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Abstract: In this paper, two interlaced studies are presented. The first is directed to the
design and construction of a dynamic 3D force/moment sensor. The device is applied to
provide a feedback signal of forces and moments exerted by the robotic end-effector. This
development has become an alternative solution to the existing multi-axis load cell based
on static force and moment sensors. The second one shows an experimental investigation
on the performance of four different adaptive nonlinear H∞ control methods applied to
a constrained manipulator subject to uncertainties in the model and external disturbances.
Coordinated position and force control is evaluated. Adaptive procedures are based on neural
networks and fuzzy systems applied in two different modeling strategies. The first modeling
strategy requires a well-known nominal model for the robot, so that the intelligent systems
are applied only to estimate the effects of uncertainties, unmodeled dynamics and external
disturbances. The second strategy considers that the robot model is completely unknown
and, therefore, intelligent systems are used to estimate these dynamics. A comparative
study is conducted based on experimental implementations performed with an actual planar
manipulator and with the dynamic force sensor developed for this purpose.
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1. Introduction

The first robotic manipulators were developed in order to perform positioning tasks. They were then
specifically designed to be robust enough so as to not be affected by external disturbances. This physical
robustness of robot manipulators has enabled researchers to obtain accurate positioning systems based on
simple control laws. Decades later, the popularization of industrial robotics has heightened researchers’
interest in creating a much wider range of applications for robotic manipulators in various environments.

Nowadays, many applications demand robotic manipulators to perform tasks subject to force and
motion constraints. For example, the process of milling a piece requires accurate incidence angles, paths,
forces and moments exerted by the drill in the milled material. Additionally, in industrial assembly
lines, the objects must be assembled along certain paths with predetermined forces and moments. In
sheet metal cutting, the cutting angles, paths and forces exerted on the material are also important.
Moreover, on surfaces where polishing disks must always be perpendicular to the surface being polished,
predetermined force must be applied. Consequently, new concepts of position and force control for
lighter and more flexible robots have been created [1,2].

The problem defined in these applications involves three stages: the approach phase, the impact
moment and the sustained contact tracking. The approach phase has been addressed in many works
and defines the problem of positioning the tool without, or before, touching the environment. The
second phase requires controlling the initial impact and damping out the vibrations generated during
the event. After the initial impact, sustained contact is desired in many operations. In these cases, not
only the motion of the end-effector is required to follow a prescribed path, but also the force exerted by
the end-effector is required to follow a predefined reference. In these constrained systems, forces and
moments generated between the end-effector and the target must be controlled, rather than being treated
as disturbances and rejected. Addressing manipulators subject to model uncertainties and disturbances,
the work considered in this paper is concentrated on the sustained contact tracking phase of the problem.

The great majority of solutions presented in the literature for the problem of constrained systems
control require knowing the forces and moments of interaction between the robot end-effector and the
environment where it is acting. The problem of force control undertaken in this paper was also considered
in [1,3–7]. However, only simulation results were presented.

As a differential and important contribution, this paper addresses an experimental investigation on
robust force control as a result of the development of a modular sensor device. The proposed device
is designed and built to measure dynamic forces and moments in three orthogonal axes based on
unidirectional force sensor units. As a consequence of its independent architecture on the type of
sensitive material, static or dynamic force sensors can be applied. Piezoelectric or piezoresistive force
sensors are effective solutions for the applications involved in this study due to their inherent dynamic
response characteristics.
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This paper is organized as follows: next section presents preliminary concepts and relevant results
found in the literature; Section 3 introduces the model description of the constrained robot manipulator;
Section 4 presents the problem formulation; Section 5 describes the solutions for the nonlinear H∞
control problems based on the linear parametrization property of the model, neural networks and fuzzy
systems; Section 6 demonstrates the 3D dynamic force and moment sensor; and Section 7 presents the
experimental results for a three-link manipulator.

2. Preliminary Concepts

The concept of stiffness control was introduced by Salisbury [8]. It is based on the resistance of
the environment in which the robotic end-effector applies the force. The problem is modeled as a
mass-spring system and this method made possible the simultaneous position/force control. However, it
considers constant desired position and force. In many robotic applications, such as when milling a piece,
the end-effector must follow a trajectory along the surface of an object while applying a desired force,
which is not necessarily constant. In this case, the stiffness control application does not work properly.

To address this type of limitation, Raibert and Craig [9] partitioned the control problem into two
subtasks: one task is for controlling the position trajectory and the other task for controlling the desired
force. This approach has been evolutionary for controllers, as proposed by Paul et al. [10], and became
the conceptual basis of the hybrid trajectory of position and force control currently found in the literature.

It was shown by McClamroch and Wang [11], that when a manipulator is in contact with a surface,
the position degrees of freedom are reduced. In this case, force constraint is added to motion equations
through Lagrange multipliers. Thus, the order of the state vector is reduced in the dynamic equations of
the manipulator.

Since the phase of controlling robotic systems with restricted position and force has been overcome,
researchers began to focus on variables that could degrade the stability of the proposed models. The
load on the end-effector that can fluctuate while the manipulator performs various tasks, friction
and parameter uncertainties, are some examples that have required much research effort [12–15].
However, only a few studies have dealt with adaptive and robust control of robotic systems subject
to constraints [16–20]. Using the basis developed by [9,11], the work performed by Chang and
Chen [21] submitted an adaptive controller with H∞ robust performance criterion for robotic systems
with position and force constraints.

On the development of adaptive robust controllers, neural networks, combined with a nonlinear
H∞ control law, were applied by Chang and Chen [22] to control robotic systems subject to
parametric uncertainties and external disturbances. A smooth response was achieved with a simple
and computationally efficient implementation. Neural networks were applied to estimate the unknown
dynamics of the system, thereby not requiring mathematical modeling knowledge. A variable structure
controller (VSC) is added to this formulation by Chang and Chen [23]. The inclusion of VSC in the
control law weakens the hypothesis used by the authors in [22] that the estimation error should be
integrable, and limits it to be only a state-dependent function. Following this approach, the authors
in [24] developed an adaptive H∞ controller based on fuzzy systems and VSC for robots with position
and force constraints.
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Karayiannidis and Doulgeri proposed adaptive controllers in [5,6] for force and position trajectory
tracking in environments with little or no constraint knowledge. In these papers, the main purpose is
to explore the workspace using measurements of position, speed and force in a robotic end-effector, to
attenuate impacts caused by unknown environments. In order to improve estimates of these models, the
use of a camera was proposed by Cheah et al. [4] to provide a better estimate of the contact constraint
through computer vision. However, these works are more interested in exploring the environmental
constraint, rather than a repetitive task control with great tracking precision.

To satisfy the need of measuring the forces and moments of interaction between the robot end-effector
and the environment, devices known as multi-axis load cell or multi-axis force and moment sensor
are used. There are several patents on devices whose purpose is to measure forces and moments in
three axes.

Force sensors, such as strain gages, have been generally used as the basic unit of measurement,
as shown by the illustrative examples in Figure 1. The multi-axis load cell developed by Meyer and
Lowe [25] was built in one piece with internal and external parts that are connected by a pair of axially
spaced beams. The beams are fixed in the center of the piece, where the strain gages are attached, and
an outside tunnel. The loads are measured by the curvature of the connectors. The load transducer
developed by Meyer et al. [26] measures linear forces in three axes and moments of about two axes. The
transducer has encapsulations connected by internal and external arms-sensitive loading. The device
described by Sommerfeld et al. [27] consists of an external annular body, a hub and four beams that hold
the hub to the radially outward portion. Strain gages are fixed to the faces of the beams, with a 90 degree
lagging. Forces and moments exerted on the hub are transmitted to the four beams, and consequently,
to the strain gages. Differently from [25,26], this device described by Sommerfeld et al. [27] is able to
measure forces and moments in three orthogonal axes. However, all the devices mentioned above have
an extrusion completely dependent upon the type of sensitive material being used.

Figure 1. (a) Image taken from [25]; (b) Image taken from [26]; (c) Image taken from [27].

(a) (b) (c)
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3. Model Description

Let a constrained robot manipulator be defined by an n-link serial-chain rigid manipulator whose
end-effector is in contact with a rigid environmental constraint, according to Figure 2.

Figure 2. Constrained robot manipulator.
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The links of the manipulator are numbered from 1 to n: Ji is the joint connecting the (i − 1)-th and
i-th links, li is the vector connecting Ji and Ji+1, qi is the angle of the i-th link around joint Ji, Ci is
the center of mass of the i-th link and lci is the vector connecting Ji and Ci. The constraint surface is
represented by S and α is the angle of contact between the end-effector and S.

Remark 1 Assume that the end-effector is already in contact with the constraint surface, and the control
exerted over the constraint force is such that the force will always maintain the end-effector in contact
with the constraint surface.

3.1. Robot Dynamics

The dynamic equations of a constrained robot is given from Lagrange theory as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + f + τd (1)

where M(q) ∈ <n×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ <n×n is the Coriolis
and centripetal matrix, G(q) ∈ <n is the vector of the gravitational torques, τ ∈ <n is the torque vector
acting upon the manipulator joint, f ∈ <n denotes the vector of joint-space generalized forces on the
environmental constraint exerted by the end-effector, and τd defines finite energy unknown disturbances.

Model uncertainties in Equation (1) can be introduced dividing the matricesM(q), C(q, q̇), G(q), and
f into a nominal and a perturbed part:

M(q) = M0(q) + ∆M(q)

C(q, q̇) = C0(q, q̇) + ∆C(q, q̇)

G(q) = G0(q) + ∆G(q)

f = f0 + ∆f

(2)
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where M0(q), C0(q, q̇), G0(q), and f0 are nominal matrices and ∆M(q), ∆C(q, q̇), ∆G(q), and ∆f

represent the uncertainties.

3.2. Constraint Modelling

Considering Remark 1, the m-dimensional surface constraint is described by the holonomic
relationship

φ(q) = 0 (3)

where φ(q) : <n → <m is a smooth function.
Constraint forces are given by

f = JTc (q)λ (4)

where Jc(q) = δφ(q)
δq
∈ <m×n is the Jacobian matrix that relates the constraint to the controlled variables

of the robot and λ ∈ <m is a vector of generalized Lagrangian multipliers associated with the constraint.
In this paper, it is considered that parametric uncertainties may also be included into the constraint

model since the constraint surface may be not perfectly rigid, frictionless or even that its geometric
description may not be exactly known. Thus, consider

φ(q) = ∆φ(q)

Jc(q) = Jc(q) + ∆Jc(q)

(5)

and assume that ∆φ and ∆Jc are implicit in ∆f , described in Equation (2).

3.3. Reduced Order Model

The presence of m constraints causes the manipulator to lose m degrees of freedom, and therefore,
n − m linearly independent coordinates are sufficient to characterize the constrained movement.
Therefore, to formulate a reduced order dynamics for the constrained system, the formulation presented
in this paper follows the assumptions made by McClamroch and Wang [11] and posteriorly by Chang
and Chen [24].

Define

q =

[
q1

q2

]
where q2 = σ(q1) and φ(q1, σ(q1)) = 0.

The following reduced model formulation is obtained for the constrained manipulator as the model
proposed by Chang and Chen [24]:

AL(q1)q̈1 + LT (q1)CL(q1, q̇1)q̇1 + LT (q1)G(q1) = LT (q1)(τ + τd) (6)

where

L(q1) =

[
I(n−m)
∂σ(q1)
∂q1

]
and

CL(q1, q̇1)q̇1 = M(q1)L̇(q1) + C(q1, q̇1)L(q1)
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The necessary structure and properties of the model for controller formulation are maintained since
AL(q1) = LT (q1)M(q1)L(q1) is symmetric positive definite and the matrix ȦL(q1)−2LT (q1)CL(q1, q̇1)

is skew symmetric.

4. Problem Formulation

Let qd(t) ∈ <n and q̇d(t) ∈ <n be the desired reference trajectory and the corresponding velocity
for the joints, respectively. Assume that qd(t) and its derivatives q̇d(t) and q̈d(t) are bounded. Define a
bounded fd ∈ <n as the desired reference contact force. To be consistent with the imposed restrictions,
we need to assure that φ(qd) = 0 and fd = JTc (qd)λd.

Since q2 = σ(q1), it is only necessary to find a control law that makes q1 → q1
d when t → ∞.

Therefore, define the position tracking error x1(t) and the filtered link tracking error x2(t), as in [24]:

x(t)=̇

[
x1(t)

x2(t)

]
=̇

[
q1(t)− q1

d(t)

q̇1(t)− q̇1
d(t) + p(q1(t)− q1

d(t))

]
(7)

for some constant p > 0.
From Equations (6) and (7), the error dynamic equations can be obtained as

ẋ =

[
ẋ1

ẋ2

]
= Ax+Bu+Bω (8)

where

A =

[
−pI I

0 −A−1
L (q1)CL(q1, q̇1)

]
, B =

[
0

−(M(q1)L(q1))−1

]
u = F (xe)− τ, ω = τd, and

F (xe)
.
= M(q1)L(q1)(q̈1

d − pẋ1) + CL(q1, q̇1)(q̇1
d − px1) +G(q1)

Within this problem formulation, the torques applied to the joints to guarantee the task execution are
given by

τ = F (xe)− u (9)

where the term F (xe) refers to the dynamics of the controlled variables and u is the control law provided
by the adaptiveH∞ controller proposed by Chang and Chen [24].

The term F (xe) can be divided in a nominal and uncertainty part, that is,

F (xe) = F0(xe) + ∆F (xe)

where term ∆F (xe) contains the uncertainties from parametric Equations (2) and (5).
In this paper, the control problem is solved based on two different approaches. In the first approach,

an adaptive intelligent system is applied to estimate only the term ∆F (xe), considering that the nominal
model of the robot is well known. In the second approach, it is considered that the system model or
the term F0(xe) + ∆F (xe) is completely unknown, then the adaptive intelligent system is applied to
estimate it. The nonlinear H∞ control and VSC are applied in both approaches to attenuate the effects
of estimation errors and external disturbances.
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5. Adaptive NonlinearH∞ Controller Based on Intelligent Systems

The adaptive control laws presented as follows are based on two different learning methods to estimate
uncertain parameters and also the behavior of unmodeled dynamics. Neural networks and fuzzy systems
based on the Takagi–Sugeno model are considered. The structure of these intelligent systems can be
seen in details in [28].

Let F̂ (xe,Θ) = Ξ(xe)Θ be the output of the adaptive intelligent system, where xe is the input vector
and Θ is a vector of adjustable parameters such that ΘTΘ ≤ Mθ|Mθ > 0. Two different cases are
considered in the following:

Case 1 Estimation of Model Uncertainties Based on Intelligent Systems
In this case, the nominal model of the robot is considered as well known, the intelligent system then

estimates only the model uncertainties, such as

F̂1(xe,Θ) ≈ ∆F (xe)

Therefore u and ω in Equation (8) will be rewritten as

u = F0(xe) + F̂1(xe,Θ)− τ

ω = (∆F (xe)− F̂1(xe,Θ)) + τd

so that ω includes the estimation error from the intelligent system.

Case 2 Estimation of Complete Model Based on Intelligent Systems
In this case, however, the nominal model of the robot is considered completely unknown, so the

intelligent system estimates the complete model, such as

F̂2(xe,Θ) ≈ F0(xe) + ∆F (xe)

Therefore u and ω in Equation (8) is rewritten as

u = F̂2(xe,Θ)− τ

ω = (F (xe)− F̂2(xe,Θ)) + τd

so that ω includes the estimation error from the intelligent system.

Regarding the nonlinear H∞ control solution proposed by Chang and Chen [24] for constrained
systems, define u = ū where ū = uP + uF , such that

uP = k0Ex̄2 − k(xe)sgn(Lx̄2) (10)

uF = JTc λc (11)

where uP is the H∞+VSC control term for the position enforcement and uF is the H∞ control law for
the force tracking procedure, with

E :=

[
I(n−m)

0m×(n−m)

]
and λc

.
= λd − kλ

∫ T
0

(λ− λd)dt
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for some constant gain k0, k(xe) > 0 and kλ > 0.
Theorem 1 presented in the following is a variation of the results presented in [21,23,24] with

the difference that the nominal model and an intelligent system are considered rather than the linear
parametrization of the robot. Thus, this theorem defines an adaptive H∞ controller to solve the same
problem’s position/force tracking control problems presented in these papers but with the advantage of
using the known model of the robot.

Theorem 1 Given a desired disturbance attenuation level γ > 0, a weighting matrix Q and the
Lyapunov candidate function V (t), the following performance criterion∫ T

0

‖x̄(t)‖2
Q ≤ V (0) + γ2

∫ T

0

‖ω(t)‖2, ∀T ≥ 0 (12)

is satisfied, for ω(t) ∈ L2[0,∞), if there exists a dynamic state feedback controller

Θ̇ =

−ρ−TΞTLx̄2 if ‖Θ‖ < Mθ or (‖Θ‖ = Mθ and x̄T2L
TΞΘ ≥ 0)

−ρ−TΞTLx̄2 + ρ−T
x̄T2 L

TΞΘ

‖Θ‖2 Θ if ‖Θ‖ = Mθ and x̄T2L
TΞΘ < 0

(13)

τ = F0(xe) + ΞΘ− k0Ex̄2 + k(xe)sgn(Lx̄2)− JTλc (14)

which is the solution of the adaptive nonlinearH∞ control problem subject to Equation (6) for the cases
1 and 2.

The stability proof of this dynamic controller follows the line of the proof presented by Chang and
Chen [24].

6. Force/Moment Sensor Development

The controllers proposed in Section 5 require the inferred force and moment measures in the robotic
end-effector. The most accurate way to obtain such information is by measurements obtained through a
multi-axes load cell.

This section presents a detailed description on the modular 3D dynamic force/moment sensor device
developed for this application purpose. Its modular architecture is shown in Figure 3.

Figure 3. Design of the 3D dynamic forces/moments sensor: (1) Moving part; (2) Fixed part.
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6.1. Mechanical Description

The 3D dynamic forces/moments sensor essentially comprised of two parts: a moving part and a fixed
part. The moving part is shown in yellow in Figure 3(1). It is composed of a base (outside the sensor
body) and a body of force transmission (inside the sensor body), which is responsible for transmitting
forces and moments to the unidirectional force sensor units mounted on the fixed part, Figure 3(2). The
device has an aluminum-made sensor board where twelve force sensor units are disposed in order to
measure force and moment in all directions. The sensor units are arranged in pairs, for example, sensors
1A and 1B as shown in Figure 4, which illustrates the body of forces transmission (4) and identifies the
sensor units.

Figure 4. Body of force transmission (4) and arrangement of sensor units: (a) Top view;
(b) Bottom view.

(6)

(7) (8)

1A

1B

  2A
2B

3A

3B

(4)

Each pair of sensor units measures the force in one direction. This setting is tensioned proportionally
to the movement performed by (4) in that axis. Therefore, forces and moments normal to the plane of
the base are calculated by the composition of measured forces in the three axes. Figure 5 demonstrates
the sensor units operation schematic, and identifies the force measurements.

The formulation of the resultant forces/moments composition is obtained as follows.
Three pairs of sensor units, (1A,1B), (2A,2B) and (3A,3B), define, respectively, the force

measurements (F1A,F1B), (F2A,F2B) and (F3A,F3B). The resultant forces of these three points can be
expressed as

F1 = F1A − F1B (15)

F2 = F2A − F2B (16)

F3 = F3A − F3B (17)

It can be seen in Figure 5 that F1, F2, and F3 form an equilateral triangle, whose side is given by d1.
In [29], Doebelin demonstrated that if three load cells, measuring force in one direction, are arranged
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triangularly as the vertices of the triangle (the measurement direction normal to the plane formed by the
triangle), the following physical quantities can be calculated:

Fx = F1 + F2 + F3 (18)

My = d1
F1 − F2 − (F3 − F1)

2
√

3
(19)

Mz =
d1(F3 − F2)

2
(20)

where Fx, My, and Mz are the force along x-axis and the moments along axes y and z, respectively.
In the same way, F4, F5, and F6 also form an equilateral triangle, whose side is given by d2. Thus,

the resultant forces of these three points can be expressed as

F4 = F4A − F4B (21)

F5 = F5A − F5B (22)

F6 = F6A − F6B (23)

and therefore,

Fy =
F5 − F4 − (F4 − F6)

2
(24)

Fz =

√
3(F5 − F6)

2
(25)

Mx =
−d2(F4 + F5 + F6)

2
√

3
(26)

where Fy, Fz, and Mx are the forces along axes y and z and the moment along axis x, respectively. The
sensor parts and the assembled device is shown in Figure 6.

Figure 5. Schematic of sensor operation.

d1

d2
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Figure 6. 3D dynamic forces/moments sensor.

The applied sensor unit provides a measurement range of 0 to 1.5 kgf, or a maximum load of 14.7 N.
By means of Equations (18)–(20) and (24)–(26), the built sensor presents measurements characteristics
as shown in Table 1.

Table 1. Maximum load.

Axis X Axis Y Axis Z

Force (N) 44.1 29.4 25.5
Moment (N/m) d212.7 d117 d114.7

6.2. Electronic Description

The signal from each pair of unidirectional sensors are conditioned by an electronic circuit based
on Instrumentation Amplifiers (INA). The electrical schematic of the signal conditioning circuit is
summarized in Figure 7.

Figure 7. Electronic diagram.



Sensors 2013, 13 5193

The sensors are powered by a symmetric supply (+ Vcc and −Vcc) and provide differential output
signals (for example, F1Ax and F1Ay).

Six INA comprise the printed circuit board (PCB). Each INA is responsible for conditioning output
signals from a pair of force sensors. With this configuration it became possible to measure the differential
forces applied on the moving part of the proposed device. The resultant force is then given by the
following equation as described in Figure 7.

FI = kFIA − kFIB

The signals generated by the INAs are directed to a data acquisition board that interfaces with
the computer.

Table 2. UARM Parameters.

Body mi Ii li lci

(kg) (kgm2) (m) (m)

Link 1 0.850 0.0075 0.203 0.096
Link 2 0.850 0.0075 0.203 0.096
Link 3 1.700 0.0900 0.240 0.177

Figure 8. (a) UnderActuated Robot Manipulator; (b) Force sensor device coupled to the
UARM end-effector.

(a) (b)

7. Experimental Results

The designed 3D dynamic forces/moments sensor operation is validated in a set of experimental
applications, where a three-link planar manipulator is subject to a holonomic constraint defined by a
straight rule. The proposed intelligent adaptive robust controllers are applied to this plant for position and
force trajectory tracking. The experimental manipulator UARM (UnderActuated Robot Manipulator),
whose nominal parameters are given in Table 2, is composed of a DC motor in each joint, a break and an
optical encoder with quadrature decoding used to measure joint positions, Figure 8(a). Joint velocities
are obtained by numerical differentiation and filtering [30,31]. Modeling matrices for the UARM,M(q),
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C(q, q̇), and G(q), can be seen in [30]. In Figure 8(b), the designed force sensor is coupled to the
UARM end-effector which is constrained in a straight rule. A graphical user interface, whose software
was developed using MATLAB R© platform, is used to implement control laws and interface with the
experimental setup. It was implemented in a modular form, since any new controller can be easily
developed and applied.

7.1. Implementation of Control Law

The constraint surface for the robot end-effector is a segment of a straight line on the X–Y plane. The
angle α between the end-effector and the constraint line is defined in this application example as π/2. It
means that the orientation must remain in a constant value c given through the line inclination β and α,
where c = π + atan(β)− α. Hence, the equation of the m = 2 constraints is given by

φ(q) =

[
−l1s1 − l2s12 − l3s123 + β[l1c1 + l2c12 + l3c123] + b

q1 + q2 + q3 − c

]
=

[
0

0

]

where b is the linear coefficient of the constraint line, sij = sin(qi + qj), cij = cos(qi + qj). Hence,
φ : <3 → <2, and the Jacobian matrix, Jc(q) = ∂φ/∂q, is given by

Jc =

[
Jc11 Jc12 Jc13
Jc21 Jc22 Jc23

]

with

Jc11 = l1c1 + l2c12 + l3c123 + β[l1s1 + l2s12 + l3s123]

Jc12 = l2c12 + l3c123 + β[l2s12 + l3s123]

Jc13 = l3c123 + β[l3s123]

Jc21 = Jc22 = Jc23 = 1

Defining q1 = [q1] and q2 = [q2 q3], the matrix L(q) of the constraint line is

L(q) =

 1

− [l1 cos(q1)+l2 cos(q1+q2)+β(l1 sin(q1)+l2 sin(q1+q2))]
l2[cos(q1+q2)+β sin(q1+q2)]

[l1 cos(q1)+l2 cos(q1+q2)+β(l1 sin(q1)+l2 sin(q1+q2))]
l2[cos(q1+q2)+β sin(q1+q2)]

− 1


Initial and final coordinates of the movement are (x0, y0) = (0.46, 0.38) m and (x(T ), y(T )) =

(0.53, 0.13) m, respectively. In this case, β = −3.57, b = 2.02, and c = 15.6◦. The reference trajectory
for the joint variables qd(t) = q1

d(t) is a fifth-degree polynomial, with trajectory duration time T = 4 s.
It is desired that no force acts on the normal direction of the constrain line and no moment acts on the
z-direction, that is, λd = [(Fx)d (Mz)d]

T = [0 0]T .
We use as benchmarking for comparison of the proposed controllers, a controller with no intelligent

adjust adaptation, that is, only the nominal parameters are used. In other words, we use the controller of
Equation (14) without the ΞΘ term.
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During the experiment, a limited disturbance was introduced at ti = 1.0 s in the following form:

τd =


0, 01e

−(t−td)
2

2µ2 sen(3, 6πt)

−0, 01e
−(t−td)

2

2µ2 sen(2, 7πt)

0, 01e
−(t−td)

2

2µ2 sen(1, 8πt)


If compared with the nominal torque, the disturbance τd is approximately 64% of its peak value, see

Figure 9.

Figure 9. Torque disturbance.
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The selected gains are defined in Table 3.

Table 3. Selected Gains.

p k0 kλ ρ 2.50 0 0
0 2.50 0
0 0 2.50

  0.35 0 0
0 0.35 0
0 0 0.35

  2.00 0 0
0 2.00 0
0 0 2.00

  0.75 0 0
0 0.75 0
0 0 0.75



7.1.1. Neural Networks Configuration

For the nonlinearH∞ controllers via neural network, Cases 1 and 2, proposed in Section 5, let n = 3

be the number of joints of manipulator. Define

F̂NNi(xe,Θ) = [ F̂NNi1(xe,Θ1) F̂NNi2(xe,Θ2) F̂NNi3(xe,Θ3) ]T = ΞΘ

with p1 = p2 = p3 = 7 neurons in the hidden layer and the bias vector b1 = b2 = b3 =

[ −3 −2 −1 0 1 2 3 ]. Using the reduced model, the input vector xe is defined by xe =

[ q1 q̇1 q1
d q̇1

d q̈1
d ]. In order to provide an input related to the error values, the weighting matrix

for the first layer of the neural networks is defined by W 1
i = W 2

i = W 3
i = [w1

ij] = [w2
ij] = [w3

ij] =

[ 1 1 −1 −1 −1 ]. The activation function of the neurons in the hidden layer is chosen as the
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hyperbolic tangent, G(.) = tanh(.). The uncertain vector Θ is defined as Θ = [ ΘT
1 ΘT

2 ΘT
3 ]T and

the matrix Ξ = [ ξT1 ξT2 ξT3 ]T as Pazelli et al. and Siqueira et al. showed in [28,30]. Θ values are
updated at each control iteration by the adaptive law given in Equation (13). The neural networks outputs
are given by

F̂NNik(xe,Θk) =

pk∑
i=1

θkiG

(
qk∑
j=1

wkijxej + bki

)
= ξTk Θk

Experimental results for the Case 1 (NN1) with neural network are shown in Figures 10(a), 11(a), and
12(a). For the Case 2 with neural network plus nominal model (NN2), experimental results are shown in
Figures 10(b), 11(b), and 12(b).

Figure 10. Joint Torque. (a) NN1; (b) NN2; (c) FS1; (d) FS2; (e) NOM.
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Figure 10. Cont.
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Figure 11. Force and Moment. (a) NN1; (b) NN2; (c) FS1; (d) FS2; (e) NOM.
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Figure 11. Cont.
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Figure 12. Joint Angles. (a) NN1; (b) NN2; (c) FS1; (d) FS2; (e) NOM.
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Figure 12. Cont.
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Remark 2 Although NN1 and NN2 use the same structure and the same input data, their outputs are
different. The online adaptation law provides the update of Θ values in distinct ways for each case. The
contribution of NN1 output to the final torque signal is lower than the contribution of NN2 output, since
NN1 estimates the value of ∆F (xe) and NN2 estimates the value of F (xe) + ∆F (xe). Thus, Θ values
must achieve that requirement for each case.

7.1.2. Fuzzy Systems Configuration

For the proposed adaptive fuzzy nonlinear H∞ controllers, Cases 1 and 2 (Section 5), a set of n = 3

fuzzy systems may be defined by

F̂FSi(xe,Θ) = [ F̂FSi1(xe,Θ1) F̂FSi2(xe,Θ2) F̂FSi3(xe,Θ3) ]T = ΞΘ

where F̂FSi1(., .), F̂FSi2(., .), and F̂FSi3(., .) correspond to the estimate of the uncertain part of the
dynamic behavior of joints 1, 2, and 3, respectively. The input vector xe is defined as xe =

[
q̃1

˙̃q1

]
.

The fuzzy sets A(xe) =
[
A1(q̃1) A2( ˙̃q1)

]
are defined according to Figure 13 and the number of

linguistic variables in U1 and U2 are defined as r1 = r2 = 3. They are applied to both F̂FSi1(., .),
F̂FSi2(., .) and F̂FSi3(., .) for the universe of discourse of position errors, u1

1 = u2
1 = u3

1 = q̃1 ∈ U1
1 =

U2
1 = U3

1 = U1, and for the universe of discourse of velocity errors, u1
2 = u2

2 = u3
2 = ˙̃q1 ∈ U1

2 = U2
2 =

U3
2 = U2.

During the control loop, these graphics are used to determine the grade of membership associated
to xe, which defines the value of µ in the output of the Takagi–Sugeno fuzzy model; for more details
see [28],

F̂FSik(xe,Θk) =

∑pk
i=1 µ

k
i y

k
i∑pk

i=1 µ
k
i

=

∑pk
i=1 µ

k
i (θ

k
i0 + θki1u1 + θki2u2)∑pk

i=1 µ
k
i

= ξTk Θk

A fuzzy rule base is defined with pk = r1r2 = 9 rules as

Ri : IF(u1 is Ar1i1) and (u2 is Ar2i2) THEN yi
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Figure 13. Fuzzy sets A1(q̃1) and A2( ˙̃q1).
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The vector of adjustable components Θ is defined as Θ = [ ΘT
1 ΘT

2 ΘT
3 ]T , with

ΘT
1 = [ θ1

10 θ1
11 θ1

12 · · · θ1
90 θ1

91 θ1
92 ]

ΘT
2 = [ θ2

10 θ2
11 θ2

12 · · · θ2
90 θ2

91 θ2
92 ]

ΘT
3 = [ θ3

10 θ3
11 θ3

12 · · · θ3
90 θ3

91 θ3
92 ]

and are updated at each control iteration by the adaptive law in Equation (13).
The matrix Ξ = [ ξT1 ξT2 ξT3 ]T is computed with

ξT1 = [ ξ1
10 ξ1

11 ξ1
12 · · · ξ1

90 ξ1
91 ξ1

92 ]

ξT2 = [ ξ2
10 ξ2

11 ξ2
12 · · · ξ2

90 ξ2
91 ξ2

92 ]

ξT3 = [ ξ3
10 ξ3

11 ξ3
12 · · · ξ3

90 ξ3
91 ξ3

92 ]

Figures 10(c), 11(c), and 12(c) show the experimental results for Case 3. Figures 10(d), 11(d), and
12(d) show the experimental results of fuzzy system plus nominal model for Case 4.

7.2. Results Discussion

Figure 10 shows the applied torques in the robotic manipulator joints. Note that for the range of the
disturbance inserted, the controllers act strongly on the system, reversing the directions of the torques of
joints 1 and 2 and increasing the torque of joint 3. In this analysis, it appears that the controllers using
neural networks, NN1 and NN2, oscillate less, therefore, they have a slightly slower response time.

The charts of Figure 11 are important because they show the behavior of the end effector during the
controller actions, and represent the measurements of force and moment in the robotic end-effector. As
expected, it was observed that during the period in which the disturbance appeared in the system, there
was a higher intensity of forces and moments which decreased gradually, tending to zero, until the final
time (4 s). The proposed configuration for the device sensor proves its effectiveness in providing these
data with the required accuracy and without delay to the implementation of the control laws under study.

Figure 12 shows the tracking angles of three joints of the robotic manipulator. Notice that the largest
deviation is in the range where the disturbance appeared. Nonetheless, the experiment showed good
tracking of the trajectories desired. Again, we can see that for the controller without the intelligent
system, NOM, the control actuation is slower, providing greater tracking error of reference signals.
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Three performance indexes are used to compare the nonlinear H∞ controllers: the L2 norm of the
state vector

L2[x̃] =

 1

(tr − t0)

tr∫
t0

‖x̃(t)‖2
2 dt

1/2

where ‖ · ‖2 is the Euclidean norm, the sum of the applied torques

E[τ ] =
3∑
i=1

 tr∫
t0

|τi(t)| dt


and the sum of areas of contact forces

E[λ] =
3∑
i=1

 tr∫
t0

|λi(t)| dt


where λi(t) the ith component of the contact forces. As the desired values of contact forces are zero, the
lower the value of E[λ], the better the controller will be with respect to contact force control.

The results that are shown in Table 4 present the mean value of five experiments.

Table 4. Performance Indexes.

L2[x] E[τ ] E[λ]
(m) (Nms) (Ns)

Nominal 0.1031 0.6508 0.1506
NN1 0.0780 0.6564 0.1435
NN2 0.1026 0.4318 0.1156
FS1 0.0759 0.5865 0.1136
FS2 0.0899 0.5182 0.1061

From Table 4 we can conclude that the controller based only on the nominal model presents a
higher state error and greater forces. Although the fuzzy controllers exhibit the best performance, this
performance difference with respect to controllers based on neural networks deserves more in-depth
study, which will be carried out in future works.

8. Conclusions

In this work, the control problem of trajectory tracking with H∞ guaranteed performance was
considered for manipulators with force and position constraint. Five controllers were evaluated:

• The first controller, called nominal, considers that the term F (xe) is completely known, i.e., it does
not take into account parametric uncertainties of the model.
• The second and third controllers have neural network-based estimators, where the second considers

the known nominal model of the manipulator and estimates only parameter uncertainties, and the
third estimates the full model.
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• The fourth and fifth controllers have fuzzy logic-based estimators which estimate only parametric
uncertainties and the full model, respectively.

According to experimental results presented in Section 7, controllers NN1 and FS1 have better
tracking trajectory compared, respectively, with the NN2 and FS2. Moreover, it also appears they are
more stable because of the lower oscillations after the introduction of disturbance, and this feature occurs
for the trajectory tracking in Cartesian space in order to follow the trajectory of joint angles. Comparing
the results of intelligent systems it is noted that the controllers via neural networks (NN2 and NN1) have
a smoother control action and, consequently, have smaller oscillations than the fuzzy systems (FS1 and
FS2), which can be verified by comparing the graphics of torque (Figure 10). On the other hand, the
controllers NN1 and NN2 are slower than the FS1 and FS2, hence they tend to have a greater tracking
error. In addition, when the system is subject to disturbances, all controllers respond well.

Analyzing the proposed performance indices, it was shown that the state error in the fuzzy
system-based controllers (FS1 and FS2) tend to be smaller than those based on neural networks (NN2
and NN1). A possible explanation for this is due to the fact that fuzzy systems acted faster than neural
networks. It was observed that choosing values of kλ more directly influence the adjustment of the
forces, while the values of ρ influence the tracking errors in the state variables.

The development of the proposed sensor was of crucial importance for the realization of the
experimental analysis, a differential of this paper. The measurement results shown proved the
effectiveness of the proposed structure. Still, its modular feature enables the application of sensor units
of various kinds, such as piezoelectric sensors.

As future work, a comparative study will be performed between the developed sensor and
commercially available ones. Furthermore, the use of genetic algorithms to adjust controller gains is
a current and ongoing project.
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