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Abstract: Rotating radar sensors are perception systems rarely used in mobile robotics.
This paper is concerned with the use of a mobile ground-based panoramic radar sensor
which is able to deliver both distance and velocity of multiple targets in its surrounding.
The consequence of using such a sensor in high speed robotics is the appearance of
both geometric and Doppler velocity distortions in the collected data. These effects
are, in the majority of studies, ignored or considered as noise and then corrected based
on proprioceptive sensors or localization systems. Our purpose is to study and use
data distortion and Doppler effect as sources of information in order to estimate the
vehicle’s displacement. The linear and angular velocities of the mobile robot are estimated
by analyzing the distortion of the measurements provided by the panoramic Frequency
Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any
proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and
the radar map of outdoor environments. In this paper, radar-only localization and mapping
results are presented for a ground vehicle moving at high speed.
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1. Introduction

The increased autonomy of robots is directly linked to their capability to perceive their
environment. Simultaneous Localization and Mapping (SLAM) techniques, which associate perception
and movement, are particularly interesting because they provide advanced autonomy to vehicles such as
robots. In outdoor environments, the localization and mapping tasks are more complex to achieve under
various climatic constraints. In this context, classical sensors are limited because of the technologies
used: ultrasound is perturbed by wind, optical sensors (laser, vision) by rain, fog or the presence of dust
or by poor lighting conditions [1]. An analysis of the effects of such challenging conditions on perception
and an identification of their strong links with common perceptual failures are presented in [2]. One of
the particularities of this work is the use of a new microwave radar sensor, which returns both range and
velocity information combined with received signal power information, reflected by the targets in the
environment, observed with a 360◦ per second rotating antenna and with a range from 5 to 100 m. The
long range and the robustness of radar waves to atmospheric conditions make this sensor well suited for
extended outdoor robotic applications.

Range sensors are widely used for perception tasks but it is usually assumed that the scan of a range
sensor is a collection of depth measurements taken from a single robot position [3]. This can be done
when working with lasers that are much faster than radar sensors and can be considered instantaneous
when compared with the dynamics of the vehicle. However, when the robot is moving at high speed,
most of the time this assumption is unacceptable. Important distortion phenomena appear and cannot be
ignored; moreover, with radar sensor, the movement of the sensor itself generates Doppler effect on the
data. For example, in a radar mapping application [4], the sensor delivers one panoramic radar image per
second. When the robot is going straight ahead, at a low speed of 5 ms−1, the panoramic image includes
a 5-m distortion. In the case of a laser range finder with a 75 Hz scanning rate, distortion exists but is
ignored. This assumption is valid for low speed applications, nevertheless still moving straight ahead at
a speed of 5 ms−1, a 7cm distortion effect appears. At classical road vehicle speeds (in cities, on roads
or highways) more important distortions can be observed. Of course, the rotation of the vehicle itself
during the measurement acquisition is another source of disturbance that cannot be neglected for high
speed displacement or with slow sensors. When the sensor is too slow, a “stop & scan” method is often
applied [5].

Another contribution presented in this paper is to propose a full radar-based odometry, which does
not use any proprioceptive sensor but only distortion formulation and Doppler velocity analysis. The
estimation of a vehicle’s displacement or ego-motion is a widely studied problem in mobile robotics.
Most applications are based on proprioceptive data provided by odometer sensors, gyrometers, IMU
or other positioning systems such as GPS [6]. However, in order to estimate motion, some research
works tried to use only exteroceptive data. Thus, Howard [7], Kitt et al. [8] and Nistér et al. [9]
proposed a visual odometry without proprioceptive data. Tipaldi and Ramos [10] proposed to filter out
moving objects before doing ego-motion. In such an approach, exteroceptive ego-motion is considered
as intended to augment rather than replace classical proprioceptive sensors. Sometimes, classical
displacement measurements are much more difficult and have limitations: inertial sensors are prone
to drift, and wheel odometry is unreliable in rough terrain (wheels tend to slip and sink) and as a
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consequence visual odometric approaches are widely studied [11–13]. For example, in an underwater
or naval environment classical ego-motion techniques are not suitable. In [14], Elkins et al. presented
localization system for cooperative boats. In [15], Jenkin et al. proposed an ego-motion technique
based on visual SLAM fused with IMU. In order to find displacement with exteroceptive sensors such
as range finders, the scan matching method is commonly used [16–18] but each scan is corrected with
proprioceptive sensors especially when the sensor is slow. In all scan matching work, distortion is taken
into account but considered as a disturbance and thus corrected.

The only work dealing with distortion as a source of information used a rolling shutter specific camera.
In [19], Ait-Aider et al. computed instantaneous 3D pose and velocity of fast moving objects using a
single camera image but, in their context, prior knowledge about the observed object is required. In
mobile robotics, we have no a priori knowledge about the surrounding environment of the robot. To the
best of our knowledge, there is absolutely no work in the field of mobile robotics literature considering
distortion as a source of information in an odometric purpose.

The originality of this paper is to study and use data distortion and Doppler effect as sources of
information in order to estimate the vehicle’s displacement. The linear and angular velocities of the
mobile robot are estimated by analyzing the distortion of the measurements provided by the mobile
ground-based panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA.
Then, the trajectory of the vehicle and the radar map of outdoor environments are built. Localization
and mapping results are presented for a ground vehicle application when driving at high speed.

Section 2 presents the microwave radar scanner developed by a IRSTEA research team (in the field
of agricultural and environmental engineering research) [20]. Section 3 focuses on the analysis of the
Doppler effect for velocimetry purpose. Section 4 gives the formulation of the principle used in order
to extract information from the distortion. Finally, Section 5 shows experimental results of this work.
Section 6 concludes.

2. The IMPALA Radar

The IMPALA radar was developed by the IRSTEA in Clermont-Ferrand, France, for applications
in the environmental monitoring domain and robotics. It is a Linear Frequency Modulated Continuous
Wave (LFMCW) radar [21]. The principle of a LFMCW radar consists in transmitting a continuous
frequency modulated signal, and measuring the frequency difference (called beat frequency Fb) between
the transmitted and the received signals. One can show that Fb can be written as:

Fb =
4∆FFmR

c︸ ︷︷ ︸
Fr

+
2Ṙ

λ︸︷︷︸
Fd

(1)

where ∆F is the frequency excursion, Fm the modulation frequency, c the light velocity, λ the
wavelength, R the radar-target distance (R < Rmax) and Ṙ the radial velocity of the target. The first
part Fr of Equation (1) only depends on the range R, and the second part Fd is the Doppler frequency
introduced by the radial velocity Ṙ.

The IMPALA radar is panoramic. It is a monostatic radar, i.e., a common antenna is used for both
transmitting and receiving. The rotating antenna achieves a complete 360◦ scan around the vehicle in
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one second, and a signal acquisition is realized at each degree. The maximum range of the radar is
100 m. The radar includes microwave components, electronic devices for emission and reception, data
acquisition and signal processing unit.

Data acquisition and signal processing units are based on an embedded Pentium Dual Core
1.6GHzPC/104 processor. Computed data is transmitted using an Ethernet link for visualization and
further processing. Main characteristics of the radar are described in Table 1.

Table 1. Characteristics of the IMPALA radar.

Transmitter power Pt 20 dBm
Antenna gain G 20 dB
Range 3 m/100 m
Carrier frequency F0 24.125 GHz (K band)
Angular resolution (horizontal) 4◦

Distance resolution δR 1 m
Velocity resolution δV 0.6 m/s
Size (length-width-height) 29-24-33 cm
Weight 10 kg

In order to solve the distance-velocity ambiguity, a triangular modulation function is applied. In
Figure 1(a), the full line represents the transmitted signal while the dashed line is the echo signal on a
stationary target at a distance R of the sensor. The beat frequency fb is defined as the difference between
the transmitted and the received wave:

fb = freception − femission

Time shift ∆t is directly linked to the distance of the detected target.

Figure 1. Triangular modulation with (a) static target; (b) mobile target.

(a) (b)
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An example of radar image is presented in Figure 2. The radar is positioned at the center of the image.
The gray scale level indicates the amplitude of the backscattered signal. Each element of the image is
positioned through its polar coordinates (d, θ).

Figure 2. Example of a panoramic radar image. The radar is positioned at the center of the
image.

When the target is moving (see Figure 1(b)), considering the modulation slope, the shift introduced
by the Doppler effect is added (negative slope) or subtracted (positive slope). Let us denote respectively
fbu and fbd the beat frequencies of up and down modulation slopes:

fbu =
2R

c
α− 2Ṙ

λ

fbd =
2R

c
α +

2Ṙ

λ

where Ṙ is the radial velocity of the detected target, α is the frequency step of the modulation. The first
part of the equation is linked to the time shift introduced by the distance while the second part is due to
Doppler effect.

Based on these equations, the range R is calculated by adding fbu and fbd:

R =
c

4α
(fbu + fbd)

The radial Ṙ speed is obtained by subtracting fbu from fbd:

Ṙ =
λ

4
(fbd − fbu)

So, both the range and the radial velocity are simultaneously estimated with this sensor.
The IMPALA sensor provides two radar images related to the up and down modulation respectively.

In the first case, the Doppler effect operates in an additive way and it is the opposite for the second case.
It is also important to remind that the Doppler velocity is not only the result of the moving objects in
the environment but is linked to the displacement of the vehicle itself. The vehicle’s movement during
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the measurement acquisition from the rotating sensor is a source of disturbance: the panoramic images
include a distortion phenomenon. Our goal is to analyze these effects in an odometric purpose.

3. Robot’s Own Velocity Estimation through the Analysis of Doppler Effect

The Doppler effect is the frequency shift between the emitted and received signals when the distance
between emitter and receiver is modified during the acquisition time. It is easy to demonstrate that for an
emitter (or receiver) moving at velocity V in the direction of the receiver (emitter respectively), emitting
at frequency F , the frequency modification Fd is given by Equation (1). In case the movement is not in
the direction of the receiver, radial velocity has to be considered, so:

Fd = 2× V × cos(θ)

λ
with θ ∈ [0, 2π] (2)

By measuring Fd for different directions θ (the angle between current measurement and the direction
of motion of the radar sensor mounted on the vehicle), radial velocity can be estimated. It is reminded
that Doppler effect is produced from the vehicle’s own displacement and also from the moving objects
in the surroundings. In order to extract the robot’s own velocity, global coherence of the surroundings
is required, so an assumption is made that more than 50% of the environment is static. On the contrary,
if more than 50% of detections are related to mobile objects that have the same displacement, then our
estimation is disturbed. For each radar beam, both the up and down modulations are compared in order to
extract the Doppler shift using a correlation of each spectrum. From this shift, radial velocity is obtained
for each ray of the observation. As radial velocity is a projection of global velocity in each observed
direction, velocity profile looks like a cosine function from which parameters have to be estimated:

VDoppler = V (t)× cos(θ)

where V (t) is the velocity of the radar bearing robot during the panoramic acquisition.
Let us denote the robot’s velocity profile V (t) with a polynomial function of the time t:

V (t) = X(1)× tm +X(2)× tm−1 + . . .+X(m+ 1)

VDoppler 1

...
VDoppler n

 = (
[
tm . . . 1

]
X) ◦

cos(θ1)
...

cos(θn)

 (3)

where ◦ is the Hadamard product function [22].
Median Least Square algorithm [23] is applied to estimate the parameters of X of the function V (t)

based on Doppler estimates for each radar beam. This principle is illustrated in Figure 3(a). Each
measurement of Doppler velocity VDoppler i has an uncertainty σDoppler. As a result, parameters of X
of the function V (t) are estimated with their own uncertainty. Vehicle’s own velocity profile V (t) and
uncertainty σV (t) can be known during the radar acquisition.

A Doppler image representing the Doppler effect created by the vehicle is obtained based on the
previous estimated robot’s velocity profile and Equation (3). This result is presented in Figure 3(b).
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Figure 3. (a) Doppler velocity profile estimation during the acquisition; (b) Doppler image
based on velocity profile. Each red arrow is the Doppler velocity of the detected targets.
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4. Distorsion Analysis Based Velocimetry

4.1. Distortion Formulation

Data distortion results from combined sensor and vehicle movements. In fact, the displacement of the
radar beam during an entire revolution of the sensor can be compared to the movement of a bicycle valve
for a simple movement in a straight line (cf. Figure 4).

Figure 4. Representation of a simple trochoid described by the sensor beam in the case of a
straight line movement.
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As regards some other displacements of the center of rotation, the distortion equation can be
represented by the parametric equation of a trochoid. Indeed, at time t, the position of a detection
done at range ρ is a function of the center pose (xct , y

c
t , φ

c
t) and of sensor bearing θt.[

x(t)

y(t)

]
=

[
xct
yct

]
︸︷︷︸

A) Center position at time t

+

[
cos(φct) − sin(φct)

sin(φct) cos(φct)

]
︸ ︷︷ ︸

B) Center rotation

[
ρ cos(θt)

ρ sin(θt)

]

︸ ︷︷ ︸
C) Detection position at time t

(4)

In order to obtain the center pose at time t, an evolution model taking into account the linear (V ) and
angular (ω) velocities is formulated. Pose (xct , y

c
t , φ

c
t) is obtained as follows:

xct
yct

 = 2V
ω

sin(ωt
2

)

cos(ωt
2

)

sin(ωt
2

)


φct = φc0 + ωt.

(5)

Using this distortion equation, which is parametrized with respect to the linear and angular velocities
V and ω, both the distorted or undistorted measurements could be managed. With a prior estimate of
these parameters, detection (θ, ρ), done at time t in the sensor frame, can be transformed into the world
frame based on Equations (4) and (5) (cf. Figure 5).

Figure 5. (a) Data obtained in sensor frame without considering distortion; (b) Undistorted
data based on distortion formulation.
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The objective is to estimate proprioceptive information, in fact velocities V and ω, which best
undistort the measurements. Two successive observations are required as shown in Figure 6. This
principle is presented in Figure 7.
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Figure 6. (a) Projection of data in world frame with wrong velocity estimates; (b) Projection
of data in world frame with correct velocity estimates.
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Figure 7. Proposed reverse proprioceptive data estimation based on distortion
measurements.
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In order to extract the information from the distortion phenomenon using a rotating sensor without any
knowledge of the environment shape, the required assumption is the local constant velocity of the vehicle
during two successive measurements. The pose of each measurement is directly linked to the observation
pose and to the angle of observation. This pose can be expressed with the constant velocity model of the
vehicle and is only a function of the linear and angular speed of the robot (see Equation (5)). Let M1

and M2 be the landmarks representing the same point in the world Mw in their respective distorted scans
or radar images. It is possible to transform M1 and M2 into the undistorted world frame by using the
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parameters (i.e., linear velocity V and angular velocity ω) and distortion functions f and g (cf. Figure 8).
By comparing the different projected poses in each acquisition, velocity parameters can be extracted. In
order to achieve this task, data association between images 1 and 2 is required. The prediction function
h = g−1 ◦ f is unknown because g−1 cannot be obtained; consequently, minimization techniques have to
be used in order to estimate M̂1. Finally, each association can give new values of the velocity parameters.

Figure 8. Principle of distortion analysis: the detected landmark in each scan in yellow, and
the corresponding landmark in the real world; the predicted detection pose from scan 1 onto
scan 2 in green.

M1
M2

M̂1

Mw

First Scan                                              Second Scan   

                                Prediction
M̂1 = h(M1, V, w)

Mw,1 = f (M1, V, w) Mw,2 = g(M2, V, w)

World frame

The sensor on the robot moves from an initial pose x0 = [x0, y0]
T with an initial orientation φ0 at

a constant velocity Vv = [V, ω]T during two successive sensor scans. Each detection of landmark md

observed at time td is distorted by the robot’s displacement. At this step, the detected landmark md needs
a correction in order to take into account the Doppler effect. If md = [xd, yd]

T is the perturbed detection
of landmark mi = [xi, yi]

T at time td, the correction is obtained as follows:

mi =

(√
x2d + y2d + 2α

V cos(ωsensortd)

λ

)
×

[
cos(ωsensortd)

sin(ωsensortd)

]
(6)

where λ is the wavelength of the radar signal, α a coefficient which links frequency and distance, ωsensor
the rotating rate of the sensor. If no Doppler effect has to be considered, as is the case with laser sensors,
just note that mi = md. This correction is applied to the whole set of detections M1 and M2 in the
successive scans.

So, M1 and M2 detected in their respective scans can be propagated in the world frame by their two
respective propagation functions: Mw,1 = f(M1, V, ω)

Mw,2 = g(M2, V, ω)
(7)
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For the first radar image, the function f can be expressed as:

Mw,1 = x0 +

[
cos(φ0 + ωt1) − sin(φ0 + ωt1)

sin(φ0 + ωt1) cos(φ0 + ωt1)

]
M1 +

2V

ω
sin(

ωt1
2

)

[
cos(φ0 + ωt1

2
)

sin(φ0 + ωt1
2

)

]
(8)

with t1 = arctan(y1,x1)
ωsensor

.
Similarly, for the second scan Mw,2 = g(M2, V, ω) can be easily deducted with t2 = arctan(y2,x2)+2×π

ωsensor
.

The function arctan is defined on [−π; +π].
The entire set of detections in the world frame can be easily expressed in a matricial form based

on Equation (8). Based on these equations we can conclude that distortion is linked to the velocity
parameters (V, ω), to the landmarks in the two successive scans M1 and M2, to the initial pose of the
robot (x0, φ0) and to the sensor scanning rate ωsensor. But, in fact, the only parameters that need to be
estimated are the unknown velocities and consequently the current radar pose.

4.2. Extraction of Landmarks

So far, we defined radar detections M as landmarks extracted from the radar data. This extraction is
performed using a well-known adaptive threshold technique: the Constant False Alarm Rate (CFAR)
detection [24]. CFAR processors are designed to maintain a constant false alarm rate by adjusting
the threshold for a cell under test by estimating the interference in the vicinity of the test cell. All
the undesired background signals are just denoted as “clutter”. The detection procedure distinguishes
between useful target echoes and all possible clutter situations. Clutter is not just a uniformly distributed
sequence of random variables, but it can be caused, in practical applications, by a number of different
physical sources. A classical Order-Statistic technique (referred to as OS-CFAR) is described in [25]. In
OS-CFAR, the threshold is calculated by estimating the level of the noise around the cell under test. As
the power from the tested cell can corrupt the average estimate, the direct area around the tested cell is
not considered. The size of this area is determined based on the antenna characteristics and the impulse
response function of the used radar system. The principle of CFAR processor is illustrated in Figure 9,
and in our case we extend this principle in two dimensions by considering not only a single radar power
spectrum, but also the entire radar image, across cells of differing bearing angle at constant range.

As ground radar clutter is difficult to model, CFAR processor still provides wrong landmark detections
that we need to filter out during estimation of velocities.
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Figure 9. General architecture of CFAR procedures. For a cell Y , its direct vicinity is
removed (guard cells) and local vicinity X1:N is processed. If the cell (under test) value is
greater than the ponderated local clutter power, the cell is selected as a target.
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4.3. Estimation of Velocities

In order to estimate the velocity parameters [V, ω]T , the data association between landmarks from the
two successive scans has to be done. M̂1 has to be predicted from M1 (in the first scan) onto the second
scan. A minimization technique is applied in order to calculate the function M̂1 = h(M1, V, ω) because
h cannot be calculated directly. The cost function for one landmark is given by S = (Mw,2−Mw,1)

2 or:

S(x̂1, ŷ1) = (g(M̂1, V, ω)− f(M1, V, ω))2 (9)

A gradient method with adaptive step-sizes is used to minimize this cost function. As a result,
the prediction of first radar image landmarks can be computed in the second image as well as its
uncertainty ellipsis. Data association between prediction M̂1 and landmark M2 is then calculated based
on Mahalanobis distance criteria by taking into account uncertainties of measurements and predictions.

As radar data are very noisy and ground clutter is difficult to estimate, both landmark extraction
and data association can be false. For example, the speckle effect can lead to ghost detections or false
disappearances due to the different possible combinations of radar signals. Moreover, due to multiple
reflections, radar data are not as accurate as laser data. Thus, firstly, all possible data associations have
to be considered. Then a filtering method has to be applied to filter out wrong associations.

Two assumptions are made at this point. First, the percentage of detections due to static objects has
to be sufficient. Indeed detections coming from moving objects can lead to false velocity estimates.
Moreover, if all the detections coming from moving objects are coherent and give the same velocity
estimate, the most pessimistic requirement is that 50% of the detections in the environment have to come
from static objects. Second, the vehicle equipped with the radar sensor is supposed to be moving during
two consecutive acquisitions at a constant velocity (V and ω). Actually, when the vehicle accelerates or
decelerates, the estimated velocity obtained will be the mean speed of the vehicle.

For each possible data association allowed by the Mahalanobis distance, a new estimate of the robot’s
velocity is computed and sent over to an Extended Kalman Filter process. Then, for this association
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assumption, updated speeds are projected into the velocity space with their respective uncertainties.
As a result, in this space, each association assumption votes for the robot’s velocity. Then, the global
coherence of the scene is researched by a RANSAC process [26]. This operation permits to discard
wrong detections and associations due to non-coherent velocity estimates.

At this step, we suppose that most of the remaining detections are static and well associated. The
final fusion of estimated velocities uses the Covariance Intersection (CI) method [27] in order to remain
pessimistic in the case of any residual wrong vote during fusion.

To ensure a robust process, both CFAR processor and RANSAC technique are used to minimize the
number of wrong associations. The entire process is briefly summarized in Algorithm 1.

Algorithm 1 Odometry algorithm based on rotating range sensor.
INPUT:

- 2 successive radar scans
- the last estimated robot velocities: (V, ω)

M1 ← CFAR detections from scan 1
M2 ← CFAR detections from scan 2
Prediction of detections from image 1 onto image 2:

- M̂1 ← arg min{(g(M̂1, V, ω)− f(M1, V, ω))2}
AssumptionAsso← Data association phase between M2 and M̂1

for k : AssumptionAsso do
V̂v(k)← Extended Kalman Filter update k (V, ω)

end for
Ṽinlier ← RANSAC filtering of velocities assumptions V̂v

Ṽv ← CI Fusion (V̂inlier)

OUTPUT: new estimated robot velocities V̂v = [V, ω]T

5. Results and Discussion

This section provides experimental results of the presented radar-based approach. The IMPALA radar
sensor was mounted on a utility car, on top of the vehicle, 2 meters above the ground. The experimental
runs that are presented were conducted in an outdoor field, near Clermont-Ferrand in FRANCE, on Blaise
Pascal University campus and around the Auvergne Zenith car-park (cf. aerial view in Figures 10(b),
11(b) and 12), with a semistructured environment (buildings, trees, roads, road signs, etc.). Speed
estimation has been done on different kinds of displacements, i.e., rectilinear displacement and also
classical road traffic displacement with different curves.

In order to evaluate the performance assessment of the approach, a DGPS system and an odometer
sensor were used to provide a reference trajectory and to fuse their measurements in order to estimate
the vehicle’s velocity. Radar images were recorded and post-processed as explained previously.
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Figure 10. Trajectory and map reconstruction based on IMPALA radar odometry.
(a) Estimated trajectory with IMPALA odometry: in blue the ground truth, in red the
reconstructed trajectory with the measurements of the odometer and gyrometer, and in green
radar-odometry solution; (b) Aerial view of the experimental area; (c) Map obtained based
on radar odometry with the estimated velocities.
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Figure 11. Trajectory and map reconstruction based on IMPALA radar odometry.
(a) Estimated trajectory with IMPALA odometry: in blue the ground truth, in red the
reconstructed trajectory with the measurements of the odometer and gyrometer, and in green
radar-odometry solution; (b) Aerial view of the experimental area; (c) Map obtained based
on radar odometry with the estimated velocities.
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Figure 12. Aerial view of the experimental area: La Pardieu, Clermont-Ferrand, FRANCE.

5.1. Doppler Velocimetry

As a first step, the robot’s own velocity has been estimated with different data sets acquired from
the IMPALA radar sensor. The results of velocity profile extraction based on the method described
in Section 3 are presented in Figure 13: on top, the two radar images obtained with the up and down
modulation during a single antenna rotation. For each acquired radar beam, velocity is estimated (in blue
dots) based on correlation techniques. The median least square method using covariance of the extracted
Doppler is used to select inliers Doppler detection (in red dots) and to process the robot’s velocity profile
during the acquisition (in red line). The Doppler velocity profile is estimated in green line.

Figure 13. Robot’s velocity profile estimation step: top left, up radar image, top right,
down radar image. Extracted Doppler velocity and robot’s velocity profiles in green and red
lines respectively.
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The robot’s velocity obtained during a 10-minute 2-kilometer travel is presented in Figure 14.
Maximum speed during this travel was approximately 30 km/h. Trajectory is presented on aerial image
in Figure 15. Ground truth for velocity is taken from filtered odometer data. The acquisition system
encountered a problem at the end of the experiment, so no reference is available for the last few meters.

Figure 14. Robot’s velocity profile estimation during the entire acquisition based on Doppler
effect analysis. In red, ground truth velocity is obtained with filtered odometer data. In blue
are the estimates given by the method with the associated 1 σ uncertainty in green.
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Figure 15. Estimation of velocities by the IMPALA radar-based odometry approach. (a) and
(b) represent the linear and angular velocity estimates respectively. Ground truth velocity
obtained by D-GPS and odometer is in red. In blue are the estimates given by the method.
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Doppler velocity estimation with correlation presents a standard deviation of 0.3m/s which
corresponds to the correlation resolution. The estimated speed with its respective uncertainty is presented
in Figure 13. A statistical evaluation of our Doppler odometry has been performed. The linear velocity
estimate error εV has a standard deviation σεV = 0.76 m/s and a mean ε̄V = 0.27 m/s. An error during
the classical odometer recording occurred at the end of the trajectory, which explains the 0 values on the
red data while Doppler is still estimating the velocity.

5.2. IMPALA Radar-Based Odometry and Map Reconstruction

It has been shown that the linear velocity of the vehicle can be estimated from a complete revolution
of the panoramic IMPALA radar sensor. But in order to localize the robot, both the angular and linear
velocity needs to be estimated. Then an evolution model can be used to infer the current pose of
the vehicle.

The angular and linear velocities are estimated by the proposed distortion-based approach
(cf. Section 4). Coupled with the robot’s own velocity estimation through the analysis of Doppler
effect, these observations can be used in order to recover the displacement parameters.

In order to demonstrate the efficiency of our approach, various runs were conducted, first in traffic-free
environments over a 2.5-kilometer travel at a mean speed of 6 m/s, then a 1.4-kilometer travel at 4 m/s

and finally over a 1.5-km travel at 5 m/s. Then, in order to evaluate the robustness of the approach to
dynamic environment, different experiments (for a total of 3 kilometers) are proposed in dense traffic
conditions on La Pardieu, Technological Park in Clermont-Ferrand, France.

5.2.1. Experiments on Blaise Pascal University Campus

A first run was conducted on Blaise Pascal University campus. The utility car was driven over
2.5-km at a mean speed of 6m/s. Angular and linear velocities were estimated during the entire
trajectory. These estimates were compared with ground truth. The results of velocity estimation are
presented in Figure 15.

The trajectory inferred by the velocities and the ground truth trajectory are both presented in
Figure 16. One can notice errors when the vehicle is turning at 90◦ and a divergence of the algorithm
at the end of the trajectory (in green) can be seen. The errors in the velocity estimates can be explained
by the fast variation of the vehicle’s orientation. In such conditions, the assumption of constant velocity
required by the algorithm is not respected. Similarly, by default, the radar-odometry algorithm produces
sharp curves where the angular velocity changes from−0.2 rad/s to 0.2 rad/s. As a result the algorithm
cannot converge.
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Figure 16. Localization results with radar-based odometry. (a) The D-GPS ground truth.
(b) In blue, the ground truth; in red, the vehicle localization based on dead reckoning with
the proprioceptive sensors; in green, the result with radar-based odometry.
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5.2.2. Mapping Experiments on Auvergne Zenith Car-Park

Two other experiments were conducted on Auvergne Zenith car-park. The vehicle was driven over
trajectories of 1.4-km and 1.5-km at a mean speed of 5 m/s in a static environment. The linear and
angular velocity estimates are presented in Figures 17 and 18 respectively.

For the first run, the trajectory and the map obtained based on an evolution model and velocity
estimates are presented in Figure 10. Once again, divergence can be observed at 90◦ curve due to the
violation of the assumption of constant velocity.

Similarly, trajectory and mapping results for the second test are presented in Figure 11.

Figure 17. Estimation of velocities. (a) and (b) represent the linear and angular velocity
estimates respectively. Ground truth velocity is in red. In blue the estimates given by the
method are shown.
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Figure 17. Cont.
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Figure 18. Estimation of velocities. (a) and (b) represent the linear and angular velocity
estimates respectively. Ground truth velocity is in red. The estimates given by the method
are in blue.
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5.2.3. Experiments in Dynamic Environment

In order to evaluate our algorithm in dynamic environment, experiments were conducted in dense
traffic conditions in La Pardieu, Technological Park in Clermont-Ferrand, France. An aerial view of the
experimental area is presented in Figure 12.
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An example of three consecutive radar images acquired during these experiments is presented in
Figure 19. Visual interpretation of the displacement between these radar scans is difficult, even for
a human operator, whereas the proposed approach, coupling both Doppler analysis and distortion
evaluation, gives promising results.

Figure 19. Three consecutive IMPALA radar images used for odometric and mapping
purpose: (a) t = 100 s; (b) t = 101 s; (c) t = 102 s.

(a) (b)

(c)

Different trajectories were executed at a mean speed of 4 m/s in this dynamic environment. For each
experiment, velocity estimates, localization result with ground truth and mapping are presented.

During these experiments, very few landmarks are detected in successive radar images. The number
of used landmarks is around 0 to 15 with a mean of 10 reliable detections. If no landmark is detected,
the pose prediction is only based on the evolution model with constant velocity.

The quantitative evaluations related to the trajectories and the velocity estimates have been conducted
in the same way as the previous experiments and are presented in Table 2.
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Table 2. Ego-motion results with the IMPALA radar.

Experiments Figure 20 Figure 21

εx (in m) 0.1191 −0.1781
σx (in m) 1.8560 0.8714
εy (in m) −0.3605 0.2138
σy (in m) 1.1951 0.7726
εθ (in rad) −0.0771 0.1118
σθ (in rad) 0.1902 0.3839
εV (in m/s) 0.1394 0.3702
σV (in m/s) 0.9855 0.8282
εw (in rad/s) −0.00016 0.00014
σw (in rad/s) 0.0506 0.0435

Figure 20. IMPALA odometry results in dynamic environment. (a) Linear velocity
estimation: in blue the ground truth plotted on the two graphs, in green the Doppler
estimation and in red the odometry estimation, both plotted with their respective uncertainty;
(b) Angular velocity estimation (in red) along with ground truth; (c) Estimated trajectories:
in red the IMPALA odometry, in blue the ground truth; (d) Map obtained based on the
trajectory solution.
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Figure 21. IMPALA odometry results in dynamic environment. (a) Linear velocity
estimation: in blue the ground truth plotted on the two graphs, in green the Doppler
estimation and in red the odometry estimation, both plotted with their respective uncertainty;
(b) Angular velocity estimation (in red) along with ground truth (c) Estimated trajectories:
in red the IMPALA odometry and in blue the ground truth; (d) Map obtained based on the
trajectory solution.
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6. Conclusions

An original method for the computing pose and instantaneous velocity of a mobile robot in natural
or semi-natural environments was presented using a slow rotating range sensor and considering both the
data distortion involved and the Doppler effect. The distortion formulation due to the displacement of
the sensor was established. Comparison techniques between successive scans were applied to obtain
the robot’s angular and linear velocity parameters. Even under the assumption of constant velocity, the
algorithm is robust at moderate velocity variations. The sensor used for this study was a panoramic radar
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sensor, with Doppler effect consideration, but the general formulation can easily be adapted to other
rotating range sensors. With such a kind of ground-based radar sensor, the extraction and processing
of landmarks remain a challenge because of detection ambiguity, false detection, Doppler and speckle
effects and the lack of detection descriptors. In order to deal with these problems, radar signal processing
and a voting method were implemented. The approach was evaluated on real radar data showing its
feasibility and reliability at high speed (≈30 km/h). The main novelties of the proposed approach include
considering distortion and Doppler effect as sources of information rather than as disturbances, using no
other sensor than the radar sensor, and working without any knowledge of the environment.
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