are described as follows:

Step 1. ObtainX = [x(t), ..., z(t;)] with x(¢;) as the snapshot at timg,. Then, compute the
covariance matrix approximately &g, = X X' /L with L as the snapshot number.

Step 2. Construct the block Hankel mat#i¥n, m) by Equation 10) to decorrelate the coherency of
signals and obtaifi®y through Equationsl@) and (L3) to facilitate the following unitary transformation.
Then, compute the real-valued matygx= U} , Ry U pq.

Step 3. ComputeE,, as the K dominant eigenvectors op and calculateT’;, T'; through
Equations 25) and @9). Conduct the SVD offl';, T'»; to obtain the right singular vector matrices,
w., W,,and getY,,, T, from Equations28) and B0), respectively.

Step 4. Conduct EVD of the complex-valued matrik, + jX,. Extractu, and v, from the
eigenvalues by EquatioBY). At last, estimat®, and¢; using Equation32).

4. Computational Order Analysis

In the following, we will first derive an estimate of the orddrreal multiplications involved in each
step. Then, we will compare the computational order of ow method, namely the 2-D UESPRIT-like
method, against that of the 2-D ESPRIT-like method.
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4.1. Computational Order of Step 1

Here, we calculateR, by X X"/L with X ¢ CMNxL  The direct computation requires
4 x IMN(MN + 1)L real multiplications.

4.2. Computational Order of Step 2

From Equation13), we can see that to obtafy-, only the computation o, = R(n, m)R" (n,m)
is needed. It is becausd rqR,I1rqp can be achieved by rearranging the elementdpfsimply,
without any multiplication. According to the computatid@aalysis in B], the minimum number of
real multiplications required to compufe, is:

4x 2PQ(N — P/2)(M — Q/2)]

providedP > 1,Q >1,N—-P> 1M —Q > 1.

In this step, we also need to calculate Due to the special structure of unitary matricés;
and Uy, the computation olUpy = Up ® Uy only contains that of the product gfand Uy,.
Therefore, the order of computidgp, is 2¢). For the same reason, the real multiplications involved in
e =Up,RyUpgis:

[PQX%><P+(PQ+4)><%><P]><2:2(PQ)2+4PQ

4.3. Computational Order of Step 3

As ¢ is a real-valued matrix, the number of multiplications reed (based on the symmetric QR
algorithm [18]) for its EVD is:
5(PQ)’ (33)

whenPQ > 1.

The following real multiplications involved in th&, and T, achievement is listed in Tabl&
Denote the total number involved in it &,;. The computational order of SVD is obtained by
the Chan SvVD18§].

Table 1. Real multiplications involved in the computationsYf, and Y ,,.

Real multiplications conditions
K}, K, 2[(P—1)2P + P?(P — 1)) /
K, K, 2PQ(P —1) /
K.\E,,,K>E,, 2PQ*(P-1)L /
SVD of T (2L)2(P —1)Q +17(2L)%/3 PQ > (P -1)Q
Y, L3 /
K} K 21(Q — 12Q + Q*(Q — 1)] /
Ks Ky 2PQ(Q —1) /
K3E,,, K, E,, 2P2Q(Q - 1)L /
SVD of T’y (2L)2P(Q -1)+ 17(2L)3/3 PQ>PQ-1)

Y, L3 /
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4.4. Computational Order of Step 4

In this step, only the EVD of complex-valued matrik,, + jY,, is considered. It requiresx 5L3
real multiplications wherd, > 1.

4.5. Comparison to the 2-D ESPRIT-Like Method

According to the above analysis, the order of computatioesdad by the 2-D UESPRIT-like
method is:
2MN(MN + 1)L+ 42PQ(N — P/2)(M — Q/2)]
+8(PQ)* + 5(PQ)* +20L° + C,
~ A2PQ(N — P/2)(M - Q/2)] + 5(PQ)° (34)
aslongas® > L>1,Q>L>1, N> 1, M > 1. Itcan be seen that the computationf®f and the
EVD of ¢ occupy the major part.

In contrast, we present the computations needed in the 2#RESlike method 11], which uses
the same decorrelation processing, but a different MMEMRhotk behind it. As stated i8], the
multiplications required in each step are listed in Tabl€, = 3PQL? + 7L3, the number of complex
multiplications used in MMEMP, is obtained under the assuomghat there are no repeatgg. From
Table2, the real computations of the 2-D ESPRIT-like method can biem as:
2MN(MN + 1)L+ 42PQ(N — P/2)(M — Q/2)
+5(PQ)?*| + 3PQL* + 7L°
A2PQ(N — P/2)(M - Q/2) + 5(PQ)’] (35)

Q

Table 2. Real multiplications required for the 2-D UESPRIT-like angD
ESPRIT-like method.

2D UESPRIT-Like Method 2D ESPRIT-Like Method
R, 2MN(MN + 1)L 2MN(MN + 1)L
R, 4% 2PQ(N — P/2)(M —Q/2)] 4 x [2PQ(N — P/2)(M — Q/2)]
® 2(PQ)* +4PQ /
EVD of p: 5(PQ)3 of R,: 20(PQ)?
The rest of the operations 2D Unitary ESPRIT+ 20L3 MMEMP: Cy

According to Equations3@) and @5), the computational saving of our method is abdbtPQ)?,
caused by the unitary transformation. 8),[the author recommended the scope®f) given below:

L+1<P<(N+1)/2, L+1<Q<(M+1)/2

in which the estimation accuracy and computations becontd hgher as the values increase.
For comparison, we estimate the most multiplications castémputing R(n, m) by choosing
P =(N+1)/2and@ = (M + 1)/2. In this case, the first part of Equatior8l and @5) becomes:

4 x 2PQ(N — P/2)(M — Q/2)] ~ 18(PQ)* (36)
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In the condition ofP > L > 1 and@ > L > 1, Equation 83) is far more than Equatior86), which
indicates that the computational saving of our algorithiroissiderable.

Figure2 is plotted to compare the proposed method with the 2-D ESHI&TmMethod in the aspect
of real computations required as a function of P and Q. Theipfichtions cost in each method are
computed by the sum of the corresponding column in Tabl&he snapshot number is = 3, and
the size of the URA isV x M = 30 x 20. P and (@ change in the scope df + 1, (N + 1)/2]
and[L + 1,(M + 1)/2]. The figure shows that a8 and @ increase, the complexities of estimating
the 2-D DOA with two different algorithms increase, as wellhe computations needed for our new
method is much less than that of the 2-D ESPRIT-like methodnv and (Q go towards the upper
bound. Therefore, we conclude that the proposed schemehtaimm aramatic computational savings in
estimating the elevation and azimuth.

Figure 2. Real computations needed to estimate the 2-D DOA as a funotiB and Q.

Real computations comparison

x 10
[ ]2-D UESPRIT-Like method

8 [ ]2-D ESPRIT-Like method

Real computations required

PO = N W

5. Simulation Results

In this section, we present simulation results that comitea@roposed method with several other 2-D
DOA estimations in the presence of a zero mean Gaussian wige. Except the developed scheme,
DOA extractions and pairings in other methods are all peréat using MMEMP 9.

Supposel’ narrowband equipowered signals are incident dn & 9 URA (i.e, N = 11, M = 9)
with interelement spacing, = d, = \/2. The correlation factor between the first signal and thersthe
is denoted as,. When~, equals 1, they are coherent and completely uncorrelated whe- 0. We
generate correlated signals via:

s1(t) = VSNR x 7 (t)

sk(t) = (s1()v/7s + 1)/ (1 — 7)) x VSNRfor k = 2,3.... K
wheres () is the amplitude of théth signal at time¢, SNR denotes the signal to noise ratio ap()
is the output of theéith random number generator at timte,In the range of Equatior8g), we select
P =5and@ = 4.
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First , we consider three coherent signals fromé) = (10°,0°), (5°, —5°), (—5°,7°) with SNR
varying from —20 dB to 10 dBL,000Monte Carlo trials are run for each SNR. Five hundred snapsre
taken to form the estimate of the covariance matrix of thayaoutputs. Figur@ shows the probability
of identifying all the directions correctlyersus SNR. The result illustrates that the performance of
both the proposed algorithm and 2-D ESPRIT-like method ateebthan that of 2-D spatial smoothing
(2-D SS).This is because the first two algorithms can eliminate theaicy of signals completely by
reconstructing the equivalent covariance makRi:, m) by Equationl0, while the 2-D SS method can
only provide the alleviation of the rank deficiency to som&ak The graph also shows that the new
method has some improvement over the 2-D ESPRIT-like methaglto the fact that the achievement of
Ry in our method is similar to the forward-backward spatial sthong processi4], which can further

enhance the ability of decorrelation.

Figure 3. Probability of the DOA identificationersus input signal to noise ratio (SNR).
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Second, we consider the same scenario as in the first one eDeéimoot mean square error (RMSE)
of the DOA estimates as:

K 1000
1 . .
RMSE= | ——— > "> [(0" — )2 + (4" — én)?
1000K - nl[( k k) +( k ¢k) ]

whereé}; andg@}; are the estimates @f, and¢, for thenth trial,respectivelyK is the number of signals.
The comparison of Cramer-Rao lower bound (CRB), computedrding to formulas provided irlp]

and the RMSE of DOA estimates of 2-D UESPRIT-like method, ES&PRIT-like method and 2-D SS
are plotted in Figurel. The SNR changes from —10 dB to 20 dB. Simulation result shibvasthe
estimation errors of all the methods decrease obviouslh@$SNR increase. Moreover, our proposed
method is observed to have a superior performance over begsoand to be close to the CRB most.
When the SNR is lower than 0 dB, the 2-D SS method fails to riisiish the two closely located
sources, while our algorithm can still accomplish it verjlw&he same phenomenon appears for the 2-D
ESPRIT-like method when the SNR is lower than —7 dB.
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Figure 4. Root mean square error (RMSE) of the DOA estimatesus input SNR.
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The third simulation considers the same signals as the afavexperiments with SNR= 20 dB.
The snapshot number,, changes from 10 to 300The RMSE of the 2-D estimates as a function
of the snapshot number and the CRB are plotted in Figurés expected, the 2-D UESPRIT-like
method is shown to have dramatically high accuracy over therawo and can achieve the closest
performance to CRB.

Figure 5. RMSE of the DOA estimategersus snapshot number.
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In the last simulation, we investigate the ability of fougalithms to decorrelate coherent signals.
Assume there are two narrowband signals withd) = (10°,0°), (5°, —=5°) and SNR= 5dB. Their
correlation factor varies in the rang@ 1). For each value of,, 1,000 independent estimate® carried
out to examine the RMSE of DOA estimates. First, we compage2tib ESPRIT method with the
other three decorrelation algorithms. As Fig@dias shown, when the signals are uncorrelated or
partly correlated with low correlation factor, the conventl 2-D ESPRIT is the best choice for DOA
estimation. The reason is the use of decorrelation in theratiethods results in a small effective
aperture, which can reduce the resolution significantlyweleer, asy, increases, the performance of the
2-D ESPRIT degrades slowly. Unti, = 0.9, it totally fails to identify DOA, because of the serious
rank loss ofR,. Besides, Figuré also demonstrates that the 2-D SS method provides a mudr bett
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performance than the 2-D ESPRIT-like method, as well as oypgsed method, when < 0.32. This

is due to the fact that in such a low correlation, it is suffitieor 2-D SS to decorrelate signals, and
it can restrain noise to some extent. When the signals becaasy coherent, that is, > 0.95, the
superiority of our proposed scheme and the 2-D ESPRIT-likéhod appears to be remarkable for the
excellent decorrelation ability, while in terms of the vata of DOA estimates, it is obvious that the new
method outperforms 2-D ESPRIT-like method all the time.

Figure 6. RMSE of the DOA estimategersus correlation factor.
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6. Conclusions

An application of unitary transformation to 2-D DOA estinoet of coherent sources has been
proposed in this paper. The decorrelation is performeddasdhe existing 2-D ESPRIT-like method.
While the computational load is significantly reduced bynsfarming the complex matrices into
real-valued ones and conducting the EVD with 1-D matrices,2-D UESPRIT-like method can also
provide better performance in DOA estimation by preproogsthe block Hankel matrix using the
forward-backward averaging-like method. Computationalgsis and simulation results have shown the
significant reduction of computations and the dramatic IMSE in DOA estimations. A less restrictive
requirement for the array geometry is also provided to gedizerthe application of this method.

It is worth mentioning that our proposed algorithm is fit farading with the estimation of highly
correlated signals. In the situation where all the signadsiacorrelated or partly correlated, the method
given in this paper will suffer degradation to some extent.

Itis also interesting to notice that our new algorithm i ptiactically useful in the presence of mutual
coupling, though such an effect was not considered in thpgpdor 2-D DOA estimation in URA, if the
mutual coupling matrix (MCM) is known, the coupling effeercbe easily eliminated by premultiplying
the inverse MCM with the original data. If the MCM is unknowrme can also use the method provided
in [20] to completely alleviate the mutual coupling by setting femsors on the boundary of the URA
as auxiliary sensors, provided that the MCM satisfies thekdbmnded symmetric Toeplitz assumption.
The output of the middle URA is, therefore, an ideal modehwiit a coupling effect. Moreover, the 1-D
version of our proposed method, namely 1-D UESPRAT],[can be extended to the azimuth estimation
with the Uniform Circular Array (UCA) in the presence of matwoupling. In this case, the elevation
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is assumed to be known. The mutual coupling can be directiypemsated for if the coupling effect
is not so serious and the MCM is know®2]. Then, the array manifold of the UCA is projected by a
coupling matrix onto that of an ideal UCA, where the azimushireation is the same as that of ULA,
and the 1-D UESPRIT method can be directly conducted. Hormvéweannot be applied to the method
proposed in23] when the number of antenna elements in the UCA is large en@sthed matrix used

to incorporate all the relevant phase modes into the prahéggm destroys the Vandermode structure of
the beamspace steering vector. Besides, the new methodohbg applied as well in the more realistic
situation of 2-D DOA estimation with UCA, as the UCA ESPRITdauCA-ESPRIT-like involved in the
algorithms [L9,24] are different from the 2-D ESPRIT of URAL[]. Moreover, the elevation-dependence
of MCM prevents the application of our approach to the meind@5]. Future work may focus on the
real-valued processing of UCA ESPRIT, utilizing the spksiaicture of unitary matrix.
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