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Abstract: The increasing development of smart materials, such as piezoelectric and shape
memory alloys, has opened new opportunities for improving repair techniques. Particularly,
active repairs, based on the converse piezoelectric effect, can increase the life of a structure
by reducing the crack opening. A deep characterization of the electromechanical behavior of
delaminated composite structures, actively repaired by piezoelectric patches, can be achieved
by considering the adhesive layer between the host structure and the repair and by taking
into account the frictional contact between the crack surfaces. In this paper, Boundary
Element (BE) analyses performed on delaminated composite structures repaired by active
piezoelectric patches are presented. A two-dimensional boundary integral formulation for
piezoelectric solids based on the multi-domain technique to model the composite host
damaged structures and the bonded piezoelectric patches is employed. An interface spring
model is also implemented to take into account the finite stiffness of the bonding layers and
to model the frictional contact between the delamination surfaces, by means of an iterative
procedure. The effect of the adhesive between the plies of piezoelectric bimorph devices on
the electromechanical response is first pointed out for both sensing and actuating behavior.
Then, the effect of the frictional contact condition on the fracture mechanics behavior of
actively repaired delaminated composite structures is investigated.
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1. Introduction

The increasing development of smart materials, such as piezoelectric and smart memory alloys, has
opened new opportunities for practical and useful engineering applications. Focusing on piezoelectric
materials, they allow the design of effective sensors and actuator devices, by means of the direct and
converse piezoelectric effect [1], which, nowadays, are widely used in the framework of Structural Health
Monitoring (SHM) [2–5], Active Vibration Control [6,7] as well as Energy Harvesting [8,9].

Recently, the use of piezoelectric actuators has been also proposed and studied, by both numerical
and experimental analyses, for applications in so-called active repair technology [10–16]. This repairing
technique, if obtained by means of piezoelectric devices, is based on the converse piezoelectric effect,
according to which the strain induced by an applied electric field across the piezoelectric patch can help
the structure to oppose the external load and, consequently, to reduce the criticality of a damage [15,17].
It thus represents improved repair methodology alternatives to the conventional methods, like bonded
or riveted passive patches, whose limitations have been widely reviewed [18]. Actually, active repair
technology and Structural Health Monitoring could effectively be implemented in the framework of the
so-called closed-loop smart structures, where components are able to sense, diagnose and actuate in
order to perform their functions [19].

In spite of its attractiveness, active repair is a very difficult problem involving both design and
technological aspects. From the design point of view, active repairs could be, in fact, arranged by bonding
piezoelectric actuators to the host damaged structures and, in order to gain full advantage of the active
repair technology, a deep characterization of both the electromechanical and fracture mechanics behavior
of the actively repaired damaged structures is needed. In fact, the complex active repair mechanism,
which stems from the strain induced by the piezoelectric actuator to the damaged structure by means
of the bonding layer, can be fully understood through efficient numerical tools, taking into account
both the adhesive between the bonded layers and the frictional contact condition between the crack or
delamination surfaces. With this aim, Liu [17,20] has recently proposed a two-dimensional finite element
analysis to study the active repair for cracked structures by using multi-layered piezoelectric patches,
while Duan et al. [21] have applied the finite element method to study actively repaired delaminated
beams. The effect of the adhesive between the host damaged structure and the piezoelectric patch has
been studied by Alaimo et al. [15,16], where the boundary element method has been used to characterize
the static and dynamic electromechanical behavior of isotropically damaged structures actively repaired
with bonded piezoelectric patches.

As already mentioned, a more accurate characterization of the repairing mechanism of piezoelectric
active patches can be achieved through the modeling of the frictional contact between the crack surfaces.
The interaction between two crack surfaces in contact, in fact, gives rise to a sliding resistance, depending
on the normal and tangential tractions at the interface. It is evident that the modeling of such a situation
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can lead to a more accurate prediction of the electromechanical response of the actively repaired damaged
structure [17]. Moreover, when dealing with a multilayered piezoelectric actuator, the bonding layer
between the piezoelectric plies can deeply affect the actuating performance of the repair.

Thus, the present paper deals with the analysis of the electromechanical response of piezoelectric
active patches applied on delaminated composite structures, accomplished through a boundary element
code [22–24], which allows one to take into account the adhesive between the piezoelectric plies, used
to arrange the multilayered patch, and the Coulomb’s frictional contact between the crack surfaces. This
is accomplished by means of multi-domain techniques implemented with an interface spring model,
which allows one to model the Coulomb’s frictional contact through a suitable iterative procedure.
On this basis, the proposed model and the associated results have to be considered as a preliminary
characterization useful to effectively set forward future experimentation and to get insight into the
active repair mechanism that will allow one to develop proper autonomous repairing control systems.
Moreover, the numerical analyses can provide useful data for the practical implementation of the
technological aspects that, however, are out of the scope of the present paper.

The content of the paper is arranged as follows: the Multi-domain Boundary Element formulation
and the spring interface iterative procedure for the modeling of the Coulomb’s frictional contact are
discussed in Section 2; The Modified Crack Closure Integral (MCCI) [25], used to compute the total
Energy Release Rate (ERR) GT and the phase angle Ψ, is introduced in Section 3; lastly, numerical
results are reported and discussed in Section 4. More particularly, validation analysis on the Coulomb’s
frictional contact is first discussed in order to show the effectiveness of the implemented frictional
contact conditions based on the modified interface spring model; then, the effect of the adhesive
between piezoelectric plies of the multilayered patch is investigated for both sensing and actuating
devices with the aim of gaining insight on the importance of modeling the bonding layer for an effective
characterization of the electromechanical response of the piezoelectric patch; lastly, original numerical
results, characterizing the fracture mechanics behavior of a composite drop-ply delaminated structure in
terms of the energy release rate reduction and phase angle variation, are presented to highlight the effect
of frictional contact on the repair performances.

2. Multi-Domain Boundary Element Method (BEM) and Coulomb’s Friction Modeling Strategy

The Boundary Integral formulation is developed for a two-dimensional piezoelectric domain, Ω, with
boundary, ∂Ω, lying in the x1x2 plane under the hypothesis of generalized plain strain elasticity and in-
plane electrostatic. For the sake of conciseness, the governing equations of the problem are not reported
in the present paper, but can be found in reference [15]. Considering a particular electroelastic state
defined by the generalized displacement field, Uj , associated with the concentrated generalized body
forces acting in an infinite domain and applied at the point, P0, Fj = cjδ(P, P0), where δ is the Dirac’s
function and cj is the load intensity, the reciprocity theorem for this particular and the actual electroelastic
states leads to an analogon of the Somigliana identity for the electromechanical problem [24]:

cjTU(P0) +
∫
∂Ω

(
Tj

TU− Uj
TT
)
d∂Ω =

∫
Ω

Uj
TFdΩ (1)
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where Tj are the generalized tractions associated to Uj . By using four independent fundamental
solutions [24], the mechanical displacements and the electric potential at point, P0, can be expressed
in terms of the generalized displacements and tractions on the boundary of the body. In matrix form, the
boundary integral equations, obtained by collocating the point, P0, to the boundary ∂Ω [22], are given
by:

c∗U(P0) +
∫
∂Ω

(T∗U− U∗T)d∂Ω =
∫
Ω

U∗FdΩ (2)

where the kernels, U∗ and T∗, and the matrix, c∗, are defined as by Alaimo et al. [15]. The numerical
model of the boundary integral formulation is obtained by means of the Boundary Element Method
(BEM), which for a homogeneous body, involves the division of the body boundary into boundary
elements over which the generalized displacements, U, and the associated boundary tractions, T, are
interpolated in terms of their nodal values, δ and P, by means of proper shape functions. With this
approximation, the discrete expression of the solving equations for piezoelectric media are thus obtained
and written as:

Hδ + GP = 0 (3)

Equation (3) represents a linear algebraic resolving system expressed in terms of generalized
displacement and traction nodal values, δ and P, respectively, which coupled with the electromechanical
boundary conditions, provide the solution of the problem for a single domain.

The modeling of the laminated structure, as well as the assembling between the host structure and
the piezoelectric active patch is then obtained by means of the multi-domain approach [22,24]. It
is implemented by writing the system of equations, Equation (3), for each of the N homogeneous
sub-region as:

H(k)δ(k)+G(k)P(k) k = 1, 2..., N (4)

The global system of equations pertaining to the overall assembled structure is then obtained by
applying the compatibility and equilibrium conditions along all the sub-region interfaces:

δ
(i)
∂Ωij
− δ(j)

∂Ωij
= ∆δij i = 1, ..., N − 1

P
(i)
∂Ωij

= −P(j)
∂Ωij

j = i+ 1, ..., N
(5)

where the subscript, ∂Ωij , indicates quantities associated with the nodes belonging to the interface
between the ith and jth sub-regions; see Figure 1. Equation (5) allows one to assemble heterogeneous
sub-regions by considering both rigidly and elastic connections among them. More particularly, the first
condition is obtained by enforcing to zero the displacement jump, ∆δij . Conversely, the elastic interface
conditions are addressed by means of an interface Spring Model [15], which allows one to model
the adhesive ply as a zero thickness elastic layer characterized by normal and tangential compliance
constants, kN and kT , with respect to a local reference system centered at each node of the ith domain
interface boundary, shown in Figure 2.

More particularly, by considering the local reference system of Figure 2, the spring model
is implemented by expressing the normal and tangential components of the interface mechanical
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displacement jumps, ∆δ
(ij)
N and ∆δijT , as a function of the normal and tangential components of the

nodal mechanical tractions:

∆δijN = kNP
(i)
N with ∆δijN = δ

(j)
N − δ

(i)
N

∆δijT = kTP
(i)
T with ∆δijT = δ

(j)
T − δ

(i)
T

(6)

Figure 1. Multi-domain assembling.
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Figure 2. Interface local reference system and Spring Model.

	  

The spring interface, expressed by Equation (6), allows for the modeling of the bonding layer between
the host structure and the piezoelectric patch by linking the aforementioned interface compliance
coefficients, kN and kT , to the material properties of the adhesive through a strategy discussed by
Alaimo et al. [15]. The modeling of crack contact problems, governed by the classical Coulomb’s law of
friction, is, instead, achieved by means of a trial and error procedure that iteratively sets the compliance
coefficients, kN and kT , depending on the modes of contact [26]. More in detail, the iterative procedure
firstly accomplishes the detection of the potential contact area, avoiding, at the same time, the unphysical
material interpenetration corresponding to negative values of ∆δijN .

The aim at issue is achieved by varying the kN coefficients according to the sign of the normal traction
components. Once the potential contact area is determined, the iterative procedure starts checking the
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friction contact modes. According to Coulomb’s law of friction, if PT is less than µPN , µ being the
friction coefficient, then the tangential compliance coefficient, kT , is decreased until the stick condition
is assured. On the other hand, if PT exceeds µPN , the node pairs are allowed to sleep, and then,
the coefficient, kT , is incrementally increased until the Coulomb friction slip condition is reached. A
schematic of the iterative procedure implemented is shown in Figure 3.

Figure 3. Flow chart of the frictional contact iterative procedure.

 
 

 

 

 

 

 

 

 

Start 

Initial conditions in 

terms of kN and kT 
Find the solution

Any opening traction 

between the crack surfaces ?

Release the node pairs by 

increasing the kN 

Yes 

Apply the new 

 contact conditions 

New iteration 

No 
Any overlap ?

Yes 

Increase the interface 

stiffness be decreasing  kN 

No 
Is µ>0 ?

No 

Output the 

results

Yes 

Is PT≥ µPN ? 

Slip condition ! Increase kT until the 

Coulomb friction slip condition is reached 

Yes 

Stick condition!  

Is ∆uT=0 ?  

No 

Decrease  kT until ∆uT=0 

No 

Yes 

Stop 

Find the potential 

contact region and 

avoid overlap 

Is PT= µPN ? 
Yes 

No 

3. Modified Crack Closure Integral Technique

In this paper, the total ERR, GT , and the mode-mix phase angle, Ψ [27,28], are used as fracture
parameters to fully characterize cracks at a bi-material interface. The former fracture parameter is
obtained as the sum of the ERR components associated with the modes of fracture, which with reference
to the local frame centered at the crack tip, can be expressed as:

GI = lim
∆→0

1
2∆

∫∆
0 tN(∆− r)∆uN(r)dr

GII = lim
∆→0

1
2∆

∫∆
0 tT (∆− r)∆uT (r)dr

(7)

where ∆ui, i = {N, T}, are the displacement jump components at a distance, r, behind the crack
front, along the opening and sliding directions respectively, ti are the normal and shearing traction
components and ∆ is an infinitesimal crack extension. The latter fracture parameter, Ψ, is the sliding
to opening mode-mix phase angle, whose computation is also mandatory for bi-material interface
fracture mechanics, since the total ERR GT by itself does not allow for the identification of the critical
condition [29].

Thus, the mode-mixed phase angle, Ψ, is computed, under the assumption of negligible oscillatory
behavior of the crack front stress and displacement fields [30] by the ERR components, as:

Ψ = tan−1

(√
GII

GI

)
(8)

The modified crack closure integral MCCI technique is thus used for the computation of the total ERR,
GT , and of the mode-mixed phase angles, Ψ. It represents a robust method, since a reasonable accuracy
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in the computation of the fracture mechanics parameters can be obtained, even without additional
mesh refinement or high-order/singular crack tip elements, by both Finite and Boundary Element
Procedures [25,31,32]. Moreover, by using the MCCI technique, no further computations of stresses and
displacements are required. In particular, for a given laminate showing an initial delamination length, a,
the MCCI assumes that, as the delamination propagates by a length, ∆ [33]:

(i) the energy released is identical to the work required to close the crack;
(ii) ∆ being small enough, the crack extends in a self-similar manner.

The second assumption, in particular, implies that the stress field does not change as the crack extends
from a to a + ∆, and thus, a single analysis suffices all data needed for Irwin’s integral computation. As
a consequence, the boundary element mesh is built in such a way as to be symmetric across the crack
front in order to numerically favor the self-similar extension assumption. Moreover, the BE mesh size is
small enough to catch the limiting nature of Irwin’s integral Equation (7) in a finite counterpart as well
as possible. In order to perform the integrals defined in Equation (7), regular elements should be used,
since the product of stresses and displacements represents energy that is finite everywhere in the body,
including the region next to the crack front [34]. Thus, linear shape functions are used in the present
work, and the smoothing scheme proposed by Maiti et al. [35] is implemented.

The traction variation along the boundary element, including the crack tip, identified by node j in
Figure 4, is assumed consistent with the displacement variation. Thus, accordingly to Maiti et al. [35],
the constant value of the traction over the crack tip element is assumed to be equal to that at node j.
Thus, with reference to Figure 4, the integral definition of the ERR components, Equation (7) specifies
it as:

GI =
δNj−1PNj

2
GII =

δTj−1PTj

2
(9)

Figure 4. Smoothing scheme linear element.
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4. Numerical Results and Discussion

In the present section, the numerical results obtained are discussed. More particularly, Coulomb’s
friction modeling strategy as proposed is first validated through the analysis of a flat punch over an elastic
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foundation previously studied by Man [26]. Then, the effect of the adhesive between the piezoelectric
plies of a bimorph device on the sensing and actuating electromechanical performances is pointed out.
Lastly, the active repair mechanism of a drop-ply delaminated composite structure repaired through a
multi-layered PZT-4 active patch is investigated by taking the frictional contact conditions into account.

4.1. Coulomb’s Friction Modeling Strategy Validation

Coulomb’s friction modeling strategy as proposed in the present paper is validated through the
analysis of a flat punch over an elastic foundation previously studied by Man [26]. The geometry, the
boundary conditions, as well as the material properties of the two bodies and the friction coefficient are
summarized in Figure 5(a). The results obtained are plotted in Figure 5(b) in terms of the normal and
tangential tractions at the interface between the two bodies. Both traction components are normalized
and, due to symmetry, are plotted along half the contact region. More particularly, the normal traction
component has been normalized with respect to the applied load, P0, while the tangential one, with
respect to µP0. As already highlighted by Man [26], at x1/L2 = 0.8, the transition point from stick to
slip condition can be found, and good agreement with the results found in the literature is evidenced.

Figure 5. (a) Punch on an elastic foundation configuration; (b) normalized contact traction
components.
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4.2. Interface Adhesive Modeling in Piezoelectric Bimorph Sensor/Actuator Device

In order to point out the effect of the adhesive between the piezoelectric plies of bimorph devices to
be used as sensors and actuators, two different analyses of a piezoelectric series bimorph are performed
for both sensing and actuating functions. The geometry of the piezoelectric bimorph devices has
been chosen, since 3-D electromechanical data for the perfect bonding condition were available in the
literature [36], thus allowing for the validation of the piezoelectric BEM formulation and for pointing out
the effect of the finite bonding stiffness on the electromechanical response with respect to the validated
perfect bonding results.
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The first configuration deals with the piezoelectric device used as a sensor in a closed circuit; see
Figure 6(a). The length of the bimorph is L = 25 mm, and a slender ratio, L/h = 10, is considered.
Moreover, the boundary conditions and the material properties are those taken from Fernandes et al. [36]

Figure 6. Series bimorph configuration as sensor (a) and actuator (b).
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Figure 7 shows the through-the-thickness normalized vertical displacement and electric potential
distributions at x1 = L/2 in the case of a perfect bonded interface. The results are compared to those
obtained by the finite element analysis performed for the full 3-D model by Fernandes et al. [36].

Figure 7. Through-the-thickness vertical displacement U2 and electric potential φ

distribution.
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Figure 8 shows the vertical displacement distribution obtained for both perfect and imperfect bonding
conditions. In particular, the imperfect bonding conditions are set to model a 0, 1mm epoxy adhesive
layer. A 32% increment of the deflection in the case of imperfect bonding, due to the softening of
the bimorph, can be observed. This leads to a change of the through-the-thickness electric potential
distribution, as shown in Figure 8. The modeling of the adhesive layer is then of significant importance
in order to correctly interpret the output of a bimorph used with a sensing function.

To point out the effect of the adhesive layer on the actuating performances of a piezoelectric bimorph
with a series arrangement, in the second configuration analyzed, an electric potential is applied on the
top and bottom faces of the device, VB = −50 V at x2 = 0 and VU = 50 V at x2 = h, as shown in
Figure 6(b). Figure 9 shows the through-the-thickness normalized vertical and longitudinal displace-
ment. The softening of the bimorph actuator, due to the adhesive layer, can be pointed out by observing
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a 17% reduction of the through-the-thickness deflection. Thus, the results show the need of modeling
the bonding layer effects to accurately predict the actuating input voltage.

Figure 8. Vertical Displacement Boundary Element Method (BEM), Electric Potential BEM
(perfect/imperfect bonding).
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Figure 9. Through-the-thickness vertical displacement and longitudinal displacement.
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4.3. Actively Repaired Drop-Ply Delaminated Structure with Frictional Contact Conditions

The analysis discussed in the present section deals with a drop-ply delaminated composite structure
repaired through a multi-layered PZT-4 active patch, as shown in Figure 10(a). The geometry and
the boundary conditions considered for the host damaged composite structures, as well as the material
properties of the graphite/epoxy system are those used by Narayan et al. [25].

A multi-layered piezoelectric patch having length, LP = 20.4mm, and height, h = 1.5mm,
whose circuital scheme is shown in Figure 10(b), is bonded on the lower ply in a central position
with respect to the crack tip. The active repair is then obtained by stacking 10 piezoelectric layers,
whose material properties are those considered by Alaimo et al. [15]. This patch configuration has been



Sensors 2013, 13 4400

selected, since it provides a strain per applied voltage larger than other configurations [15]. Moreover,
according to the bonding modeling strategies employed in the present paper, the equivalent compliance
interface coefficients, corresponding to an epoxy adhesive having thickness, ta = 0.1 mm, are
kN = 1.56 × 10−5 m/GPa and kT = 9.33 × 10−5 m/GPa. The fracture mechanics behavior of
the repaired structure is characterized for different values of the friction coefficient, µ, in terms of the
total Energy Release Rate GT and of the phase angle, ψ.

Figure 10. (a) Repaired structure configuration; (b) PZT-4 multi-layered circuital scheme.
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Figure 11 shows the total energy release rate distribution versus the applied voltage, V , obtained
for different values of the friction coefficient, µ. The energy release rate is plotted in dimensionless
units by dividing GT to G0, G0 being the total energy release rate characterizing the fracture mechanics
behavior of the un-repaired structure. It is worth noting that the computed G0 = 1.43 × 10−4 MPam

agrees very well with that found by Narayan et al. [25] through a finite element analysis. From
Figure 11, it can be observed that the repair condition for the three different contact configurations
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analyzed, corresponding to the minimum value of the total energy release rate, is reached at the same
value of the repairing voltage, Vr = 1.850V . Thus, it can be firstly concluded that the different frictional
contact conditions do not have valuable influence on the repairing voltage value. On the other hand,
for a given applied voltage, V < Vr, the effect of the frictional contact between the crack surfaces is
to improve the repair performance of the active patch till the minimum value of GT is obtained. The
analysis of the post-repair condition, corresponding to V > Vr, evidences the same behavior as for
V < Vr, with the only exception inside the interval 1, 900 < V < 2, 200, where the repair performances
of the friction contact configuration are worse than the frictionless one. The graph of Figure 11 shows
that, once the repair condition is reached, the phase angle, ψ, gets its minimum value. Moreover, the
effect of friction on the mode mix is to reduce ψ and, consequently, the amount of the mode II of fracture
with respect to mode I.

5. Conclusions

In this paper, BE analyses performed on delaminated composite structures repaired by active
piezoelectric patches have been presented. A two-dimensional boundary integral formulation for
piezoelectric solids based on the multi-domain technique to model the composite host damaged
structures and the bonded piezoelectric patches has been employed. An interface spring model has
been also implemented to take into account the finite stiffness of the bonding layers and to model the
frictional contact between the delamination surfaces, by means of an iterative procedure. The analyses
have shown that the finite stiffness of the bonding layer deeply affects the electromechanical response of
piezoelectric devices. On the other hand, it has been pointed out that the frictional contact condition has
a negligible effect on the repairing mechanism for the analyzed delaminated structure.
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