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Abstract: The star tracker is a high-accuracy attitude measurement device widely used in 

spacecraft. Its performance depends largely on the precision of the optical system 

parameters. Therefore, the analysis of the optical system parameter errors and a precise 

calibration model are crucial to the accuracy of the star tracker. Research in this field is 

relatively lacking a systematic and universal analysis up to now. This paper proposes in 

detail an approach for the synthetic error analysis of the star tracker, without the 

complicated theoretical derivation. This approach can determine the error propagation 

relationship of the star tracker, and can build intuitively and systematically an error model. 

The analysis results can be used as a foundation and a guide for the optical design, 

calibration, and compensation of the star tracker. A calibration experiment is designed and 

conducted. Excellent calibration results are achieved based on the calibration model. To 

summarize, the error analysis approach and the calibration method are proved to be 

adequate and precise, and could provide an important guarantee for the design, 

manufacture, and measurement of high-accuracy star trackers. 
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1. Introduction 

With the development of Earth-observing satellites and deep-space exploration satellites, 

requirements for attitude measurement accuracy are increasing. Thus, error analysis of the accuracy 

and calibration of the star tracker have become particularly important. 

At present, research and analysis of the effect factors on the star tracker accuracy are being 

conducted. References [1] and [2] provides a general overview of the effects of the optical parameters. 

References [3] and [4] use a geometric method to establish a complicated error model, and obtain 

variations in accuracy for a certain range of optical parameters, but most of the existing analysis 

methods discuss the effects of factors separately and qualitatively. Up to now systemic error analysis 

and accurate error propagation model are inadequate. 

Factors such as misalignment, aberration, instrument aging and temperature effects [5] could cause 

a departure of the star trackers from the ideal pinhole image model, and contribute to the attitude 

measurement error. Misalignment and aberration are time-independent, or static errors, which need to 

be calibrated prior to launch, and can be called ground-based calibration. By contrast, instrument aging 

and temperature effects are time-varying, or dynamic errors, which must be calibrated in real time, and 

can be called on-orbit calibration. This paper focuses only on the ground-based calibration method. 

The ground-based calibration of star trackers generally includes real night sky observation and 

laboratory calibration. Real night sky observation can take advantage of the characteristics of the star 

tracker utilizing the star angular distance. This method is relatively easy to apply, whereas the model 

parameters interact with one another. Obtaining the global maximum is difficult, and this method is 

greatly influenced by the environment. Laboratory calibration could use a star simulator as the source. 

However, it is not easy to manufacture a high-accuracy star simulator. 

Camera calibration techniques [6–10] can be choices for calibrating the star tracker considering that 

they are both optical imaging devices. However, there are problems for the star tracker to apply the 

calibration methods of the camera. First, most of these methods need to establish a complicated 

calibration model with scores of parameters. Good calibration results depend largely on the initial 

values and large amounts of calculation are needed for the optimization. Observability and 

convergence can be problematic. Second, the star tracker focuses more on the accuracy of the position 

of the image point, while the camera focuses more on the MTF or other image quality. Since the 

noteworthy parameters of the calibration methods of the camera and the star tracker are not exactly the 

same, the accuracy of general camera calibration techniques is not enough for the calibration 

requirement of the star tracker, which is one of the highest precision attitude measurement devices on 

the satellite. Moreover, majority of the camera calibration techniques have not considered the 

inclination of the image plane. 

Last but not the least, the optical imaging principle and focus matters of the star tracker and the 

camera are not the same due to their functions. The camera uses a finite distance imaging mode, while 

the star tracker adopts an infinite distance imaging mode. General camera calibration methods are not 

suitable for the star tracker. Taking reference [11] as an example, the cubic 3-D calibration object 

applies to camera calibration as the camera can take a clear photograph of a finite distance object, but 

the star tracker is used to take pictures of infinite distance stars, so it cannot take a clear photograph of 

the 3-D calibration object. Even though there are a few reports about how to add another high accuracy 
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lens to make this finite imaging calibration method apply to the star tracker, the accuracy and the 

position of the added lens, the accuracy of the 3-D cubic object all need to be discussed. These bring 

new troubles and are not easy to carry out. 

Therefore, the calibration method provided in literature [11] or other similar camera calibration 

methods work better on short focal length, small view field camera. Convenient calibration methods 

for large FOV and high accuracy star tracker are still problems needed to be figure out. The calibration 

method using composite mode of high accuracy autocollimator theodolite and the features of the star 

tracker proposed in the manuscript is a good choice for this topic. 

To summarize, the literature on the analysis and evaluation of the error sources of star trackers has 

not been adequate until now. This paper proposes a systematic method for weight analysis of the error 

source. Optical parameters that play key roles in the accuracy of the star tracker (such as the principal 

point deviation, focal length error, imaging plane inclination error and distortion) [1,12] are analyzed 

by the proposed method. From the analysis results, a calibration method is put forward. The calibration 

can separate the radial distortion from the image plane inclination, thus the optimization processes are 

simplified. The calibration result proves that the analysis of the optical systematic error and the 

calibration method for the high-accuracy star trackers proposed in this paper are reasonable and 

adequate, and can improve the accuracy of the star tracker. 

2. Star Tracker Mesurement Model 

The star tracker is a high-accuracy attitude measurement device, which considers the stars as the 

measuring object. It obtains the direction vector from the celestial inertial coordinate system by 

detecting the different locations of the stars on the celestial sphere. After many years of astronomical 

observations, star positions on the celestial sphere are predictable. Stars in the celestial sphere 

coordinate system can be expressed in the right ascension and declination (α,δ). Based on the 

relationship between the rectangular coordinate system and the spherical coordinate system, the 

direction vector of the stars in the rectangular coordinate system is expressed as follows: 

 

(1) 

Navigation stars are selected from the star catalog to meet the imaging requirement, and their data 

are stored in the memory of the star tracker. 

When a star tracker with attitude matrix A is in the celestial coordinate system, the ideal 

measurement model of the star tracker can be considered as a pinhole imaging system. Navigation star 

Si with direction vector vi under the celestial coordinate system can be detected through the lens, 

whereas the vector of its image can be expressed as wi in the star tracker coordinate system, as  

shown in Figure 1. 
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Figure 1. Star tracker ideal imaging model. 
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The position of the principal point of the star tracker on the image plane is (x0, y0). The position of 

the image point of navigation star    on the image plane is (xi, yi). The focal length of the star tracker is f. 

Vector wi can be expressed as follows [13]: 

 

(2) 

The relationship between wi and vi under the ideal condition can be expressed as follows, where A is 

the attitude matrix of the star tracker: 

 (3) 

When the number of navigation stars is more than two, the attitude matrix can be solved by the 

QUEST algorithm [14]. In this method, the optimal attitude matrix Aq in the inertial space of the star 

tracker can be calculated. 

3. Star Tracker Error Analysis 

3.1. Summary of the Error Sources of the Star Tracker 

The existence of errors and noise in the system are inevitable. According to the pinhole model 

shown in Figure 1 and Equation (2), the factors that directly affect the results of the attitude 

measurement of the star tracker include the extraction error of star point position, principal point error, 

error of focal length, direction vectors of the navigation stars, and attitude solution algorithm error. 

The accuracy is also related to the number of stars in the field of view (FOV). Further, the effect 

factors of the star tracker are classified as follows [1–5]: 

3.1.1. Star Vector Measurement Error 

Star vector measurement error concerns the accuracy of vector wi in Equation (3). Star vector 

measurement error includes: 
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(1) Extraction error of the star point position 

The process in which the star tracker detects the navigation stars includes background radiation, 

optical systems, photoelectric detectors and signal processing. Each segment affects the extraction 

quality of the target signal. 

Stars are far from the Earth, thus, starlight rays are considered as parallel light rays and can 

converge to a point on the focal plane. However, most star trackers adopt the defocus form [15]  

so that the image point can be diffused to cover several pixels. Using the signal energy of multiple 

pixels enables the star point-extraction accuracy to achieve a sub-pixel level. This process means that 

after considering the various factors, the extraction error of the star tracker can be considered as  

0.1 pixels [16]. This concept lays the foundation of the following analysis. 

(2) Star tracker optical parameter errors 

The star tracker system cannot achieve the ideal image model because of the principal point 

deviation, focal length error, inclination of the image plane, distortion in practical use. Therefore, it  

is necessary to establish a calibration model for above parameter errors, and analyze parameter error  

and model error. 

3.1.2. Star Catalog Error 

Star catalog errors concern the accuracy of vector vi in Equation (3). The number of stars is very 

large; hence, we must select the appropriate ones for storage in the memory and meet the performance 

requirements of the star tracker. The different stars selected may influence the star numbers that appear 

in the FOV. The star catalog set-up time could also contribute small errors in the direction vectors of 

the stars in the celestial coordinate system. But the influence can be ignored if the star catalog can be 

corrected every once in a while considering proper motion of stars. 

3.1.3. Star Tracker Internal Algorithm Error 

Star tracker internal algorithm error concerns the accuracy of the final attitude matrix A of the  

star tracker. However, algorithm errors such as star pattern recognition methods and attitude solution 

algorithm are irrelevant to this work. Among the errors enumerated above, those described in  

Section 3.1.1 exert a relatively larger effect. The error analysis in this paper focuses mainly on  

this error source. 

3.2. Error Propagation Model 

In the following analysis, we use the angle measurement error (ξA) to represent the star tracker 

accuracy. According to the pinhole image model, ξA is expressed as follows: the change in the angle 

between the incident ray and the optical axis in the FOV is called the angle of real light change (ξAR), 

and the light calculated from the star position and focal length is called the calculated light. The 

change in the angle between the calculated light and the optical axis is called the angle of calculated 

light change (ξAC). The deviation in the ξAR and ξAC is called the ξA . The ξA represents the star tracker 

attitude measurement accuracy. The optical parameter errors such as the principal point error, error of 
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focal length, inclination of the image plane and distortion influence the ξA and cause a difference 

between the ξAR and ξAC. Therefore, analysis of the effect of the different optical parameter errors on ξA 

could identify the key factors that must be calibrated, which is important in improving the star tracker 

accuracy and can provide optimization guidelines for the star tracker design. 

Figure 2 shows the sketch of complete error propagation. βri is defined as the angle between the 

incident ray and the optical axis. The initial value of βri is βr0, βr0 =0°. The maximum value of βri is 

equal to the angle of the FOV. Δβri is the ξAR, and Δβri = βri − βr0. βci is the angle between the 

calculated light and the optical axis. Δβci is the ξAC, and Δβci = βci − βc0. We made the following 

assumptions: axis e1 is along the direction of the maximum error of the principal point, and the 

inclination angle of the image plane in this direction is also the maximum of all directions. This can 

represent the worst case of error conditions. Axis e3 is the ideal optical axis of the system, and e
’
3 

represents the actual optical axis. Δs represents the deviation of the optical axis. Δf is the deviation of 

the focal length. Δx represents the star point-extraction error and Δd is the distortion value. The 

distortion discussed in this paper concerns radial distortion only. 

Figure 2. Sketch of complete error propagation. 
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Angle βci is obtained as: 
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The ξA is calculated based on the above analysis: 
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When the actual optical axis is along the positive direction of the ideal optical axis, Δs is defined as 

positive. When the inclination angle θ is in the clockwise direction, it is defined as positive. Another ξA 

form is expressed as follows: 

 (8) 

We define ξP as the position measurement error of the incident light ray. ξA and ξP describe  

the measurement error in different views, however, they can be transformed from one form to the 

other. ξA is more concerned with the accuracy of the star tracker, whereas ξP is more suitable for using 

in the calibration. 

3.3. Star Tracker Optical Parameter Errors Simulation 

We adopt two methods to discuss the error effects. First, we use the Monte Carlo (MC) stochastic 

modeling method. In this method, it is assumed that the errors after calibration, such as noise, 

inclination angle, focal length and principal point errors are random errors. These errors are considered 

to coincide with the normal distribution. In addition, the number of stars that can be captured in the sky 

is more than 6,000. Therefore, it is reasonable to consider the incident angle in the FOV as uniformly 

distributed. Based on the two statistical assumptions, we can combine the geometry and MC random 

models, and develop the complete error effect analysis. Second, we use the maximum error method to 

prove the simulation result of the MC method. This method can easily identify the error distribution of 

the different incident angles. Analysis of the position of the maximum error can also provide 

information for further study. The object analyzed in this paper is a star tracker of 7″ accuracy and the 

FOV is 17°. The focal length of the system is approximately 49.74 mm. The star tracker adopts the 

APS CMOS image sensor with 1,024 × 1,024 pixels, and the size of each pixel is 0.015 mm. 

3.3.1. MC Error Analysis Method 

The MC method [17] used the statistical rule of random numbers for the calculation and simulation. 

The following subjects analyze the single factor and the combination of factors using the MC method. 

Using a 1,000,000 times simulation, the statistical results are obtained. The simulation is conducted 

with an 8.5° incident angle. 

Then, combination error analysis using the MC stochastic simulation is conducted. The     

satisfies the distribution rule: μ = −0.0225, σ = 4.4218″. The accuracy is in the range of  

μ−3σ~μ+3σ = −13.2881~13.2430″. Considering that at least 4 stars can be captured in the normal 

working state, the simulation boresight accuracy can be calculated as: −13.2881/  ~13.2430/   = 

(−6.6440″~6.6215″). Thus, the allocation of permissible errors of the star tracker with a 7″ accuracy  

is obtained. 

Table 1 and Figure 3 show that, for the analyzed system, error of star point extraction, error of 

principal point, error of focal length, error of inclination of the image plane and distortion are 

respectively distributed in the range of 0.1 pixels, 4.5 pixels, 0.6 pixels, 0.075° and twenty thousandth, 

they bring the ξA to the same level. Considering their combined effects can ensure the accuracy of the 

star tracker. 
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Table 1. Single-error factor analysis using MC stochastic simulation. 

Item Distribution of the Item Distribution of    

Error of star point 

extraction: 

                   

(Gaussian distribution) 
                  ″  

Error of principal point: 
                   

(Gaussian distribution) 
                   ″  

Error of focal length: 
                   

(Gaussian distribution) 
                   ″  

Error of inclination angle: 
               

(Gaussian distribution) 
                  ″  

Distortion: 
                    

(Gaussian distribution) 
                   ″  

Figure 3. Synthetic analysis result using MC stochastic simulation. 
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3.3.2. Simulation of the Maximum Error Method 

We conduct a simulation using Maximum Error Method to compare with the method in Section 3.3.1 

based on the error propagation model in Section 3.2 and the system parameters of the star tracker, as 

well as the range of the star point extraction error, the principal point error, focal length error, 

inclination of the image plane and distortion. The incident angle     is in the range of 0–8.5° and the 

focal length is approximately 49.74 mm. Under the simulation conditions, the effect of the error of star 

point extraction on the star tracker accuracy, along with the incident angle is shown in Figure 4. 

Under the simulation conditions, the effect of the error of the principal point on the star tracker 

accuracy, along with the incident angle is shown in Figure 5. 

Under the simulation conditions, the effect of the error of focal length on the star tracker accuracy, 

along with the incident angle is shown in Figure 6. 
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Figure 4. Influence of the star point extraction error on the star tracker accuracy. (a) is 

obtained when the star point extraction error Δx is among the range from −0.1 pixels to  

0.1 pixels; (b) is the contour line of (a). 
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(a) (b) 

Figure 5. Influence of the principal point error on the star tracker accuracy. (a) is obtained 

when ∆s is among the range from −4.5pixels to 4.5 pixels; (b) is the contour line of (a). 
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(a) (b) 

Figure 6. Influence of the focal length error on the star tracker accuracy. (a) is obtained 

when ∆f is within the range from −0.6 pixels to 0.6 pixels; (b) is the contour line of (a). 
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Under the simulation conditions, the effect of the error of inclination image plane on the star tracker 

accuracy, along with the incident angle is shown in Figure 7. 

Figure 7. Influence of the inclination angle error on the star tracker accuracy. (a) is 

obtained when θ is in the range from 0° to 0.075°.(b) is the contour line of (a). (c) is 

obtained when θ is in the range from −0.075° to 0°, and (d) is the contour line of (c). 
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(c) (d) 

Under the simulation conditions, the effect of the error due to distortion on the star tracker accuracy, 

along with the incident angle is shown in Figure 8. 

Figure 8. Influence of the distortion on the star sensor accuracy. (a) is obtained when the 

relative distortion is approximately 2/10,000th; and (b) is obtained when the relative 

distortion is approximately 1/1,000th. 
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The simulation results show that the error effects obtained by the maximum error method agree 

with the results obtained by the MC simulation method. We can also find that inclination of the image 

plane and the distortion are two key factors that need to be calibrated. The calibration method will be 

elaborated in the next section. 

3.4. Conclusion of the Star Tracker Error Analysis 

Optical systematic error analysis method proposed in this paper can perform analysis on the 

sensitivity of factors (such as the error of star position extraction error, position error of principal 

point, error of focal length, inclination of the image plane and the distortion) that may influence the 

accuracy of the star tracker. 

The above analysis of the system error can be applied in the following areas: (1) reference for the 

calibration target, i.e., if the five indicators are simultaneously satisfied, the calibration results could 

meet the requirements; (2) analysis for the highest accuracy of the system; and (3) determining the 

major factors that emphasized the calibration experiment. 

For application (1) above, because of the limitations in the calibration method, the effect factors 

cannot be separated from one another. Thus, determining whether the five indicators are all satisfied is 

difficult. Therefore, the proposed method is used primarily in the determination and demonstration of 

the design indicators. For application (3), some of the restrictions in certain error range can easily 

meet, such as the principal point position error, whereas satisfying the others are more difficult. These 

error factors need to be calibrated elaborately, such as the inclination angle of the image plane and the 

distortion. Therefore, emphasis on the calibration method is related to the system parameters. The 

calibration method and the processes are designed according to the characteristics of the system, so 

that the ξA or ξP of the star tracker is within the design range. 

4. Laboratory Calibration Method 

4.1. Star Tracker Calibration Device 

The calibration object of this paper is a star tracker with 7″ accuracy. Based on the result of the 

above analysis, optical parameters of the system are calibrated. The laboratory calibration of the star 

tracker can be performed using a three-axis turntable and a collimator or an autocollimator theodolite. 

In essence, their operating principle is the same. However, because the collimator does not have a  

self-collimation function, which could introduce trouble to the calibration of the principal point, we 

adopt the autocollimator theodolite. 

The autocollimator theodolite we employ in the experiment is the Leica 6100A. Figure 9(a) shows 

its external view. It has a small size, high accuracy 0.5″ and simple operation. We can use its  

auto-collimation eyepiece to determine whether the crosslines coincide, as shown in Figure 9(b). Other 

experiment devices consist of the optical table and auxiliary fixtures. It is worth noting that the 

aperture of the autocollimator should be comparable or larger than the aperture of the star tracker in 

order to avoid vignetting. 
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Figure 9. (a) External view; (b) Internal structure of the autocollimator Theodolite 6100A. 
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4.2. Calibration Algorithm and Experiment 

According to the analysis in Section 3, the calibration objective should be focused on the  

inclination of the image plane and the distortion. The basic block diagram of the calibration process is  

shown in Figure 10. 

Figure 10. Calibration flow diagram. 
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4.2.1. Coordinate System 

For better representation of the location and the relationship, we create the coordinate systems as in 

Figure 11. Axes XC YC in coordinate system CSC represent the movement directions of the outgoing 

light rays of the theodolite in the two orthogonal axes, respectively. ZC, XC and YC comply with the 
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right-hand rule. Coordinate system CSN represents the normalized coordinate of the focal plane. The 

positive directions of XC YC are consistent with the directions of the increase in the image pixel value. 

The coordinate origin is the same as the optical system principal point. The distance between CSN and 

the pinhole is normalized to one. Coordinate system CSOXY has the same direction as that of CSN, and 

the only difference is that the distance between CSOXY and the pinhole is equal to the focal length f. 

CSOUV represents the actual coordinate system of the image plane. The positive directions of u, v are 

consistent with the directions of the increase in the image pixel value. The coordinate origin is at the 

zero pixel of the image plane, and the optical system principal point can be expressed as (u0, v0). The 

distance between CSOUV and the pinhole is f . The axes of CSO′U′V′ and CSOUV have the same direction, 

with the coordinate origin O′ is the same as the principal point. Ideally, CSO′U′V′ coincides with CSOXY. 

Angle α is the longitude value of the outgoing light ray of theodolite in coordinate system CSC, 

whereas δ is the latitude value. Angle φ is the angle between the axis XC and axis XN. Thus, the 

coordinates of the ideal pinhole imaging model are established as shown in Figure 11. The relationship 

of the parameters are presented in Equations (9)–(11). 

Figure 11. Coordinate systems in the ideal pinhole imaging model. 
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Angle αis positive along the positive direction of XC, whereas it is negative along the negative 

direction of XC. Angle δ is positive along the positive direction of YC, whereas it is negative along the 

negative direction of YC. When the angle from XN to XC is counterclockwise, angle φ is considered as 

positive. The ideal pinhole imaging model cannot be achieved in practical application. There are 

position errors of principal point, focal length error, inclination of image plane and distortion to cause 
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the CSO'U'V' departure from CSOXY as shown in Figure 12, and the equations above are invalid. It is 

necessary to estimate the parameters by calibration. 

Figure 12. Coordinate systems in the case of errors. 
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4.2.2. Description of the Calibration Experiment Operating 

First, we adjust the theodolite to ensure that its outgoing light travels only along the longitude 

direction. The latitude value does not change during this process. Imaging conducted at every 0.5° can 

yield a series of measured values that determines the external parameters. 

Then, according to the 17° FOV of the star tracker, we adjust the theodolite so that its light  

travels along the two orthogonal directions as shown in Figure 13 while conducting imaging at every 

0.5°. If any of the two directions satisfies the requirement of the first step, two steps can be combined 

to determine the internal parameter of the star tracker. Because the outgoing rays of the theodolite are 

crosslines, the images on the image plane appear similar to that shown in Figure 13(b). It is worth 

mentioning that the star tracker is supposed to be settled on the same optical table with the  

auto-collimation theodolite to avoid relative vibration. Considering that our experiment is conducted at 

the State Key Laboratory of Precision Measurement Technology and Instruments, the floor of the 

laboratory has been treated with vibration isolation. So the relative vibration could be reduced and 

ignored in the calibration form in Figure 13(a), and it is easier to adjust the relative position of the 

theodolite and the star tracker with the tripod. 

Figure 13. (a) Calibration experiment device; (b) Imaging method sketch map. 
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4.2.3. Image Processing 

The image obtained by the star tracker is shown in Figure 14. An appropriate image processing 

method should be adopted to obtain the precise center position of the crossline which represents the 

outgoing ray of the theodolite. For the pixels in the first area, we regard the pixels in the same row as a 

group, and determine their gray value center of gravity (i.e., weighted average). For the pixels in the 

second area, we consider pixels in the same column as a group, and also determine their gray value 

center. The centers of gravity are marked with a circle as shown in Figure 15. Finally, we use the least 

square method to fit the two straight lines. The point of intersection of the two lines is considered as 

the center of the crossline. This work provides a basis for further algorithm. Since the light intensity of 

the theodolite could be adjusted by a knob, obtaining image before experiment and observing whether 

the image is saturation is also important. 

Figure 14. Image of the emergent crossline of the theodolite. (a) is original image; (b) is 

partially enlarged view. 

 

Figure 15. Sketch map of the solution of the gravity center of the cross-line. 
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4.2.4. Calibration Process 

External Parameter Estimation 

The series of point coordinate values obtained in Section 4.2.2 can be used to solve angle φ between 

the XC-axis of coordinate system CSC and the XN-axis of CSN. Symbol n represents the number of 

sampling points: 
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Linear fitting can also be adopted to solve the value of φ besides Equation (12). 

Optical Parameter Estimation 

The positions of the series of specific points are obtained according to the above discussion and 

preparation. The characteristics of these points include the following: the test points are distributed in 

two orthogonal directions and the test points in the same direction are almost centrosymmetrical. 

Taking advantage of relationship between the symmetric points, we build a calibration model, shown 

in Figure 16. In the actual calibration process, we try to make one of α, δ equal to zero for simplicity of 

the calculation. In reality, no restriction is imposed on the theodolite longitude and latitude angle, and 

the two orthogonal directions formed by the test points do not necessarily coincide with any of the 

defined coordinates. For the general situation, we name the two orthogonal directions distributed with 

the test points as L1 and L2 . βi is the synthesis angle of the theodolite longitude and latitude. When 

there are distortion and inclination of the image plane in the system, the imaging model is shown in 

Figure 16. βi+ and βi− respectively represent the incident angles of the two centrosymmetric points in 

the same test direction. PIi+ and PIi− are the ideal image point positions corresponding to the incident 

light rays when no distortion and inclination of image plane occurs. PDi+ and PDi− are the positions of 

the image points when distortion is present but with no inclination of the image plane. PTi+ and PTi− are 

the positions of the image points with the presence of image plane inclination but with no distortion. 

PRi+ and PRi− are the positions of the image points when both distortion and inclination of the image 

plane are present. 

Figure 16. Calibration schematic diagram. 
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length f, distortion coefficients α1, α2, α3, α4, α5 and the inclination angle corresponding to the test 

direction. Finally, the calibration model for the entire image plane is obtained. This method is 

elaborated as follows: 

(1) Firstly, we adjust the auto-collimation theodolite, and ensure that the crossline in the theodolite 

eyepiece is coincident with the specular reflection image of the star tracker glass shield, as shown in 

Figure 17. We consider that the boresight of the theodolite is coincident with the spindle of the star 

tracker lens. The imaging position of the crossline on the image plane is considered as the principal 

point (u0, v0) of the system. 

Figure 17. Principal point measurement principle. 
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(2) Secondly, we can obtain a series of focal lengths utilizing the incident light in different 

directions and their image point (uRi, vRi). The average focal length is considered as the focal length 

value of the system. n represents the number of test points except for the principal point: 

 (13) 

 
(14) 

(3) The simulation results shown in Figure 18 prove that when the incident angle |βi| < 8.5°, 

inclination angle |θ| < 0.8°, there are following rules of example points: |PTi+PTi−| = |PIi+ PIi−|. As 

shown in Figure 18, the errors between the two segments are less than 0.1 pixels, which is less than the 

extraction accuracy of the star tracker. Using the same simulation method, we find that the segments 

|PRi−PTi−|, |PRi+PTi+|, |PDi+PIi+| and |PDi−PIi−| are equal to one another, whereas the errors are extremely 

small as shown in Figure 19. Therefore, we consider (|PIi+PIi−| − |PRi+PRi−|)/2 as the radial distortion 

value at point PRi+ or PRi−, and this concept is an important basis of our calibration method. 
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Figure 18. Error between the ideal and real distances of the symmetric points. The Z-axis 

represents the value (|PTi+PTi−| − |PIi+PIi−|)/pixel. 
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Figure 19. Relationship of the different distortion expressions. Z-axis of (a) represents 

(|PTi−PRi−| − |PTi+PRi+|)/pixel; Z-axis of (b) represents (|PTi−PRi−| − |PIi−PDi−|)/pixel; Z-axis of 

(c) represents (|PTi+PRi+| − |PIi−PDi−|)/pixel. 
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From the multiple groups of symmetrical points, we can obtain optimized distortion coefficients a1, 

a2, a3, a4, a5 by linear least-squares fitting. The form of distortion can be chosen according to the 

distortion values in different cases. Here we adopt 
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(4) When the principal point, focal length and distortion coefficients are determined, the inclination 

angle of the image plane can be obtained using the geometric relationship, and the average value can 

be calculated using the multiple-set of symmetrical points. 
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Equation (18) is suitable for the symmetric points. When |OPRi| + Δi > |OPIi|, θi is defined positive; 

when |OPRi| + Δi < |OPIi|, θi is defined negative. 

So far, the principal point, the focal length, the radial distortion coefficients and the inclination 

angle of image plane in one direction are obtained. The principal point, focal length, and radial 

distortion coefficients are suitable for the entire plane. Inclination angle in the other measurement 

direction can be obtained in the same manner. 

Calibration Model Applied to the Entire Image Plane 

The inclination angle in the two measurement directions is not sufficient. The ultimate goal of 

calibration experiment is to obtain an ideal image position of incident rays from any direction in the 

FOV. Based on the parameters obtained above, there are many methods to solve this problem. We 

adopt a coordinate transformation method, and establish a coordinate transformation framework for 

incident rays. Therefore, we make the following analysis. 

We can obtain the position of point PIi+ as (xIi+, yIi+, 0) in the coordinate system CSOXY by 

considering the longitude and latitude of the incident ray, external parameter φ, focal length f and 

Equations (9)–(11). Then, the straight line OCPIi+ can be expressed as:  

 (19) 

Considering the angle  PIi + OPTi+ = |θi| and the positive or negative of the angle value, the position 

of point PTi+ in coordinate system CSOXY can be solved though the following equations:  

 (20) 

Thus, the position of point PTi+ is obtained (xTi+, yTi+, kTi+). The position of point PTi− can also be 

obtained in the same way. So far, the positions of the multiple sets of points as PTi+ and PTi− in both the 

two measurement direction in CSOXY can be obtained. Therefore, the plane equation of actual image 

plane with inclination O′U′V′ in coordinate system CSOXY can be expressed as p(O′U′V′). 

The transformation matrix from coordinate system CSOXY to coordinate system CSO′U′V′ can be 

obtained at the same time: 

 (21) 

R1 and R2 are the coordinate system transformation matrices. 
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Thus, the whole parameter estimation model of the optical system of the star tracker is completed. 
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For any point on the image plane of the incident ray, we can determine its position in CSO′U′V′ as 

(uRi+−u0, vRi+−v0, 0). The position of point PTi+ can be calculated by considering the distortion as 

(uTi+−u0, vTi+−v0, 0). According to the coordinate system transformation matrix, the position of point 

PTi+ in CSOXY can be calculated as:  

 (22) 

The equation for straight line OCPTi+ can be obtained. Further, by solving the position of the point 

of intersection of straight line OCPTi+ and plane OXY, the point of intersection GIi+ is the ideal position 

of point PRi+. Thus, the ideal image position of the incident ray can be obtained. This solution is 

particularly important for the star pattern recognition and attitude solution of the star tracker. 

4.3. Calibration Results and Discussions 

4.3.1. Error Analysis 

In the calibration process described in Section 4.2.4.2, the principal point position is obtained and 

considered as its true position. In reality however, due to lens installation, accuracy in manufacture as 

well as the limitations in the eyepiece alignment when using the theodolite, a deviation error of the 

optical axis is inevitable. That is to say, there may be an error β0 between the optical axis obtained in 

Section 4.2.4.2 and the true optical axis of the lens. Maximum value of β0 is approximately 40″ in this 

calibration system, consisting of 30″ installation error of the lens and 10″ eyepiece alignment error. In 

this situation, the optical axis error will cause the deviation error of principal point, the focal length 

and inclination angle. The specific effect analysis is described as follows: 

As shown in Figure 20(b), assuming the deviation error of the optical axis is 40″ as analyzed above, 

the position error of principal point is about f∙tan(40″) (equal to 0.64 pixels); the error of inclination 

angle is approximately 0.01°. The errors due to the focal length and the distortion are merged and the 

residual error of the distortion after calibration is within 0.1 pixels. Because the light ray is brighter 

than a real star in practical use, the signal to noise ratio is higher and the extraction error of the light 

ray position can reach approximately 0.05 pixels. We can use the MC error analysis method described 

in Section 3.3.1 to determine the ξA and ξP . 

Figure 20. (a) Principal optic axis deviation error and its effect; (b) Its effect on the 

calibration process. 
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The ξA meets distribution rule: μ = 0.0034, σ = 2.1192″. The ξP meets distribution rule: μ= 0.0007, 

σ = 0.0338 pixels. We adopt ξP as the basis of the calibration target. That means the calibration 

residual error should in the range of μ+3σ distribution of ξP. 

4.3.2. Calibration Results and Discussion 

The calibration experiment is conducted in the laboratory. From the above analysis, we can know 

the longitude angle αi and latitude angle δi of the incident ray of the theodolite. We also can obtain the 

position of point as PRi+ or PRi− by the image processing mentioned in Section 4.2.3. Then we do the 

same procedure as Section 4.2.4.3, and calculate the position of point GIi+. The position of point  

PIi+ can be also obtained through Equations (9)–(11). Comparing the two positions, the calibration 

model is proved to be effective and adequate if the error between the two positions is less than the 

ξP  for points on the image plane at any incident light angle. In the experiment, we conduct two 

orthogonal direction measurements to get the parameters and the calibration model. Then we conducted 

measurements in another two independent and orthogonal directions that have an angle of 45° or 135° 

with the 1st measurement direction L1 to prove the analysis and calibration model in this paper. 

(1) As described in Section 4.2.4.1, we can firstly obtain external parameter φ using a linear  

fitting method. Measurement points and linear fitting curve are showed in Figure 21. 

Figure 21. Measurement points and linear fitting curve (a). (b) and (c) show the two fitting 

curves separately. 

 

(a) 

  

(b) (c) 
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Solving the slope of the line can determine the value of φ. In our experiment, the slope of the  

two lines are −0.003968 and 0.003949, and root mean squared errors (RMSE) are 0.1614 and  

0.0576 pixels. So the values of φ are 0.2273° and 0.2263°. We adopt 0.2268° as the value of φ. 

(2) As described in Section 4.2.4.2—(1), we can obtain the position of the principal point as 

(515.1859, 514.2069) pixels. 

(3) As described in Section 4.2.4.2—(2), we can obtain a series of focal lengths utilizing the 

incident light in different directions and their image point (uRi, vRi) . The estimations of f is shown  

in Figure 22. 

Figure 22. Estimations of f. (a) is the result of 1st measurement direction L1, and (b) is the 

result of 2nd measurement direction L2. Points in red and in blue represent centrosymmetry 

incident light rays separately. 

  

(a) (b) 

Theoretically, the values of the calculated focal lengths are equal. However, distortion can cause 

departure of the calculated focal lengths in different incident angles. Inclination of the image plane 

may cause deviation even when points are in centrosymmetry incident angles. Therefore, the 

estimations of f in Figure 22 is reasonable. We determine the focal length of the system as  

3319.15 pixels using Equation (14). An initial estimate of f is adequate for calibration model as long as 

the radial distortion and other calibration parameters are matched with it. 

(4) As described in Section 4.2.4.2—(3), we can obtain the distortion values Δi using Equation (16). 

The values are shown in Table 2. 

Table 2. Distortion values. 

Item 
1st Measurement Direction 2nd Measurement Direction 

            

1 29.0039 −0.021951 28.9778 −0.041757 

2 58.0162 −0.050355 57.9644 −0.042748 

3 87.0237 −0.065911 86.9740 −0.061112 

4 116.0016 −0.076456 115.9721 −0.061893 

5 145.0044 −0.079762 144.9961 −0.067778 

6 174.0553 −0.082395 174.0393 −0.065835 

7 203.1132 −0.079229 203.0897 −0.048521 
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Table 2. Cont. 

Item 
1st Measurement Direction 2nd Measurement Direction 

            

8 232.1929 −0.063527 232.1630 −0.019044 

9 261.2868 −0.037760 261.2486 0.018263 

10 290.4139 0.007676 290.4194 0.039629 

11 319.5688 0.084626 319.6433 0.061659 

12 348.7565 0.164076 348.8699 0.095181 

13 378.0469 0.194652 378.0526 0.226332 

14 407.3608 0.258506 407.3291 0.330992 

15 436.6681 0.383765 436.7842 0.321828 

16 466.1053 0.461704 466.1020 0.503454 

17 495.6124 0.545419 495.6529 0.536663 

(5) We use linear least squares fitting to obtain the distortion curve. The fitting result is shown as 

follows, and Figure 23(b) shows that the residual error of the distortion after calibration can meet the 

calibration requirement analyzed in Section 3.3. 

Figure 23. Distortion curve. (a) is fitting distortion curve and (b) is residual errors of 

distortion after calibration. 

 

(a) 

 

(b) 
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Calibration result is summarized in Table 3: 

Table 3. Calibration result. 

Item Value 

     0.2268 

Principal point (pixels) (515.1859, 514.2069 ) 

Focal length  (pixels) 3319.15 

   −7.038e − 04 

   −2.344e − 06 

   2.4705e − 08 

   −2.7031e − 11 

   3.1804e − 15 

Inclination angle of the  

image plane( ) (  direction) 
0.1469 (        ) 

Inclination angle of the  

image plane( ) (   direction) 
0.0524 (        ) 

After calibration, we can obtain the calibrated image point position of the incident light in  

different directions. The estimations of f can be conducted again to show the effect of the calibration 

(Figure 24) compared to the initial values in Figure 22. We can see from Figure 24 that the values of 

focal length do not change with the incident angles any more. They are in a range of 1 pixels  

(standard deviation ≈0.23 pixels). This can also demonstrate that the residual errors are improved after 

calibration. The position error between points GIi+ and PIi+ is shown in Figure 25. 

Figure 24. Re-estimations of f. (a) is the result of 1st measurement direction L1;  

and (b) is the result of 2nd measurement direction L2. Points in red and in blue represent 

centrosymmetry incident light rays separately. 

  

(a) (b) 

We can see from Figure 25 that the position errors in the entire FOV are within the ξP and in 

accordance with analysis in Section 4.3.1. The results demonstrate that the point position errors can be 

kept within the ξP after calibration. Based on MC analysis, the accuracy of this calibration method can 

reach 7″, which related to the focal length and the FOV of the system. The accuracy of the star tracker 
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is supposed to be better than 4.5″ after calibration, compared with the worse accuracy of more than 10" 

if no calibration is conducted. 

Figure 25. Calibration residual error. 

 

5. Summary and Conclusions 

A synthetic error analysis approach for the star tracker has been proposed in detail in this paper. 

This approach can provide the error propagation relationship of the star tracker. Based on the analysis 

results, a calibration experiment is designed and conducted. Excellent calibration results are achieved. 

The calibration experiment can not only guarantee the accuracy to meet the design requirement, but 

can even improve the accuracy of the star tracker to a higher level. To summarize, the error analysis 

approach and the calibration method are proved to be adequate and precise, and are very important for 

the design, manufacture, and measurement of high-accuracy star trackers. 
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