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Abstract: As an innovative as well as an interdisciplinary research project, this study 

performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for 

physician diagnosis. Cognition behavior sciences, embedded technology, system on chips 

(SOC) design and physiological signal processing are integrated in this work. Moreover, a 

chip is built for real-time electroencephalography (EEG) processing purposes and a Brain 

Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to 

diagnose psychosis and body challenges in learning various behaviors and signals 

antithesis by a fuzzy inference engine. This work is completed with a medical support 

system developed for the mentally disabled or the elderly abled. 
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1. Introduction 

As an extension of our previous and ongoing projects on improvement of biomedical technologies, 

this work aims to design a chip for electroencephalography (EEG) signal measurement in a  

real-time multi-channel mode. Next, this study is continued with a focus on an embedded system 

design through the combination of a PXA 270 (the Intel
®

 PXA270 processor is an integrated  

system-on-a-chip microprocessor for high performance, dynamic, low-power portable handheld and 

hand-set devices as well as embedded platforms.) processor and an SOPC-NIOSII EDA/SOPC  
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(System-on-a-Programmable-Chip) system platform with a field-programmable gate array (FPGA) 

development tool. A BEAM system is then constructed by accordingly processing digital signal 

sources such as a Σ-Δ analog-to-digital converter, Fast Fourier Transform (FFT) generating an EEG 

signal energy spectrum, a frequency band classification, interpolation, and plot of BEAM diagrams. 

Although various medical treatment technologies and researches have advanced significantly over the 

past few years, there are still an inadequate number of biomedical signal acquisition technologies with 

an FPGA based embedded system operating in a real-time multi-channel mode. In an effort to improve 

EEG signal acquisition quality, a SOC, designated the BrainIC, is designed and then implemented. A 

BEAM database is constructed in the second part of this work. By the presumption that various EEG 

signals reflect various behaviors, analyses and comparisons in EEG signals are made so as to complete 

a behaviour observation service system that provides an accurate diagnosis and follow up medical 

treatment for those with learning disabilities or the elderly abled. A relationship between signals and 

behaviours is demonstrated, with which the BEAM database is completed in the end [1–4].  

Together with SOPC-NIOSII EDA/SOPC, a PXA 270 embedded system is adopted in this study as 

the main platform for an FPGA based chip design. KL-720 is a multipurpose front end module 

whereby an improve accuracy ratio is demonstrated. This FPGA based chip design involves a Sigma 

Delta Modulator, a DDA and an FIR Filter for digital signal processing, and the presented BrainIC 

system is made accessible on a network via a wireless module, say Bluetooth,. An Independent 

Component Analysis (ICA) algorithm and a C4.5 algorithm are both applied to develop a decision 

criterion, such that the contribution ratio of signals due to various behaviours, conducted by either the 

mentally disabled or the elderly abled in certain context, can be seen [5–7]. As the first developed and 

the most mature technology in quantitative EEG study, Brain Electrical Activity Mapping is also 

known as BEAM. On the basis of EEG signal processing, a detected analog signal is post-processed 

with a computer, that is, an analog-to-digital conversion and Fourier transform are performed to 

convert the received data into a digital form and then a power spectrum. According to a band 

classification and power levels, an EEG signal is presented as a 2D color image distributed over a 

brain mode figure. A clear advantage gained over EEG is that the diagnostic accuracy is hence 

elevated as a consequence of a high spatial resolution. Therefore, major applications can be found in 

the diagnosis of early stage ischemic cerebrovascular disease as well as the assessment of the follow 

up treatment, and in the studies on brain development in children with brain waves change, visual 

ability, large tumor location, psychotropic substances, and so forth [8] (see Figure 1). 

Aiming to unveil the characteristics and laws in both physiological and pathologic conditions, 

BEAM serves as an advanced diagnostic tool for the onset of brain diseases and follow-up treatment 

assessment. Since first proposed in 1979 by Frank Duff of Harvard, it has been widely and 

successfully applied to clinical diagnosis and validated accordingly [9]. It demonstrates a superior 

performance in dealing with functional brain disease relative to the state of the art diagnostic 

technique, e.g. CT, PET, MRI, and so on, and renders a certain level of recognition in anatomical 

lesions. Since the middle 1980s, BEAM had become a highly significant auxiliary diagnostic tool in 

neurological science. Nonetheless, not developed as an alternative to EEG, it aims to provide a direct 

understanding of brain activity in the spatial domain. Besides, BEAM, a post-treatment of EEG signal 

in substance, is unlikely to contain all the useful information in the aspect of clinical diagnosis.  
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Figure 1. A BEAM map system based on various EEG data. 

 

   

   

Accordingly, all the BEAM products are equipped with EEG capability. Since the early 1980s, a 

number of BEAM systems were made commercially available by well-known biomedical instruments 

manufacturers, e.g. Mizakae 7T18 (Japan), DANTEC SEEG (Denmark), Nicolet BEAM System 

(USA), Bio-Logic CEEGGRAPH system (USA) etc. A maximum turnover is reached in 1992, and 

meanwhile a tremendous progress in both the basic research and the clinical applications was made. In 

contrast to all the existing BEAM commercial products, the modular SOC presented demonstrates 

multiple advantages of portability, high accuracy, low cost, high scalability and easy maintenance, and 

hence is regarded as a significant tool in clinical diagnosis. A significant contribution made in this 

work is to find an efficient as well as effective way to implement and construct a BEAM database on 

the presented SOC with behavior mapping signals. Integrating electrical, biomedical engineering, 

cognition sciences and information technologies, this study provides services for medical treatments in 

hospitals [10]. 

A physiological signal acquisition technique is integrated into an embedded system in such a way 

that a modular SOC is designed for the acquisition of various EEG signals in real time as well as for 

BEAM analysis. As a real time diagnostic tool, such a SOC can be upgraded into a care monitoring 

system for the mentally or physically disabled. The proposed method allows users to quickly develop a 

hardware/software co-design/co-verification environment. For mobile medical care systems, the 

BEAM map system is portable and the circuit is modular, freely combined to render multiple 

functions. In future work we will employ GPU acceleration to construct a more powerful medical care 

BEAM map system.  

2. Literatures Survey  

The purpose of this work is to develop a physical EEG signal acquisition SOC for BEAM analysis. 

There are a growing number of studies on this issue, among which a diagnostic criterion on human 

health is suggested based on physiological feature extractions and facial expression recognition, and a 

forecasting technique thereof is proposed which is applied to a medical monitoring system [11]. Such a 

project is conducted through machine learning theory with a focus on extractions of features 

corresponding to various facial expressions, such that the status, or behavior, of a human body can be 

made predictable. In this work, a database is constructed through a wide range of physiological, in 

particular EEG, signals. Besides, ID3, an algorithm proposed by Han in 2002, is performed to analyze 

Normal state Fatigue state Relaxing state 
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physiological signals. Though ID3 exhibits satisfactory performance in the choice of classification 

attributes, a major disadvantage is that it tends to select an attribute with a greater number of subsets. 

In simple terms, it is that merely a single sample data is contained in a subset following classification, 

leading to empty information and a maximum gain-ratio that is supposed to be avoided when building 

a behavior database corresponding to physiological signals. For this sake, a C4.5 algorithm as 

proposed by Quinlan [12] is adopted in this work, where the gain-ratio measure is treated as a 

classification attribute for the normalization for the amount of information so as to circumvent a 

greater number of subsets comprising single or a small number of elements. In this way, an optimized 

decision tree is made. As in [13,14], C4.5 had been demonstrated to be able to provide excellent 

efficiency. In this work, the reaction in the physiological behavior of the information on the proportion 

of the amount of gain is a more important priority, but its telecommunications number value is the 

most weak through C4.5 algorithms with real-time biofeedback measurement system will be able to 

improve this deviation classification.  

In 2005, a study was conducted on the issue of an embedded physiological signal processing 

platform. The entire research project was divided into three phases, the first of which is the 

development of a biomedical engineering teaching system, the second is that of an embedded mixed 

signal processing system, and the last is an online database construction. In contrast with such project, 

the features of our study may be stated as follows: firstly, featuring the EEG, eye sliding diagram, 

EMG, blood pressure, vascular volume, breath, pulse, etc., a KL-720 system is exploited as a major 

biomedical sensing system. Although a satisfactory accuracy is demonstrated by the KL-720, a low 

noise filter and a high performance AD converter are both used in this work to deal with a low detected 

physiological signal in an effort to increase the system accuracy. Secondly, a real time FPGA based 

embedded SOC is developed on an ARM10 PXA270 development environment as a signal processing 

platform. It exhibits a superior performance relative to its predecessors, i.e., ARM 8 and 9, whereby a 

high computation speed is seen in this study as opposed to conventional embedded physiological 

systems. Thirdly, this work performs more types of feature extractions out of detected physiological 

signals, following which various features are presented for comparison purposes. To this end, an 

FPGA-based SOC is designed and then implemented for physical time EEG signal acquisition, 

analysis and validation. An accurate feature extraction is made by means of an independent component 

analysis (ICA) algorithm, that is an issue not well addressed in the literature. Lastly, unlike all the 

existing platforms, a complete visual integration platform, all the way from a prototype design to a 

finalized embedded system, is developed with an NI LABVIEW interface for either teaching or  

R&D purposes.  

Manufactured by DSI USA (New Brighton, MN, USA), an implanted wireless physiological 

sensing system, another type of portable embedded physiological monitoring system, provides a higher 

accuracy, but it is indeed a type of invasive measurement and remains in the animal testing stage [15]. 

Proposed in [16,17] is a personal electronic nurse, a wearable sensor, while presented in [14] is a smart 

clothing wireless transmission system, an integration of wireless technology with medical devices. In this 

way, an patient’s instant health status can be made accessible online to a physician anywhere [18,19]. 

Proposed by the Asia University (Taichung, Taiwan) a PDA based physiological signal system is 

essentially an application of this type. Developed in this work is an embedded system platform which 
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can be made portable and wireless transmittable by a Bluetooth module in a PXA270 processor, an 

802.11b PCMCIA module, and a GPS module.  

As in a study on EEG imaging algorithms based on a wavelet power spectrum [20], the aim of this 

work is to build a portable BEAM auxiliary diagnostic system. On account of the non-stationary nature 

of an EEG signal as original data, a power spectrum is evaluated by a wavelet power spectrum, rather 

than a conventional algorithm. Respective power spectra corresponding to up to 16 EEG signals 

between [t1, t2] over δ, θ, α1, α2, α3, β bands are evaluated, and a power distribution above a specified 

level is displayed in color to construct a BEAM as a consequence of interpolation. This approach is 

followed in this work to compare the advantages and disadvantages among the wavelet and other 

existing algorithms, whereby a way is found to optimize BEAM. Additionally, as suggested in [21], an 

EEG signal is filtered by means of a wavelet transform to extract four rhythms, such that a BEAM is 

constructed by corresponding wavelet coefficients. Two sets of distinct clinical EEGs are analyzed and 

then compared for finding the dynamic characteristics of four rhythms in various conditions. The 

wavelet algorithm is experimentally demonstrated to reflect the dynamic characteristics of EEG signals 

as intended, that is, a new pathway to other types of biomedical signal analyses. Apart from that, a 

study, addressing the linkage between evoked potentials and BEAM, is presented in [22]. In most 

cases, BEAM is made with a test object’s eyes shut in a tranquil mood, namely in the absence of any 

type of exterior stimulus. Nonetheless, an evoked potential topographic map refers to a BEAM made in 

specific conditions, e.g. exterior stimuli such as sound, light and electricity. In an attempt to construct a 

database, a wide range of BEAMs are collected in this work, and a literature review is made on the 

issue of evoked potential topographic map. Moreover, a feature cannot be accurately extracted due to 

chaotic interference, whereby a study on ICA Visual evoked potential small extract waveform analysis 

is referenced [23]. Independent Component Analysis (ICA) refers to a multi-channel signal processing, 

derived from a blind source separation technique, whereby an acquired signal is decomposed into 

statistically independent components through an optimization algorithm for signal analysis as well as 

enhancement. Essentially, feature extractions from a number of detected signals remain a challenging 

task since years ago. Over recent years, ICA application to blind source separation has received plenty 

of attention, particularly in the fields of speech recognition, communication, signal processing, and  

the like.  

In 1994, Common systematically described the concept of ICA, and constructed a cost function on 

the basis of cumulative amount (higher-order statistics) [24]. The subject of blind source separation 

was readdressed by Bell and Sejnowski in 1995, according to information theory, who further 

proposed the idea that the maximization of network output signal difference entropy is essentially that 

of mutual information between input and output. At the same time, difference entropy was 

implemented with the so-called Infomax-ICA [25]. An extended version of ICA algorithm was made 

by Lee et al. in 1997, applicable to the cases of super-Gaussian and sub-Gaussian signal [26]. Up to 

now, the neural network based adaptive ICA algorithms remain the most successful type. Though there 

are other types of ICA algorithms derived from maximum likelihood evaluation (MLE), exploratory 

projection pursuit, nonlinear PCA, etc., they all share similar, or even consistent, natures [27–30]. As 

can be found in [31], a number of algorithms for FPGA based digital filters are compared in terms of 

an 8th order FIR low pass filter design. Such approach is followed for digital circuit design in this 

work. Applications of an FPGA based digital signal processing platform can be found in [32]. As 
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proposed by Lebrun et al. in [33], a surrounding stimulus received is highlighted in red, and the issue 

on an EEG brain map reconstruction had been addressed as well by Sanei and Leyman in [34].  

Even though a tremendous progress has been made in physiologic measurement, there are still an 

inadequate number of applications and a lack of EEG signal interpretation. Therefore, a physiological 

signal acquisition technique is integrated into an embedded system in such a way that a modular SOC 

is designed for various EEG signals acquisition in real time as well as for BEAM analysis. As a real 

time diagnostic tool, such SOC can be get upgraded into a care monitoring system for either the 

mentally or physically disabled [35–39].  

3. System Framework 

A number of research issues on biomedical engineering and signal processing had been addressed 

in prior works of ours [40–48], and a BEAM database is constructed on the basis of [48–55].  

Illustrated in Figure 2 is the configuration of the proposed system, designated as the BrainIC system 

in this work. At this stage, it involves: (1) each type of EEG analysis and measurement, (2) the design 

of FPGA chips, namely FPGA1 and 2, on an embedded platform for an EEG signal processing,  

(3) accurate feature extraction out of the physiological signal collected through ICA and BEAM 

configuration, (4) construction of a BEAM database by use of a fuzzy inference C4.5 classification 

algorithm, and (5) a wireless transmission linkage from the analyzed data to a PC for an auxiliary 

diagnostic purpose and for medical care.  

Figure 2. An embedded SOC design approach for multi EEGs and a real time BEAM 

auxiliary diagnostic system. 

 

As illustrated in Figure 3, the EEG system is made up of an instrumentation amplifier as a preamplifier, 

a high pass filter, an isolation circuit, a low pass filter, a backend amplifier and a notch filter. 

• Expected EEG signal amplification: A typical EEG signal spans the range of 0.5 to 100 Hz and is 

confined between 15 and 100 μV. Thus, an amplification of 10,000–50,000 is seen required to 

amplify a typical EEG signal up to the level of volts. Accordingly, a total gain of 10,000 or so is 

chosen, leading to an amplified EEG signal up to 0.45–3 V. 



Sensors 2013, 13 6558 

 

 

• Amplifier Gains: The front end amplifier is of a gain of 500, while the backend is of 20. Please 

note that the total gain is initially specified as 30,000, but the amplified signal is beyond the 

accepted range of an oscilloscope and induces a truncation error. Hence, the total gain is reduced to 

10,000 from 30,000. 

• Input characteristics: It requires a low input noise (≤3 μvP–P), high gain (104 ~ 5×104), a high 

CMRR (common mode rejection rate) (≥80 dB), a low shift and high impedance (≥10 MΩ), AC 

coupling (≤1 Hz), and so forth.  

• Noise reduction: The first type of noise to deal with is the electrode noise. A measure taken against 

such noise is the adoption of a silver/silver chloride reference electrode, an electrode with a 

marginal polarization voltage of a few mV. An AD620 instrumentation amplifier, with an input 

distortion voltage of merely 50 μV, is employed as a front end amplifier. Due to a high common 

mode rejection ratio, merely the difference between the polarization voltages on input terminals 

makes contribution to the output, that is, the amplifier is operated in the linear region. Accordingly, 

the gain of this amplifier can be made as high as possible [56,57]. 

• A gain of 100 in the front end amplifier: For the reason that the noise as well as the common mode 

rejection ratio increases with the gain of the first stage, a gain of 100 is finally specified for the 

front end amplifier.  

• A high pass filter design: A high pass filter, a second order active RC filter, is designed to get rid 

of DC polarization voltage. A second order Butterworth low pass filter is designed as well to 

eliminate the frequency components above 60 Hz and to attenuate all the interference from ECG 

and EMG.  

• A notch filter: 60 Hz interference is eliminated mainly by use of a 60 Hz notch filter. Besides, an 

isolation amplifier and a front end amplifier with a high common mode rejection ration are 

demonstrated to inhibit 60 Hz and leakage current interferences to a certain extent [58,59]. 

• Integrated circuit selection: The noise reduction remains a major concern in a chip design, 

particularly in the front end amplifier. Accordingly, the noise reduction is maximized by a good 

use of an AD 620 chip [60,61]. 

Figure 3. A schematic block diagram for an EEG system. 

 

Another major concern in this work is to design and then implement two physiologic signal 

processing chips, designated as FPGA1 and 2, on an embedded platform with FPGA. As illustrated in 
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Figure 4, an original physiologic signal is acquired in analog form from a test object by a KL-7200 

module. For it is a weak signal vulnerable to noise, a digital to analog conversion is implemented on 

FPGA. In the course of experiment, a variety of DAQ modules are tested for accuracy comparison as 

the prerequisite for DAC improvement. In the wake of the signal conversion, each type of physiologic 

signal is reconstructed by a finite impulse response (FIR) Filter as a post treatment by a PXA270 

processor. An Σ-Δ analog to digital converter, as proposed in 2007 by Hattie Spetla [62], is exploited 

as a mixed signal processor. A clear advantage gained is that high efficient analog and digital signal 

processing’s can be integrated with ease for the reason that most of the conversion is performed in the 

digital domain. Involving a comparator, an integrator and a 1-bit, dual output digital to analog 

converter, a Σ-Δ converter is made highly accurate due to an accurate reference voltage [63–67]  

(see Figure 5). 

Figure 4. An embedded chip, FPGA1, design approach. 

 

Figure 5. The schematic block diagram of a second order Σ-Δ AD converter with fs 

representing the sampling rate. 
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A Σ-Δ analog to digital converter is designed, taking into consideration a number of quantities, e.g. 

oversampling, quantization noise shaping, digital filtering, decimation, and so forth. The frequency 

response of a Σ-Δ converter is given as:  

,
11 





f

Qf

f

x
y  x = Input, Q = Quantization Noise (1) 

As can be found from Equation (1), the output y is approximated as the input x at low frequencies, 

while y is as the quantization noise Q, as presented in Figure 6. As the consequence of oversampling, 

the spectrum of Q is redistributed to the region beyond that of the signal of interest. Hence, as 

presented in [68], most of the noise can be removed by use of a single low pass filter.  

Figure 6. Noise spectral shifting. 

 

A modulator is cascaded with a digital filter, and the frequency response can be determined according 

to the characteristics of the filter chosen or a decimation rate. The output data rate is given as: 

Data rate = modulation clock/decimation rate (2) 

An effective number of bits (ENOB), a figure of merit for an analogue to digital converter, are 

defined as the ratio of a full scale signal to the root mean square value of the noise. In terms of the 

standard deviation of the total output codes, ENOB is expressed for a 24 bit converter as: 
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and evaluated in units of dB as: 

dBdBdBmeasSNRENOB 02.6/)76.1(   (5) 

A zero in the frequency response is seen in a Sinc filter at frequency multiples of the output data 

rate. For instance, the frequency components at 60 Hz can be fully removed for a data rate of 60 Hz. 

% 
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Likewise, frequency components at either 50 or 60 Hz are completely eliminated for a data rate of  

10 Hz. As suggested in [65], the effective resolution is found to increase with ENOB, which is directly 

affected by the ratio between input sampling rate and the output data rate [65]. For the sake of 

implementing a BEAM analyzer, a simulated analog EEG signal is sampled, quantized, converted into 

digital form, analyzed, modified, then extracted and finally converted back to analog form. Over recent 

years, the most popular digital signal processing approaches include Fast Fourier Transfer (FFT), 

Wavelet Transform (WT), Bispectral, Power Spectral Density (PSD), etc., among which adopted in 

this work are PSD and FFT, the most common approach seen in conventional brain wave analysis. A 

time domain signal is transformed into the frequency domain by means of FFT for synthesis of an EEG 

signal (see Figure 7). 

Figure 7. An embedded chip, FPGA2, design approach. 

 

4. Construct the BEAM 

Presented on BEAM is a spatial power distribution of δ, θ, α and β bands over scalp through a 

secondary treatment of multi-lead raw EEG. The detected power levels are interpolated to form the 

power distributions of respective rhythm, displayed quantitatively in a color or a grey scale. As such, 

various parameters lead to distinct BEAMs, say, a spatial EEG potential distribution. Probabilities that 

brain activities arise as well as the percentages of various bands are elevated through a statistics on a 

succession of BEAMs. A BEAM is constructed as follows: 

4.1. Electrode Pad Placement  

In compliance with the international 10–20 system of electrode placement [69], up to 12–16 

electrode pads, as presented in Figure 8, are placed as follows. As illustrated in Figure 8(A), five 

electrode pads, marked as Fpz, Fz, Cz, Pz and Oz, are placed respectively at 10%, 20%, 20%, 20%, 20% 

and 10% along the distance between the nasion and the inion. As illustrated in Figure 8(B), a head is 
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divided into half along the line from the nasion and the inion. As exhibited in Figure 8(B), five 

adhesive electrode pads and another five are placed at Fp2, F8, T4, T6 and O2 on the right side and at 

Fp1, F7, T3, T5 and O1 on the left side of the border, respectively. As illustrated in Figure 8(C), the 

distance between both pre-auriculars is divided into 6 segments at 10%, 20%, 20%, 20%, 20% and 

10%, that is, T3, C3, Cz, C4 and T4 from left to right [70]. 

Figure 8. The international 10–20 system of electrode placement [71]. 

 

There are two ways to measure brain wave signals, namely monopolar and bipolar derivations. The 

former employs a single probing electrode, either C3 or C4 and a reference electrode pad mounted on 

scalp, according to which the brain wave amplitude is maximized, while the latter employs a pair of 

probing electrodes C3 and F3 or P3 and a reference electrode pad. Lower amplitude is seen since both 

probing electrodes are able to sense brain waves. P-series PS2 adopts a pair of probing electrodes, that 

is, C3/A2 or C4/A1, to identify sleep stages, while employs pads Q1/A2 for both wake and sleep 

stages. There are various types of brain waves during the wake and sleep stages. Accordingly to the 

frequency, the amplitude and the morphology, four types of brain waves have been identified in units 

of cycles per second (cps), that is, between 8–13 cps, between 4–8 cps above 13 cps and lower 4 (cps). 

In respect of morphology, brain waves can be categorized into four types, i.e., vertex sharp,  

K-complex, spindle and sawtooth waves, detailed as follows. 

Vertex sharp waves: It is a negative sharp wave embedded in a slow time varying signal, arising in 

the second half of an NREM stage 1. K-complex: It is a combination of a sharp wave and a subsequent 
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slow varying positive wave, emerging in stage 1 of NREM sleep. Spindle wave: As a feature of stage 2 

of NREM sleep, it is a 12–14 cps transient wave with non-stationary amplitude. Saw tooth wave: As a 

feature of REM sleep, it is a wave with lower amplitude. Demonstrated in Figure 9 are the analysis 

results, provided by the Gerontechnolgoy Research Center, Yuan Ze University, Taoyuan, Taiwan, 

based on brain waves measured with P-Series PS2. Within the blue frame, the types of brain waves are 

indicated and the percentages thereof at any time instant are recorded as well, while within the red 

frame, brain wave feature extractions are made, i.e., spindle, K-complex waves and REM, for the 

identification of stages 1, 2, NREM sleep and REM sleep. On the right hand side is a long term record 

of the percentage of each type of brain wave alone with the feature thereof [72]. 

Figure 9. Sleep stage recognition according to brain wave. 

 

4.2. Analog to Digital Converter (ADC)  

An analog EEG signal is converted into a digital form by means of an ADC as the first step of 

signal processing. A second order Σ-Δ analog to digital converter, built on FPGA 1, is compared with 

various existing AD converters with different rate, different interfaces and different precision levels.  

Those adopted in FPGA 1 and 2 belong to this type. It takes advantage of a-bit DAC, a filter and 

additional sampling to realize a high precision data conversion, which is a clear advantage gained over 

others, subject to the accuracies of the reference voltage and the clock rate. Albeit the resistors, either 

in parallel or in series, required in both the flash and the sequential types can be fine tuned with lasers, 

the accuracy is found insufficient to meet the requirement in parallel resistors. Yet, a Σ-Δ AD 

converter is configured in the absence of parallel resistors, and a converged outcome is seen following 

a certain number of samplings. Nonetheless, a disadvantage accompanied is the relatively low 

conversion rate for a given clock rate, for the reason that the additional sampling is performed on an 

input signal. Another disadvantage is that a Σ-Δ converter requires a highly complicated digital filter to 

convert the duty cycle information into digital outputs, but there are an increasing number of applications, 

since it can be easily integrated with digital filters or other DSP modules on a single chip [67].  

4.3. Fast Fourier Transform (FFT)  

The power spectrum of an analog signal is acquired by taking FFT. Discrete Fourier transform, 

rather than FFT, is performed in dealing with discrete time signals for signal spectral analysis. 
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However, an improved version of DFT is developed for computational load reduction, particularly in 

case there is a great deal of data waiting to be processed. 

The use of FFT is expected to speed up the spectrum computation on condition that it must be a 

time periodic signal, the sampling interval must be a multiple of the signal period, the sampling rate 

must be at least twice as much as the highest frequency component of the signal, and the number of 

samplings must be made equal to 2k, the number of data. In case {x(n)} and {X(k)} are both complex 

valued sequences, direct evaluation of either one of them involves nearly N
2
 complex multiplications 

and N(N-1) complex additions, making DFT impractical for a very large value of N.  

As will be found, a great number of repetitions can be omitted, when performing a DFT. Letting  
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Since    
   is a periodic sequence, i.e.,    

     
       

            
    , where r and m are 

both integers. Hence, it involves merely one evaluation to compute all of the above terms. In the case 

of r = 0,    
     

    . Moreover, due to   
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, the computational load can be further reduced. Among various versions of FFT 

algorithms, adopted in this work is a radix-2 algorithm, where N = 2
m

 and m is an integer. In this way, 

it takes merely      
  operations to compute X(k) = 0, 1,…, N−1, while the direct computation of DFT 

requires N
2
 operations, that is, a reduction of          

          
  times. Provided that the outcome 

emerges in the reverse order of the coding, it needs to be rearranged. Therefore, an EEG signal is 

analyzed in the frequency domain by taking FFT in this work [73].  

4.4. Band Classification 

 In this work, the frequency range between 2–3.8 Hz is treated as the δ band, which between 4–7.8 Hz 

is as θ, which between 8–9.8 Hz is as α1, which between 10–12.8 is as α2, that between 13–19.8 is as 

β1, and that between 20–29.8 Hz is as β2. 

4.5 Interpolation  

The EEG signal, measured by 16 electrode pads, is interpolated to gain a power distribution at 

2,500 points over the brain surface, using a two dimensional interpolation in this work. 

4.6 Equipotential Line Plot with NURBS  

Following interpolation, a potential distribution is hence made on a scale of 1–9, displayed in color 

or as symbols, such that equipotential lines are formed. The result is then plotted on a brain model with 

non-uniform rational basis spline (NURBS). NURBS is a mathematical model commonly used in 
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computer graphics for generating and representing curves and surfaces. It offers great flexibility and 

precision for handling both analytic and modeled shapes. i.e., a BEAM.  

5. To Use Modified ICA Capture More Precise Physiological Signals 

As demonstrated in Figure 2, an EEG signal is converted into digital form and then reconstructed, 

say by use of an FIR filter. The way a signal is collected is seen important when multiple feature 

extractions from an EEG signal are made by a PXA 270 processor [62,64,73–76]. 

This work adopts an improved version of ICA to address the issue of signal extraction in specific 

conditions. Covering mathematics, physics, probability, statistics, computer simulation and digital 

signal processing, the newly proposed ICA is an interdisciplinary research outcome to extract the 

original signal out of a mixture of independent signal components. As such a powerful tool in signal 

analysis, ICA algorithms had identified successfully a great number of signals accordingly. Proposed 

in Science by Makeig et al. in 2002, the linkage between a brain Event Related Potentials (ERP) and 

finger movements is recognized by the application of ICA to EEG. As suggested by Stögbauer et al. in 

2004, ICA is modified to improve the quality of fetal electrocardiogram in an effort to separate fetal 

heartbeat from its mother’s. Since a conventional ICA algorithm might fail to recover the original 

signal, a modified version is employed in this work to reach the goal [73] (see Figure 10). 

Figure 10. A superior physiological signal acquisition through an improved ICA algorithm 

(simulated by MatLab ToolBox). 

                                              

Over recent years, researchers [76] gradually the ICA method applied to a small sample of 

extraction of electrophysiological signals and event-related potentials (ERP). The task is done on a 

condition that the physiological signal is independent of the background EOG and the mutual 

information among respective signal components is hence reduced through a linear transformation. In 

simple terms, an objective function is defined and then optimized in trying to decompose the detected 

signal into uncorrelated components for the purpose of physiological signal extraction or enhancement. 

ICA had been found in a number of research activities able to identify evoked response components 

out of an EOG background, according to which the number of trials required can be reduced. 

Therefore, it is adopted in this work for the sake of developing this novel EOG analysis approach [75]. 

Improved 

ICA 
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When applying ICA to signal analysis, a requirement that distinct components in an original signal 

must be statistically independent with non-Gaussian distribution must be met. Yet, according to the 

central limit theorem, a component out of cluster signal can be Gaussian distribution. It is requested 

that the number of linear mixed measurement signal be no less than that of uncorrelated components, a 

requirement that cannot be fulfilled in most ICA theoretic analyses and applications. For this sake, the 

excessive basal Independent component analysis is proposed as a means to address such issue with a 

higher computational complexity [62,64]. 

A linear equation in an ICA algorithm is defined as: 

ASX   (8) 

where S denotes m number of independent physiological signals, the matrix A a linear combination 

thereof, and X a combination of m detected signals. As stated in the “cocktail party problem” proposed 

by Broadly [77], the original signal can be reconstructed in principle by use of ICA provided that all the 

components are statistically independent. The overall probability density function (pdf) is defined as: 

)()( ispSP   (9) 

where p(si) symbolizes the pdf of component I and then the output vector V is related to X by: 

UXV   (10) 

where V represents an estimated source signal. Yet, a signal can be reconstructed into its original form 

on the condition that the matrix U is the inverse of A or can be replaced. An ICA data model is 

assessed by operations on a formula or function. For instance, it is either the explicit degrees or 

information among data, or data minimization/maximization, all affecting the transformation of ICA 

optimization problems [77]. 

In this work, an improved version of ICA is proposed on the basis of a Joint Approximate 

Diagonalization of Eigenmatrices (JADE) algorithm, which had been successfully applied to signal 

processing in research fields, e.g. mobile communication, radar, biomedical engineering, and so forth. 

Accordingly, the improved ICA algorithm is presented as a series of steps, namely Initialization, Form 

statistics, Optimize orthogonal contrast and Separate. In this work, with an input vector X representing 

an EOG signal, a reconstructed signal can be derived from X’=UV’, with V’ expressed as: 


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where the entries Vij(i, j = 1, 2, …., n) denote signal sources, and n the number of samples.  

6. The Fuzzy Inference C4.5 Classification Algorithm to Construct BEAM System Database  

Other than the investigation into human behaviors reflected in EEG signals, the linkage between a 

evoked potentials in behavior and the corresponding EEG signal is explored as well, such that the 

cause of learning disabilities can be diagnosed in a timely manner and the assistance required can be 
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rendered by real time feedback accordingly. For instance, the variation in evoked potential signals 

among those with learning disabilities is analyzed in contrast to the abled. Besides, it is intended that 

the connection between the behaviour of a Psychiatric patients and an EEG thereof can be established, 

and, through a C4.5 algorithm, associate degrees estimates, etc., a behaviour database can be built 

describing the relationship between EEG and BEAM for either the disabled or the abled.  

The C4.5 algorithm refers to a classification algorithm by means of a decision tree. Assuming that 

there are K classes in a set of training data, namely, S= {C1, C2,…., Ck}, then the following three cases 

may arise when building a decision tree: 

(1)  In case all the training data in S belong to the same class Ci, the decision tree built merely 

contains a piece of leaf, representing all the data contained in Ci.  

(2)  In case there is no any training available in S, the decision tree still contains a piece of leaf just 

as in Case 1, but the class represented by the leaf is up to the training data excluded in a set T. 

(3)  In case there are various classes of training data contained in S, then the set T is partitioned into 

multiple subsets S1, S2,…., Sn, each comprising a certain type of data as far as it can. There are 

a decision node and n branches in the decision tree built by S, and the training data contained 

by each subset are mapped into a subsequent branch in T.  

Assuming that there are n classes, i.e., iC , i = 1, 2, 3, …, n, each with iC  number of data, and a 

total of |S| number of data in S, then the occurrence probability of each class is given as: 

S

Ci
 (12) 

According to information theory, each type of information carried is expressed as: 


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The entropy is evaluated as the total sum of the amount of information times the occurrence 

probability thereof over i, i.e., the average amount of information prior to classification given by:  









 

 S

C
log

S

C
Sinfo

i
n

i

i

2

1

)(  (14) 

According to the way info(s) is evaluated, in case the set S is partitioned into a number of subsets 

S1, S2, …, Sm, due to a certain attribute A, then the amount of information following classification is 

equal to the sum of that of each subset times the proportion thereof, that is: 
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According to the way a classification attribute is determined in an ID3 learning algorithm, the gain of 

all the attributes is given as the difference between the entropy before and after classification, that is:  

)()()( SinfoSinfoAgain A  (16) 
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An optimal classification criterion is that the data must be purified during the classification, namely 

a reduction in data diversity is seen after the classification. Therefore, the maximum gain is chosen as a 

classification attributes, and a node is split into child trees over and over again until it is terminated. 

Although a great number of satisfactory outcomes have been demonstrated in a variety of research 

fields by use of an ID3 algorithm, a disadvantage accompanied is that it tends to select an attribute 

with a greater number of subsets. In simple terms, it is that merely a single element is contained in a 

subset following classification, leading to zero entropy. For this sake, as proposed by Quinlan, the 

gain-ratio is normalized to reduce the influence of a great number of subsets, that is: 
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As an index of the number of subsets gained through partition due to the attribute A, a larger value 

of split info indicates a greater number of subsets, leading to a lower value of gain ratio. Hence, C4.5 is 

adopted in this work as an improved version of ID3 to circumvent the drawback that the classification 

tends to multiple subsets, according to which a database is built correctly. In this work, a decision tree 

is built through C4.5 for an elevated correctness. A decision tree is converted in a way that employs a 

simple fuzzy rule to reduce the complexity required during classification. 

A database is built as a means to provide help to those in need who have a difficulty expressing 

their mind explicitly. For some types of learning disabilities, or mental disorders, e.g. Elias Borg, 

depression, panic disorder, and an abnormality can be identified from EEG and BEAM thereof. More 

importantly, a patient is accordingly expected to figure out the cause of his or her mental illness and 

find a way to help him or herself from the root, as a consequence of a good use of both EEG  

and BEAM.  

As presented in our prior work, a behaviour of a test object is made predictable through the concept 

of associate degrees estimates as a behaviour database fundamental. In this work, it is estimated by the 

cosine-measure [58] as: 
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where Ci = <wi1, wi2,…, wik,…, wim> and  Cj = <wj1, wj2,…, wjk,…, wjm> denote the Euler distance 

vector spaces expressions of learning behavior i
th 

and j
th

, respectively, rij the concept of associate 

degree indicators between i
th

 and j
th

, and wij the weighting of each learning behavior, as defined in [59], 

given as: 

IDFtf
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N
logtfw ik

k
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where wij represents the weighting of the kth unit behavior in the ith learning behavior, tfik the 

occurrence frequency thereof, N the number of learning behavior, dfk the frequency that the  kth unit 

behavior of a certain unit behavior occurs in such learning behavior. 

Hence, assuming that there is a total of n learning unit behavior in a certain learning behavior, then 

the incidence matrix thereof is given as: 
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A database is built to describe the linkage between respective related behavior for a better 

understanding of a test object’s current mental conditions as well as future trends. A reduction in the 

amount of time spent on an accurate medical diagnosis can be made accordingly, and an accurate 

follow up treatment can be provided as well. 

Yan Zhi-chiao, the Jian Ren Hospital, director of the Department of Neurology and Tsai Cai-Yang, 

director of the Department of Neurology Taichung Armed Force General Hospital, Taiwan, 

participated in this project as joint research staff. The system presented is provided to hospitals as a 

real time auxiliary diagnostic tool and to rehabilitation centers, and a database is rendered for inquiry 

service. This proposed embedded PXA270 platform comprises a variety of wireless transmission 

modules, e.g. a GPS, a Bluetooth, an infrared device, a USB wireless module, etc. A real time analysis 

made can be delivered via internet to collaborative hospitals or monitoring centers. Additionally, due 

to the portability of a BrainIC system, a long term monitoring on the disabled, either mentally or 

physically, can be made. Based on this study, a more advanced embedded biomedical SOC is expected 

to be developed.  

Figure 11. Photos for the presented EEG system and in a practical test. 

 

As expected, a SOC is built, compromising an integration of a real time EEG and BEAM 

diagnostics. Over conventional EEG approaches, it demonstrates the advantage of a high accuracy, a 

low error rate, an easy to use interface and a diagnostic expert database. This work is applicable to 

patients with epilepsy, encephalitis, brain tumors, cerebral, nervous headache, cerebral ischemia, 

cerebral hemorrhage, traumatic brain injury, neurasthenia, and so on (see Figure 11). 
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7. Research Results and Experimental Analysis 

The following items are important initial conditions for the BEAM map experiment: (1) The 

experimental participating members: an eleven-year-old developmentally delayed boy. (2) Treatment 

time: about three months. (3) Frequency bands: 1 Hz~10 Hz. six spectrum analysis of the time-domain 

waveform frequency segment. 

The two brain maps shown in Figure 12 reflect patterns of an eleven-year-old developmentally 

delayed boy. Before treatment, a highly limited verbal ability was seen with no spontaneous speech. 

Along with significant attention problems, his visual perceptual skills suffered as well. As the 

treatment is continued, a noticeable stride has been made in several areas. Better social skills, a rise in 

spontaneous speech, and dramatic improvements in both writing and drawing highlight the 

considerable gains he has made. Besides, it is known that a strong alpha wave is found to suppress a 

delta wave, leading to a highly tranquil mood. 

Figure 12. BEAM comparison between before and after treatment. 

 

A release of brain 5-serotonin is proven to regulate mood, anxiety, sleep, body temperature, diet, 

pain, etc., and is highly related to both anxiety and depression. Endorphins, a neurological substance 

released in brain, serves as a sedative that promotes the release of melatonin, improves the sleep 

quality, counteracts jet lag, inhibits aging, and so forth. An elevation in the concentration of  

γ-aminobutyric acid is validated to effectively ease nervous tension and inhibit the activity of the 

awakening of the system neurons [78–80]. 
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Table 1 compares the existing system in this study in real-time, average distortion test and average 

sensitivity test. We used the existing BEAM Systems by Frontline Test Equipment Inc. 

(Charlottesville, VA, USA) and Ke Chuang Technology Inc. (Shenzhen, China) to start four 

experiments. The first experiment observed the alarm delay time. The second experiment measured 

brain electrical signals during 20 tests and computed the error ratios (see Figure 13). 

Table 1: Compare existing system with this study at some important tests. 

 This study 
Benchmark-1 [81] Benchmark-2 [82] 

Best Average 

Alarm delay  

time (sec) 
0.26 0.34 0.38 0.56 

Measure 20 times 

error ratio (%) 
0.27% 0.41% 0.38% 0.62% 

Average distortion 

test (%) 
2.3 3.1 5.8 4.2 

Average sensitivity 

test (%) 
3.5 3.8 3.6 3.1 

Notes: Benchmark-1 [81]: Home Care System and Wireless Bio Medical Products (Frontline Test 

Equipment Inc.); Benchmark-2 [82]: ZigBee Embedded Wireless Sensor Networks for Medical 

Care System (Ke Chung Technology Inc.). 

Figure 13. Average Accuracy of physiological signals. 

 

8. Conclusions and Future Works 

BrainIC is developed as an auxiliary diagnostic tool to improve the accuracy of EEG analysis. The 

information contained in an EEG is displayed in colors in this work as a consequence of the integration 

of chip design with signal processing into neurological science field. As a rule, a quantitative analysis 

is made through BEAM, other than EEG, for accurate diagnosis of complicated diseases. In an attempt 

to speed up a diagnostic process and improve the accuracy thereof, a maximum number of electrode 

Systems 

Test-Items 
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pads are placed in compliance with an international standard, a high speed and high precision Σ-Δ AD 

converter is adopted, a spectral analysis of an EEG signal is made by taking FFT, bands are classified 

and interpolated, and BEAM is plotted in the end. 

This study enables medical staff to acquire EEG signals in a more accurate manner, and the analysis 

thereof is made more efficiently as well. Taking evoked potential analysis as an instance particular in 

the field of clinical anesthesia, evoked potential monitoring by BrainIC serves as an objective measure 

of the inhalation anesthetics central inhibition. Additionally, one would be diagnosed as addiction, 

epilepsy, attention deficit hyperactivity disorder, stroke, Alzheimer's disease, multi-infarct dementia, 

and so forth by quantitative BEAM analysis [56,81–83]. 

In an effort to build a real time, portable multi-purpose system, an FPGA based PXA270 embedded 

platform is adopted as a physiologic signal measurement system, while a KL-720 system is employed 

as a front end, and real time data aggregation, classification, learning and validation can be made 

through a linkage to the embedded system via network. The greatest challenge in this work is to 

develop an FPGA based real time physiological signal acquisition system that involves a Σ-Δ AD 

converter, a differential amplifier, an FIR filter, and so on. Subsequently, feature extractions are made 

from received physiological signals through an ICA algorithm. A complete visual platform, all the way 

from a prototype design to an embedded system, is developed with an NI LABVIEW interface. The 

signal processing involves an FFT, band classification, interpolation and NURBS to plot a BEAM. In 

the end, a diagnostic database is accurately built for analysis and inquiry purposes through all the 

existing BEAMs describing various types of diseases.  

In simple terms, a real time multi-purpose data acquisition SOC is presented in this work, and the 

accuracy of feature extractions is validated with BrainIC. A diagnostic database is then built 

accordingly and provided to medical staff either in hospitals or rehabilitation centers. As an 

interdisciplinary research work covering medicine, physiology, psychology and electronics, the study 

is expected to make contribution in the neurological science of brain.  
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