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Abstract: In this paper, an adaptive law with an integral action is designed and 

implemented on a DC motor by employing a rotary encoder and tachometer sensors. The 

stability is proved by using the Lyapunov function. The tracking errors asymptotically 

converge to zero according to the Barbalat lemma. The tracking performance is specified 

by a reference model, the convergence rate of Lyapunov function is specified by the matrix 

Q and the control action and the state weighting are restricted by the matrix  . The 

experimental results demonstrate the effectiveness of the proposed control. The maximum 

errors of the position and velocity with the integral action are reduced from 0.4 V and 1.5 V 

to 0.2 V and 0.4 V, respectively. The adaptive control with the integral action gives 

satisfactory performance, even when it suffers from input disturbance. 
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1. Introduction 

Various electromechanical motors have been used for industrial applications, e.g., electric motors, 

piezomotors and hydraulic actuators. Generally, it is necessary to enhance the motor performance with 

the feedback control based on state measurements. Khorrami et al., used linear motors to establish 

ultra-accurate high-speed six degree-of-freedom manipulation [1]. To measure the angle and speed of 

motor shafts, rotary encoders and tachometer sensors have been widely used because of their high 

performance and reliability [2–4]. 

As digital angle-measuring sensors, rotary encoders consist of optics, mechanics and electronics. 

Compared to analog angle-measuring sensors, digital rotary encoders have simple structures while 

preserving high accuracy. In order to achieve accurate motion control, the velocity can be measured by 

using tachometer sensors which usually consist of tachogenerators and circuits. The tachogenerator can 

also give the voltage output which is proportional to the speed of the rotational motor. 

To achieve precise motion, it is necessary to measure and input both the angle and the speed of 

motor shafts by employing a rotary encoder and tachometer sensors. Based on the angle and speed 

sensors, various controllers have been designed for motors [5,6]. Generally, motors can be controlled 

by conventional PID controllers. Nikulin and Frantsuzova presented a modified PD controller to 

ensure the desired system speed and damping vibrations [7]. Chaiya and Kaitwanidvilai provided a 

robust PID controller which could control the motor speed [8], but PID controllers have limited 

performance in the presence of disturbances and uncertainties. Xu and Yang presented a simple and 

robust speed control scheme for a permanent magnet synchronous motor to enhance the performance 

robustness [9]. Nouri et al., proposed a model-following adaptive controller for the speed control of a 

motor drive system [10]. Melkote and Khorrami proposed adaptive control for direct drive brushless 

DC motors [11]. Moreover, intelligent algorithms have also been investigated [12–15]. Fallahi and 

Azadi added neural network sliding mode control to enhance the adaptive control of motors [16]. 

However, intelligent controllers are usually very complex. It is difficult for engineers to design and 

optimize intelligent controllers, e.g., Xu and Huang [17] designed an iterative learning controller 

(ILC), but found that the reference signal had to be pre-filtered in order to satisfy the complex initial 

conditions of ILC. Furthermore, several accurate models were identified at different voltage ranges, 

and the iterations were implemented offline. 

This paper uses Model Reference Adaptive Control (MRAC), which is a convenient approach to 

satisfy the requirements of designers [18]. The general idea of MRAC is to create a closed loop 

regulator with parameters that could be updated to match a desired response. The desired performance 

is specified by a stable reference model, and the parameters of the adaptive law are adjusted based on 

the errors between the reference model and the plant, as shown in Figure 1. 

Though the adaptive control has shown its effectiveness in achieving robust performance without 

the knowledge of parameter values, a comprehensive design approach is still necessary for engineering 

applications. In order to obtain high-performance adaptive control in the presence of disturbances, this 

paper presents a comprehensive design approach in which both the bandwidth and damping ratio can 

be included in the proposed controller. 
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Figure 1. MRAC control sketch of the motor. 

 

In this paper, two kinds of MRAC are designed and then used on a motor by employing a rotary 

encoder and tachometer sensors. The tracking error can converge to zero with the integral action in the 

presence of input disturbances. The experimental results are presented to investigate the effectiveness 

of the proposed control approach. 

2. Adaptive Control Design without the Integral Action 

2.1. Angle and Speed Sensors 

Figure 2 shows the experimental setup. It consists of a DC motor, a computer with LabView 

software, a drive interface, an amplifier, a tachometer sensor and a rotary encoder. The tachometer 

sensor is used to measure the rotation speed of the motor shaft. The output voltage of the tachogenertor 

(i.e., tachometer generator—a device to measure the rotational rate of the motor shaft with the 

internally generated electrical signal generated by the motor shaft) is proportional to the motor speed. 

Then, the voltage is applied to the voltmeter in which the dial can be calibrated in speed units  

(i.e., usually in revolutions per minute (rpm)). In addition, a rotary encoder is used to measure the 

linear rotation angle of the motor draft. The rotary encoder can convert the ration angle to digital 

voltage. Thus, both the angle and speed can be measured and controlled. 

Figure 2. Sketch of the motor experiment. 
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After calibration, the generated voltage is a factor of the motor speed. Then, the motor speed can be 

fed to the adaptive controller. Next, Figure 3 is given to present the working principle of the rotary 

encoder in which phase A, phase B, and phase Z are the three-phase models to represent the output 

signal counts for an incremental encoder [19]. The rotary encoder consists of the main grating, index 

grating, illuminant and photosensitive device. In this paper, an incremental encoder is used because of 

its simplification, small size and high-speed response. There is one impulse corresponding to every 

grating. The summation of impulses represents the angle position of the motor. 

Figure 3. Working principle of the rotary encoder. 

 

2.2. Adaptive Controller Design and Stability Proof 

This section presents a design method of the adaptive control without the integral action. The 

stability proof is also presented. To achieve good tracking performance, a MRAC is designed to drive 

the tracking error to zero. Considering simplification, the transfer function in Equation (1) is used to 

give the motor dynamics: 

)1( ss

K
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 (1) 

where K denotes the DC gain of the velocity transfer function, and   denotes the time constant.   are 

unknown parameters, but their signs can be tested in the experiment. The state space model of 

Equation (1) can be rewritten in Equation (2):  
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To specify the desired performance, this paper employs a stable reference model as shown in 

Equation (3), from which the domain and frequency index can be specified: 
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where   is the damping ratio and n  is the natural frequency of the reference model. The corresponding 

state space description can be given as:  
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Equation (4) can be further written as: 

brgxAx mmmm   

The following non-adaptive control law is used: 

rxu rp

T

x

**    (5) 

where 
*

x  and *

r  are the exact gains of the controller Equation (5). 

Then, the closed loop system can be given by:  

  brgxgbAx rp

T

xpp )( **    (6) 

The feedback control system achieves the performance as the matching condition below:  
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The exact control gains 
T

x

*  and *

r  guarantee that the closed loop system matches the reference 

model. Actually, the exact values of 
T

x

*  and *

r  are unknown. The controller in Equation (5) can be 

rewritten to: 

)()( trxxu rp

T

x    (8) 

where 
T

x  and r  can be determined by the adaptation law in Equation (9):  

Pbxeg T )sgn(22*    (9) 

where *  is a constant or the slow time-variant parameter (i.e.,   *
). 

The adaptive control law is nonlinear, as shown in Figure 4. 

Figure 4. Adaptive control block. 

 

To give the tracking performance, the parameter errors x  and r  are defined by:  
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Then, the closed loop system can be rewritten to: 
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Next, let e be the state error and mp xxe  . 

By comparing the closed loop system in Equation (11) with the reference model in Equation (5), the 

dynamics of the tracking error e can be given: 
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In the reference model in Equation (4), a stable matrix is used for mA  that can satisfy the algebraic 

Riccati Equation (13) (i.e., for any symmetric positive definite matrix Q, there is a symmetric positive 

definite matrix P satisfying Equation (13)):  

QPAPA m

T

m   (13) 

To prove the stability, a Lyapunov function candidate is used as follows:  

 1 ),(  TT gPeeeV  (14) 

where   is a positive definite matrix. 

The time derivative of the Lyapunov function candidate can be given: 
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Then, Equation (15) can be rewritten to:  
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where ggg )sgn( , xT  is a scalar. 

Thus, the system is stable according to the Lyapunov theorem [20]. Moreover, e , e ,  , nx , x  

and r  are bounded, and: 
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According to the Barbalat lemma [20] here RV ],0[:  is a uniformly continuous function on 

],0[  . Supposing 
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Here e  is bounded. Furthermore:  
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According to the Barbalat lemma, the tracking error e is asymptotically stable and 0lim e   

(i.e., 0)lim(  nm xx ). 

To improve the adaptation rate, the proportional action can be added to the adaptive law [14]. 

Finally, the adaptive law can be given in Equation (17): 

1211 )sgn()sgn(( ekdtek pp    (17) 

where 11   and 5.02  , and they are used in experiments. 

2.3. Experimental Studies of Adaptive Control without the Integral Action 

Experimental studies of the adaptive control are now presented. Firstly,   can be used to give the 

convergence rate of the adaptive law, as shown in Equation (18):  
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After several trials, the reference model is given: 
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The selection of Q means that the position tracking is more important than the velocity tracking. 

Moreover, the sampling interval  should be less than the max interval in order to handle the fastest 

adaptation rate [18]: 
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The matrix P is solved by the ARE in Equation (13): 
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The tracking performance of the adaptive control is shown in Figures 5 and 6. It can be found that 

the tracking errors of angular position and velocity asymptotically converge to zero in one period, and 

the maximum tracking errors of position and velocity are 0.4 and 1.5, respectively. 

Figure 5. The reference position, the motor position and the tracking error (i.e., (top), 

(middle) and (bottom), respectively). 

 

Figure 6. The reference velocity, the motor velocity and the tracking error (i.e., (top), 

(middle) and (bottom), respectively). 

  

To guarantee the stability of the adaptive control, it is necessary to demonstrate the boundness of  . 

Figure 7 shows the responses of  . It can be seen that the estimation of   = [ Ixx      
21

] is bounded. 
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Figure 7.   responses under square wave tracking (top) and sinusoidal tracking  

(bottom), respectively. 

 

2.4. Investigations of Q and Γ 

Q and Γ are two important parameters of the adaptive controller. Different values of Q and Γ are 

adopted to investigate their influences, here two group values of them are:  
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where 2Q  is larger than 1Q . 

The adaptation rates can be respectively estimated: 
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where   is the adaptive rate, and 1  is faster than 2 . 

During experiments, the adaptive control using 1Q  and 2Q  have similar tracking errors, but the 

control signals are different. Figure 8 shows the voltages of the adaptive control. The control voltage 

of the adaptive control with (Q2, Γ2) is four time larger than that of the adaptive control with (Q1, Γ1), 

though there is no significant differences in the tracking errors. 
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Figure 8. Control signals under (Q1, Γ1) and (Q2, Γ2) ((top) and (bottom), respectively). 

 

3. Adaptive Control with the Integral Action 

3.1. Adaptive Controller Design with the Integral Action and Stability Validation 

To further investigate the adaptive control in the presence of disturbances, this section presents the 

adaptive control with integral action. The integral control action can be added to the adaptive law 

through Equation (20):  

rxxI  1
  (20) 

where r is the reference signal and Ix  is a new state: 
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Similar to Section 2.2, the control law can be given by:  
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Then the closed loop system can be given as: 
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where: 











 


















0                1        

    

0       0       1

      

0       1       0
**

232221
I

T

xPppp gbgbA
aaa


 (25) 

According to the matching condition in Equation (7), the following equation can be given:  
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The reference model can be given: 
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Actually, the exact value of 
*

x  and *

I  cannot be known, so the corresponding estimated values of 

x  and I  are used instead. We note that x  and I  are the estimate errors as shown in Equation (28): 
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Substituting u into the plant model in Equation (22), the closed loop can be given:  

r
x

xgbgb

x

xgbgbA

x

x

I

pIx

I

pI

T

xp

I

p




























































 















1

0

0           0   

     

0              1        

   ** 




 (29) 

Equation (29) can be rewritten to:  
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xAx p
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The error equation can be given 

p

T

m xbgeAe   (31) 

Choosing the Lyapunov function as Equation (32)  

 1 TT gePeV  (32) 

Then, the time derivative of V can be obtained: 
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Denote that the adaptive law is:  
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Then, P  can be gotten from the ARE Equation (35): 

QAPPA m
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where Q  is a positive definite symmetric matrix, so the following Equation (36) can be obtained:  

0 eQe
dt

dV T  (36) 

It can be concluded that the closed loop is Lyapunov stable, and e  and   are bounded. As in 

Section 2.2, the tracking error e  is asymptotically stable. 

The adaptive control law is shown as follows:  
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where   , P can be computed through the ARE. 

3.2. Reference Model Design 

This section presents how to specify the requirements through the reference model mG . Firstly, the 

third order model in Equation (39) is given to satisfy the matching condition of the adaptive integral 

control. To specify performance indexes such as the bandwidth and damping ratio, the reference model 

mG  can be approximated by the second order model 1mG : 
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where 13 pam   (i.e., 1p and 1p  are dominant poles which mainly contribute to the dynamic 

response of the reference model.) 

To satisfy the matching conditions, the reference model is: 
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Both Equations (39) and (40) describe the same reference model. The state space Equation (40) is 

transformed into the transfer function:  
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Compared with the transfer function in Equation (39), it is seen that:  
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The dynamics of the reference model should match the dynamics (i.e., natural frequency) of the 

motor system and the sampling capability. After testing several groups of values, 9.0 , 3nw  and 

am = 9 are chosen in this paper. Then, there are 4.14  ,6.57 2221  aa  and 8123 a . The reference 

model can be rewritten to:  
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The step responses of 1mG  and mG  are shown in Figure 9. It is seen that 1mG  contributes most of the 

response for the third order reference model mG . The fast dynamics of the reference model is 

influenced by the part am/(s + am): 

Figure 9. Step responses of mG  (solid line) and 1mG  (star line). 

 



Sensors 2013, 13 4755 

 

3.3. Experimental Studies on the Adaptive Control with Integral Action 

In Section 2, it has been found that a large Q  results in fast convergence while needing strong 

action and fast sampling rate. In contrast, a small Q  results in slow convergence and cannot  

give better performance. A suitable Q  should be given to satisfy the convergence rate and  

hardware limitation. 

After trials, Q  is adopted: 
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The experimental results of the position and velocity tracking are shown in Figures 10 and 11, 

respectively. The maximum tracking errors of position and rate are less than 0.2 V and 0.4 V, respectively. 

Figure 10. The reference position, the motor position and the tracking error (i.e., (top), 

(middle) and (bottom), respectively). 
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Figure 11. The reference velocity, the motor velocity and the tracking error (i.e., (top), 

(middle) and (bottom), respectively). 

  

As shown in Figure 12, the magnitude of the controller is less than 0.85 V, and there is no chatter 

phenomenon. Compared to the former adaptive control without the integral action, the case with the 

integral adaptive control can reduce the reference errors of position and velocity by as much as 50%. The 

experimental results demonstrate that the integral action is effective to improve the tracking performance. 

Figure 12. Control signal. 

 

3.4. Tracking Performance with Input Disturbance 

In order to investigate the performance of the adaptive control, the input disturbance is considered 

in this section. The square wave disturbance with magnitude 1 is adopted. The reference is also square 

wave. During the experiment, the disturbance is added by using a LabView block as an input 

disturbance. The disturbance enters the close loop systems as the reference signal enters. The tracking 

errors of position and velocity are shown in Figure 13. It is seen that the maximum position and 
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velocity tracking errors are less than 0.2 and 1, respectively. Also, it can be found that there is no 

difference between the two results of the position tracking errors shown in Figures 10 and 13, 

respectively. The position error is the most important one for the motor tracking in this paper, thus it 

can be concluded that the degradation of tracking performance is not significant. The experimental 

result indicates that the adaptive control with the integral action suppresses disturbance and tracks the 

reference simultaneously. 

Figure 13. Tracking errors of position (top) and velocity (bottom). 

 

3.5. Comparison between Experiment and Simulation Results 

Finally, a comparison between experiment and simulation results is presented in this paper. 

According to the motor manual, the time constant is 0.25. The DC gain is 5.2. Figure 14 shows the 

comparison between experiment and simulation results. 

Figure 14. Comparison of experiment and simulation results (case I: experimental results 

of Adaptive control; case II: experimental results of adaptive control with integral action; 

and case III: Simulation results of simulation of adaptive control with integral action). 
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The simulation and experiment have similar responses. The tracking errors of the position and 

velocity from experiment study are larger than that from simulation study. In the three cases, all the 

tracking errors asymptotically converge (i.e., the stability can hold). The simulation of the proposed 

adaptive control with the integral action gives the best performance. The tracking error from 

simulation study can converge to zero, but the tracking errors from experiment study cannot converge 

to zero due to the friction, the sensor noise and the motor dead-zone. In the experiment study, the 

performance degradation is acceptable. 

4. Conclusions 

In order to accurately control motors, this paper employs both a rotary encoder and tachometer 

sensors to measure the angle-position and speed, respectively. Based on the measurements, two 

adaptive controllers are developed for the motor system. The stability and convergence are validated 

by the Lyapnov theorem and Barbalat lemma. Then, the control system is implemented by using 

Labview. Experimental results indicate that the tracking errors of the motor position and velocity 

asymptotically converge to their error ranges. In the presence of disturbances, the adaptive controller 

with integral action presents better performance than the case without integral action. 

State estimation approaches are encouraged to investigate for possible output feedback control. In 

this paper, the proposed adaptive controllers needs full state information, but actually some states (e.g., 

motor velocity) are not provided. Thus, the state estimation must be designed in the possible output 

feedback control. 
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