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Abstract: A novel intelligent fault diagnosis method for motor roller bearings which 

operate under unsteady rotating speed and load is proposed in this paper. The pseudo 

Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods 

are used for extracting the feature spectra from the non-stationary vibration signal 

measured for condition diagnosis. The RCI is used to automatically extract the feature 

spectrum from the time-frequency distribution of the vibration signal. The extracted feature 

spectrum is instantaneous, and not correlated with the rotation speed and load. By using the 

ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters 

(SSP) for condition diagnosis are obtained. The experimental results shows that the 

diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the 

SSP can sensitively reflect the characteristics of the feature spectrum for precise condition 

diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility 

theory is also proposed, by which the conditions of the machine can be identified 

sequentially as well. 
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1. Introduction 

Motor systems are widely employed in modern industry. They convert produced electricity into 

other forms of energy to provide power to other equipment. Three-phase induction motors (IMs) are 

frequently adopted, mainly because of their low price, ruggedness, simplicity of control, and 

reliability. In practical applications, IM failures may cause the breakdown of equipment, and further, 

serious consequences may arise due to these failures. Thus, fault diagnosis and condition 

discrimination of IMs have an important significance for safe operation, guaranteeing production 

efficiency and reducing maintenance costs. Many reliability survey papers deal with failure statistics of 

electric machine subassemblies, focusing mainly on induction machines because of their widespread 

use in industry [1–5]. A rough classification identifies four classes of faults: bearing faults,  

stator-related faults, rotor-related faults, and other faults (cooling, connection, and terminal boxes). 

Among these, bearing faults account for over 40% of the total faults in electric machines, and other 

faults arising in electric machines are often associated with bearing faults. In many instances, the 

accuracy of the instruments and devices used to monitor and control the electric machines is highly 

dependent on the dynamic performance of bearings. 

Vibration diagnosis is commonly used to detect the faults and identify the status of electric 

machines. Vibration diagnosis depends largely on the feature analysis of vibration signals measured 

for condition diagnosis, as these signals carry dynamic information about the machine status.  

Some methods based on the analysis of vibration signals have been investigated for bearing fault 

diagnosis [6–9]. In [6], the detection of damages of the bearings in servo motors was achieved by 

analyzing the frequency response. In [7], the authors developed a fault-signature model and a  

fault-detection scheme for using machine vibrations to detect inner-race defects. In [8], an amplitude 

modulation detector was designed to identify bearing faults in machine vibration data. In [9], the 

authors provided an overview of vibration signal processing techniques commonly used for bearing 

fault detection purposes. However, these techniques are all based on stationary analysis, but there are 

many industrial applications in which diagnostic approaches based on stationary analysis do not lead to 

satisfactory results. This is the case of applications in which the operation regime varies continuously 

or the diagnostic signal suffers perturbations. In such situations, other signal processing methods must 

be developed such as time–frequency analysis [10]. 

The Wigner-Ville distribution (WVD) is an important quadratic form time–frequency distribution 

with optimized resolution in both the time and frequency domains. The WVD has proven to be an 

effective tool for analyzing the behavior of non-stationary signals. It has been applied to fault 

diagnosis and condition monitoring in various machines [11–16]. In [11], the pseudo-WVD (PWVD) 

is applied to fault diagnosis in motor bearing. Reference [12] examines whether acoustic signals can be 

used to effectively detect the various local faults in gearboxes using the smoothed PWVD.  

Reference [13] applies a PWVD to identify the influence of the fluctuating load conditions on a 
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gearbox. In [14], the WVD is applied to detect the presence of short-circuits in the electric machines. 

In [15], the WVD is applied to the diagnosis of mixed eccentricities in induction motors operating 

under various conditions. Rotor faults in brushless DC motors are detected during transients using 

WVD in [16].  

When a computer is used for machine condition diagnosis, symptom parameters (SPs) are required 

to express the information indicated by a signal measured for diagnosing machinery faults [17]. 

However, under variable operating conditions, the signals measured from machines under different 

conditions often contain strong noises. Hence, the value of the SP calculated by these signals is 

ambiguous, and the diagnostic sensitivity of the SP is low. In this study, to increase the diagnostic 

sensitivity of the SP, we propose a method for obtaining the SSP by using the ACO clustering algorithm.  

The ACO is a multiagent approach for solving combinatorial optimization problems. In ACO, 

artificial ant colonies cooperate in finding good solutions for difficult discrete optimization problems. 

ACO has been applied to a variety of different problems, such as scheduling [18], the traveling 

salesman problem [19], and timetabling [20]. Recently, ACOs have also entered the data mining 

domain, addressing both classification [21,22], and the clustering task [23,24], which is the topic of 

interest in this paper. In this study, a clustering model is constructed by using the ACO clustering 

algorithm. It is used to classify the SPs calculated from the signals in each machine state for condition 

diagnosis, as well as obtaining their optimal clustering centers. By using these clustering centers, a 

new coordinate axis is constructed. The SP is then projected to the new coordinate axis, and the SSP 

can be obtained. The diagnostic sensitivity of the SSP is greater than the original SP, and the 

conditions of the machine can be identified more easily. 

In this paper, a novel condition diagnosis method for an electric motor which operates under 

unsteady conditions is proposed. The integration of the PWVD with the RCI methodology is used for 

extracting the feature spectra from the non- stationary vibration signal. The RCI allows us to 

automatically extract feature spectrum from the time-frequency distribution of the vibration signal, and 

the extracted feature spectrum is instantaneous and not correlated with the rotation speed and load. 

Moreover, the SSP, which has high sensitivity for condition diagnosis, is obtained by using the ACO 

clustering algorithm. The excellent SSP obtained by ACO can sensitively reflect the characteristics of 

the feature spectrum for precise diagnosis. In this paper, a fuzzy diagnosis method based on sequential 

inference and possibility theory is also proposed, by which the conditions of the machine can be 

identified sequentially. 

This paper is organized as follows: in Section 2, the feature extraction method based on the PWVD 

and the RCI techniques is described. In Section 3, the six SPs for condition diagnosis are defined and a 

detection index (DI) using statistical theory has also been defined to evaluate the applicability of the 

SP. In Section 4, the ACO clustering model is constructed and the SSP, which has high sensitivity for 

condition diagnosis, is obtained. In Section 5, a fuzzy diagnosis method based on sequential inference 

and possibility theory is proposed. In Section 6, the experimental setup is described and a practical 

example of condition diagnosis for a motor bearing is presented. Section 7 summarizes and concludes 

this paper. 
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2. Extraction of Features 

2.1. Wigner-Ville Distribution (WVD) 

The WVD is an important quadratic-form time–frequency distribution which provides high 

resolution. WVD possesses a great number of good properties, and it has wide interest for fault 

detection with non-stationary signal analysis [25]. However, an important drawback of the distribution 

is its nonlinearity due to the quadratic nature. If the analyzed signal contains more than one frequency 

component, the WVD method suffers from cross-term interference, resulting in difficulties for 

discriminating the actual frequency components. 

There are several proposed techniques that try to suppress the cross-terms at the expense of the loss 

of time-frequency resolution. A usual way is to use a windowed version of WVD obtaining the  

so-called pseudo Wigner-Ville distribution (PWVD): 

*1 1 1
PWVD ( , ) ( )

2 2 2

j

x t x t x t h e d     







   
     

   


 
(1) 

where  is an angular frequency, the symbol * denotes the complex conjugate, h(τ) is the window 

function, and the Gaussian window is determined in this study. The real PWVD examples are shown in 

Section 6 (refer to Figures 11–14(b)). 

2.2. Feature Spectrum Extracted by RCI 

After transforming the signal into the time-frequency domain using the PWVD, the instantaneous 

feature spectra need to be automatically extracted by computer for intelligent fault diagnosis. In this 

paper, the RCI is proposed to automatically extract the feature spectra from the PWVD to identify the 

machine’s condition. In our early works the RCI has been successfully applied to extract the feature 

spectra from various time-frequency analyses such as instantaneous power spectrum (IPS) [26] or short 

time Fourier transform (STFT) [27].  

As shown in Figure 1, qi(t) is the number of crossings over of some level i of the vertical coordinate 

of the spectrum P(t,) with a positive slope in unit time and can be calculated as follows [28]: 
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The vertical coordinate axis of a spectrum in the normal state is divided into M equal sections from 

the spectrum’s maximum amplitude to its minimum amplitude. qni(t) and qai(t) can be calculated by 

Equation (2) in section i (i = 1~M) in the normal state and the state to be detected, respectively. Here,  

n and a indicate normal state and the state to be detected, respectively. The RCI is expressed by Iq(t) 

and is defined as follows: 

 



Sensors 2013, 13 8017 

 

 

   
1

( ) log ( ) ( )
M

q ai ni ai ni

i

I t q t q q t q


   
. 

(5) 

where 
0

1
( )

T

ni niq q t dt
T

   and T is the sampling time. 

If the spectrum is measured in an abnormal state, qni and qai differ and the value of Iq increases. 

Thus, Iq can be used to express the difference in spectra between the normal and abnormal states, by 

which the feature spectra can be extracted in the time-frequency domain. 

Figure 1. Frequency of crossing over level i. 
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3. SP and Sensitivity Evaluation 

3.1. SP for Fault Diagnosis 

After the feature spectra are extracted from the PWVD by the RCI, in order to automatically 

diagnose the machine states by computer, the SPs calculated from the RCI are defined to express the 

characteristics of the feature spectra. 

A good SP can correctly reflect the states and condition trends of machines. Many SPs have been 

defined in the pattern recognition field. This study considers the following six non-dimensional SPs in 

the frequency domain that are commonly used to diagnose machine faults. 
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Mean frequency that wave shape cross the mean of time-domain signal: 
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Stabilization factor of wave shape: 
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Sum of the squares of the power spectrum: 
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Square root of the sum of the squares of the power spectrum: 
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where I is the number of spectra, fi is the value of the analysis frequency, F(fi) is the spectrum value of 

fi , f  is the mean value of the analysis frequency, where
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3.2. DI for Evaluating Symptom Parameters 

For automatic diagnosis, SPs that can sensitively distinguish the fault types are needed. In order to 

evaluate the sensitivity of an SP for distinguishing two states, such as a normal or an abnormal state, 

DI is defined as follows. Supposing that x1and x2 are the SP values calculated from the signals 

measured in state 1 and state 2 respectively, and their average and standard deviation are μ and σ. The 

DI is calculated by: 

21

21








DI . (12) 

The Distinction Rate (DR) is defined as: 

21
1 exp( )

22

DIDR d







   . (13) 

It is obvious that the larger the value of the DI, the larger the value of the DR will be, and therefore, 

the better the SP will be. Thus, the DI can be used as the index of the quality to evaluate the 

distinguishing sensitivity of the SP. 

4. Obtain SSP by ACO Clustering Algorithm 

In this paper, the SPs in the frequency domain are used to reflect the characteristics of the feature 

spectra extracted from the time-frequency distribution of the vibration signals. However, in most 

condition diagnosis cases, the values of SPs calculated from the vibration signals for condition 
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monitoring and fault diagnosis are ambiguous, and the diagnostic sensitivity of the SPs is low. The 

main reasons for this can be explained as follows: (1) when the rotation speed and load of a machine 

vary while vibration signals is being measured and a fault is in an early stage, the signal contains 

strong noise, stronger than the actual failure signal, which may lead to misrecognition of useful 

diagnostic information. (2) The statistical objectivity of the measured signal cannot always be satisfied 

because of the measuring techniques and manner of the inspectors. 

In this paper, we propose a new method for automatically obtaining the SSP by the ACO clustering 

algorithm. The ACO clustering algorithm can easily classify the SPs calculated from the signals in 

each machine state for condition diagnosis as well as obtain their optimal clustering centers. By using 

these clustering centers, a new coordinate axes is constructed. The SP is then projected to the new 

coordinate axes, by which the SSP can be obtained. This method aims to improve the sensitivity of the 

SP and increase class separability. The sensitivity of the SSP is greater than the original SP, and the 

conditions of the machine can be identified more easily. 

4.1. ACO Clustering Algorithm 

Assume that N is the sample set of vibration signals measured in m different states, the length of N 

is n, and N = {x1,x2…xn}. Every sample signal has t identified symptoms (in this paper, the symptoms 

are P1–P6). Then, the clustering analysis is to divide n sample data into m states, such that the objective 

function F shown in Equation (15) is minimized: 

2
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In this paper, the procedure for applying the ACO for the condition diagnosis is proposed, and the 

procedure is explained as follows: 

1) The SPs used for reflecting the features of the sample signals are input into the ACO algorithm. 

2) The sample signals are randomly classified by artificial ants (artificial ants construct solutions), 

and the pheromone matrix that represents information between sample data and the clustering 

centers is initialized. 

3) According to the solutions, the clustering centers are calculated by Equation (16), and the 

object function of each solution is calculated by Equation (15). 

4) A local search is performed. 

5) The pheromone matrix is updated. 

6) According to the pheromone matrix, artificial ants update the solutions. 

7) Steps (3)–(6) are looped until the ending condition is satisfied.  
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In the ACO, each artificial ant will construct the solution S with a length of n; S = {ci|i = 1,2…n}, 

and ci = 1,2…m, where ci is the classification result of sample xi. That is, if ci = j, then xi is the output 

vibration data in state j. At the start of the ACO, the solutions S are randomly constructed by artificial 

ants, and with the increase of the iteration number, artificial ants continuously update the solutions 

according to the pheromone matrix information, followed by the principles given as follows: 
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where dij is the Euclidean distance between clustering center j and sample xi, 
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where q is a value chosen randomly with a uniform probability between 0 and 1, qo is constant,  

0 < qo < 1, τij represents the pheromone concentration of sample xi associated with the state j and β is a 

parameter that determines the relative importance of heuristic information (the choice of β is 

determined experimentally, where β > 0).

 If qo < q, the artificial ants select the state for sample xi by the conversion probability pij given  

as follows: 
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To improve the efficiency and accelerate the convergence speed of the ACO, the method of local 

search for the ACO is presented. The local search method is conducted on all solutions or some 

solutions [29]. In this paper, the latter is applied, that is, local search is only implemented for the ten 

solutions with smaller objective functions. The execution process of the local search for the ACO is  

as follows: 

1) All of the solutions are arranged in ascending order according to the values of the objective 

function. 

2) Random data Wi{ i = 1,2…n } for every sample are produced automatically. 

3) A weight P is set, where 0 < P < 1. 

4) P is compared with Wi, if P > Wi, and then the sample xi is reclassified. 

5) The Euclidean distance between sample xi and each clustering center is calculated, and sample 

xi is reclassified into the class with the shortest Euclidean distance. 

6) Equation (15) is used to compute the objective function again and compare it with the former 

objective function values. If the new one is lower than the former one, the new solution sets are 

kept; if the new one is greater than the former one, the former solution sets are kept. 

7) Steps (2)–(6) are looped until the ten solutions are calculated. 

After performing the local search operation, the pheromone matrix is updated. Such a pheromone 

updating process reflects the usefulness of dynamic information provided by the artificial ants. 

Formally, pheromone trails are updated by following rule: 
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where τij represents the pheromone concentration of sample xi associated with state j,ρ is the decay 

parameter of the pheromone and, to prevent pheromone excessive accumulation 0 < ρ < 1, Δτij(a) is the 

pheromone values of artificial ant a. 

In order to explain the process of the optimum clustering centers are obtained by the ACO 

clustering algorithm, an example that obtains the optimum clustering centers of a bearing in normal 

and roller defect states is given as follows. 

As shown in Figure 2(a)–(c), the sample data are first randomly classified into the normal and roller 

defect states. The clustering centers and the sum of the spatial distance between all of the sample data 

and the clustering centers are calculated by Equations (15)–(17). As the iteration number increases, the 

pheromone is continuously updated, and the classification of the sample data and clustering centers are 

also updated by the artificial ants according to the pheromone information. After approximately 200 

iterations, the ACO converged to the optimum clustering centers, and the optimal clustering centers are 

calculated with the minimum sum of the spatial distances. 

Figure 2. Changes in the clustering centers: (a) at the start of the ACO, (b) after  

100 iterations and (c) after 200 iterations. The symbols ○ and □ express the value samples 

of the SPs in the normal and roller defect states, respectively, and the large symbols ■  

and ● represent their respective clustering centers. 
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4.2. SSP 

After obtaining the clustering centers, the SSPs can be obtained by these clustering centers and a 

projection method. The execution process is as follows. 

Assuming that x and y are values of the two SPs calculated from the signals measured in states 1 

and 2, respectively, as shown in Figure 3, then A and C are the clustering centers of x and y in states 1 
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and 2, respectively. The SSP axis is defined as passing through points A and C. The coordinate values 

of A and C are (x1,y1) and (x2,y2), respectively. B is the center point between A and C, and the 

coordinate values of B are 
2

,
2

1212 yyxx  . The line L is passing through the arbitrary point D (x3,y3) 

and perpendicular to the SSP line. The coordinate value of the intersecting point E between the SSP 

axis and line L is obtained as follows: 

Linear equation of the SSP axis:  

baxy  . (23) 

Linear equation of line L:  
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We define point B as the origin coordinate of the SSP axis, and the distance between B and E is:  
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Figure 3. The axis of the synthetic symptom parameter (SSP). 
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According to the previous discussions, we can define a new synthetic symptom parameter (SSP)  

as follows: 
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where Pi and Pj are the SPs calculated from the vibration signals measured in each state; 
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To explain the efficiency of the SSP, we provide some examples below. In the example shown in 

Figure 4, we used two SPs, P1 and P2 to distinguish the normal and roller element defect states. CN and 

CR are the clustering centers obtained by the ACO for the normal and roller element defect states, 

respectively. The SSPNR can be obtained using CN, CR and Equation (26). Figure 4(a) shows the 

probability distributions of P1and P2 in the normal and roller defect states, respectively. Figure 4(b) 

shows the probability distributions of SSPNR in the normal and roller defect states, respectively. 

From Figure 4, it is obvious that the overlap of the probability distributions of the SSPNR is smaller 

than P1 and P2. A smaller overlap area indicates a higher sensitivity for distinguishing the two states 

and demonstrates that the symptom parameter is better. Thus, the sensitivity of the SSPNR is higher 

than those of P1 and P2 for distinguishing the normal and roller element defect states, respectively.  

Figure 4. Illustrative example of an SSP: (a) probability distributions of P1and P2 and  

(b) probability distributions of SSPNR. 

    

5. Sequential Diagnosis Method Based on Possibility Theory 

5.1. Possibility Theory 

In the motor fault diagnosis, knowledge of fault diagnosis is incomplete and vague due to the 

complexity of the motor. One reason that causes the incompleteness is that we often do not have a 

complete set of parameters necessary to fully describe a faulty behavior or component. This 

uncertainty nature of the problem leads us to seek a solution in fuzzy diagnostic models. 

Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is an 

alternative to probability theory. The basic idea of possibility theory, introduced by Zadeh, is to use 

fuzzy sets not only to represent the gradual aspect of vague concepts such as "large", but also to 

represent incomplete knowledge, tainted with imprecision and uncertainty [30,31]. Recently, possibility 

theory has been used for fault diagnosis [32,33]. In [32] and [33], possibility theory was applied to 

condition diagnosis in rotating machinery to process the uncertain relationship between the symptoms 

and fault types. 

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Probability_theory
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For fuzzy inference, membership functions of SP are necessary. These functions can be obtained 

from the probability density functions of the SP using possibility theory. When the probability density 

function of the SP conforms to the normal distribution, it can be changed to a possibility function μ(xi) 

using the following equation [32]: 
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(28) 

where x is the value of SP, and ]3,3[   xxx ; σ and x are the standard deviation and mean of  

x, respectively. 

Figure 5 illustrates the possibility and probability density functions. Figure 6 shows the matching 

examples of the possibility function. pi is a SP for diagnosing state i. The possibility function μi(pi) in 

the state i can be easily calculated as Figure 6. The possibility function of the SP in other states 

expressed with μun (pi), and calculated by:  

1)(＋)( iunii pp  . (29) 

If )( it p is the possibility function calculated from the data in the state to be diagnosed, the match 

degrees with relevant level are calculated as follows: 

State i level: 
iiuiui ppW  )(  

 Other states level: 
iiunun ppW  )( . 

(30) 

Figure 5. Possibility and probability density functions. 
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Figure 6. Matching examples of the possibility function. 

 

5.2. Sequential Condition Diagnosis Approach 

In many cases of condition diagnosis, the symptom parameters are defined to reflect the features of 

vibration signals measured in each state in order to diagnose faults. However, it is difficult to find one 

symptom parameter or a few symptom parameters that can identify all of the faults simultaneously. In 

contrast, the SP for identifying two states is easily identified. To solve these problems, a sequential 

diagnosis method is proposed, as shown in Figure 7. The inference of sequential diagnosis is follows: 

In the first step, the possibility grades of normal, bearing fault and unknown abnormal states are gN, 

gA and gUN respectively, if gN > gA and gN > gUN then the state is judged normal state, if gUN  > gA and 

gUN > gN, then the state is judged unknown abnormal state, else proceed to next step.  

In the second step, the possibility grades of outer-race defect and other bearing fault states are go 

and gB respectively, if gO  > gB and gO  > gUN, then the state is judged outer-race defect, if gUN  > gO and 

gUN > gB, then the state is judged unknown abnormal state, else proceed to next step.  

In the third step, the possibility grades of inner-race defect and roller element defect are gI and gR  

respectively, if gI > gR and gI > gUN, then the state is judged inner-race defect state, if gR > gI and gI > gUN, 

then the state is judged roller element defect state, else it will be judged as unknown abnormal state. 

6. Diagnosis and Application 

In order to prove the feasibility of the proposed condition diagnosis algorithm, a practical diagnosis 

experiment is performed. In this section, the application of fault diagnosis to a motor bearing is 

presented. The flowchart of the fault diagnosis is shown in Figure 8. Firstly, the vibration signals in 

each beforehand known state is transformed by the PWVD technique, and the feature spectra are 

automatically extracted by the RCI. Secondly, the original SPs in the frequency domain are calculated 

by the extracted feature spectra, and the good SPs are selected by DI for each diagnosis step. Thirdly, 

the SSPs for each diagnosis step are obtained by the ACO clustering algorithm. Fourthly, using these 

SSPs, diagnostic knowledge (possibility distribution of each beforehand known state) is acquired by 

possibility theory. Lastly, conditions of a machine are automatically identified by diagnostic 

knowledge, when input the possibility distribution of the unknown state to be diagnosed. 
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Figure 7. Flowchart of the sequential condition diagnosis. 
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Figure 8. Flowchart for condition diagnosis. 
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6.1. Experimental System for Fault Diagnosis 

In this paper, an inductor motor (Mitsubishi SB-JR) used in a centrifugal fan system is employed 

for the faults diagnosis test. The nameplate of the machine is 3.7 kW three-phase induction motor, with 

Vmax = 220V, P = 4 pole pairs, rated speed S = 1,800 rpm. Rated slip and frequency are 6.5% and  

60 Hz. The rotor is carried by two bearings, one of which is defective. Figure 9 shows the Illustration 

and photo of the experimental setup for rolling bearing fault diagnosis. 

Figure 9. Experimental setup for the rolling bearing fault diagnosis. (a) Illustration of the 

rotation machinery and (b) the motor in the field. 

 

(a) 

 

(b) 

The rotation speed varies from 400 to 800 rpm while the signals are being measured by changing 

the optional input voltage of the motor. The load, which is the torque exerted on the rotating shaft, is 

also varied by manually and randomly rubbing the timing belt between the motor and rotating shaft 

using an implement while the data was being measured. 

In this study, an accelerometer (PCB MA352A60) with a bandwidth from 5 Hz to 60 kHz and a  

10 mV/g output is used to measure the vertical vibration signals in the normal, outer-race defect,  

inner-race defect, and roller element defect states, respectively. The vibration signals measured by the 

accelerometer are transformed into the signal recorder (Scope Coder DL750) after being magnified by 

the sensor signal conditioner (PCB ICP Model 480C02). The sampling frequency of the signal 

measurement is 50 kHz, and the sampling time is 20 s.  

The most common faults in a roller element bearing are the outer-race defect, inner-race defect and 

roller element defect. In this study, to obtain the signals in the normal and the faults states of the 

bearing, two types of roller bearings (N205 and NU205) are used for the fault diagnosis test. The N205 

with separable out-race is used for normal, outer-race defect and roller element defect states. The 

NU205 with separable inner-race is used for inner-race defect state. These fault bearings, which were 

artificially made using a wire-cutting machine, are shown in Figure 10. The specifications of the test 

bearings, size of the faults, and other necessary information are listed in Table 1. The signals measured 

for diagnosis are normalized using the following equation prior to application of the PWVD: 

'x
x






 

. 
(31) 
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Figure 10. Bearing defects: (a) outer-race defect, (b) inner-race defect, and (c) roller 

element defect. 

 

Table 1. Bearing information for verification. 

Contents N205 NU205 

Bearing outer diameter 52 mm 52 mm 

Bearing inner diameter 25 mm 25 mm 

Bearing width 15 mm 15 mm 

Bearing roller diameter 7 mm 7 mm 

The number of the rollers 10 11 

Contact angle 0 rad 0 rad 

Outer-race defect(width × depth) 0.3 × 0.25 mm Early stage  

Rolling element defect (width × depth) 0.5 × 0.15 mm Early stage  

Inner-race defect (width × depth)  0.3 × 0.25 mm Early stage 

6.2. Feature Extraction 

In this paper, PWVD and RCI methods are proposed to extract features from non-stationary 

vibration signals to identify the fault types of a motor bearing under variable operating conditions. As 

examples, Figures 11–14(a) show the time signals measured in each state of the motor bearing and 

processed by high-pass filter (5KHz cut-off frequency). Figures 11–14(b) show the part of time 

signals. Figures 11–14(c) show the contour graphs of the spectra processed by the PWVD in each 

state. Figures 11–14(d) show the RCI of the spectra expressed by Iq under each state. From the  

Figures 11–14, the values of the RCI in the feature spectra caused by the defect are larger than those in 

the spectra without a defect, and the shapes of the feature spectra are different in each state. We can 

extract the instantaneous feature spectra of the outer-race defect, inner-race defect, and roller element 

defect states in the positions A-A, B-B, and C-C, respectively, where the RCI values are maximum. 

The extracted feature spectra are instantaneous and not correlated with the rotation speed and load, 

thus, they can be used to detect the machine faults and identify the fault types under variable rotation 

speed and load. 

After extracting the feature spectra from the time-frequency domain by the RCI, the SPs that can 

express the characteristics of these feature spectra are calculated by Equations (6)–(11). Two SPs that 

have the highest sensitivity at each sequential diagnostic step are selected by the DI. As an example, 

parts of the DI values of the SPs and selection results are shown in Table 2.  
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In the first diagnostic step, P1 and P4 can distinguish the normal and outer-race defect states more 

easily than the other SPs because the DI values of P1 and P4 for distinguishing these states are larger 

than those of the other SPs. The SPs for the other diagnostic steps can be selected in a similar manner. 

The SPs selected by the DI are input into the ACO clustering model. After approximately  

200 iterations, the ACO converged to the optimum clustering centers. Table 3 provides the clustering 

centers for each sequential diagnostic step. 

Figure 11. Contour graph and RCI of the spectra in the normal state: (a) time signal.  

(b) a part of time signal. (c) contour graph. (d) RCI and (e) power spectrum. 
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Figure 12. Contour graph and RCI of the spectra in the outer-race defect state: (a) time 

signal. (b) a part of time signal. (c) contour graph. (d) RCI and (e) power spectrum at 

position A-A. 
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Figure 13. Contour graph and RCI of the spectra in the inner-race defect state: (a) time 

signal. (b) a part of time signal. (c) contour graph. (d) RCI and (e) power spectrum at 

position B-B. 
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Figure 14. Contour graph and RCI of the spectra in the roller element defect state: (a) time 

signal, (b) a part of time signal, (c) contour graph, (d) RCI, and (e) power spectrum at the 

position C-C. 
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Table 2. DI values of the SPs for each sequential diagnosis step. 

 DI Values of Each SP 

 P1 P2 P3 P4 P5 P6 

For the diagnosis first step: 

N:O 1.96 1.79 1.02 2.01 0.42 0.85 

N:I 2.12 2.25 0.24 1.21 0.47 0.67 

N:R 2.32 2.28 0.47 1.64 0.46 0.58 

For the diagnosis second step: 

O:I 1.95 1.53 0.53 2.07 0.22 0.23 

O:R 1.86 1.74 1.03 1.78 0.40 0.17 

For the diagnosis third step: 

I:R 1.39 1.57 0.81 1.21 0.93 0.92 

Using the clustering centers shown in Table 3 and the method introduced in Section 4, the SSPs for 

each sequential diagnostic step can be obtained. The calculation Formulas and values of the SSPs for 

each sequential diagnostic step are shown in Tables 4 and 5, respectively. 

Table 3. Clustering centers for each sequential diagnosis step. 

 Clustering Centers Space of SPs 

For the first diagnosis step:  

N:O N(0.46,0.91) O(0.32,0.77) P1, P4 

N:I N(0.46,1.84) I(0.56,2.15) P1, P2 

N:R N(0.46,1.84) R(0.62,1.97) P1, P2 

For the second diagnosis step:  

O:I O(0.32,0.77) I(0.56,0.88) P1, P4 

O:R O(0.32,0.77) R(0.62,0.87) P1, P4 

For the third diagnosis step:  

I:R I(0.56,2.15) R(0.62,1.97) P1, P2 

Table 4. SSP Formula for each sequential diagnosis step. 

 Synthetic Symptom Parameters (SSPs) 

For the first diagnosis step: 

N:O 87.1)1.182.093.0()17.193.0( 2

41

2

41  PPPPmSSPNO
 

N:I 6.10)7.206.91.3()7.61.3( 2

21

2

21  PPPPmSSPNI
 

N:R 66.1)7.166.081.0()1.281.0( 2

21

2

21  PPPPmSSPNR
 

For the second diagnosis step: 

O:I 23.1)4.023.048.0()84.048.0( 2

41

2

41  PPPPmSSPOI
 

O:R 21.1)26.01.034.0()76.034.0( 2

41

2

41  PPPPmSSPOR
 

For the third diagnosis step: 

I:R 10)8.1639()6.53( 2

12

2

21  PPPPmSSPIR
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Table 5. Values of SSP for each sequential diagnosis step. 

  
SSPs μ σ 

N:O 
N 0.102  0.076  0.078  0.022  0.071  0.056  0.124  0.122  0.065  0.125  0.130  0.115  0.096  0.121  0.021  0.056  0.068  0.052  0.091  0.131  0.053  0.022  0.110  0.083  0.035  

O -0.137  -0.122  -0.127  0.054  0.023  -0.079  -0.103  -0.138  -0.160  -0.091  -0.093  -0.123  -0.160  -0.100  -0.147  -0.069  -0.145  -0.123  -0.126  -0.137  -0.146  -0.133  -0.160  -0.111  0.052  

N:I 
N -0.112  -0.215  -0.123  -0.191  -0.138  -0.215  -0.202  -0.204  -0.193  -0.147  -0.130  -0.133  -0.141  -0.122  -0.112  -0.192  -0.157  -0.215  -0.115  -0.208  -0.203  -0.112  -0.138  -0.162  0.039  

I 0.178  0.208  0.225  0.023  0.112  0.143  0.062  0.094  0.225  0.208  0.112  0.085  0.054  0.239  0.208  0.312  0.439  0.143  0.292  0.023  0.062  0.167  0.178  0.165  0.099  

N:R 
N -0.066  -0.105  -0.117  -0.126  -0.107  -0.142  -0.123  -0.140  -0.105  -0.071  -0.055  -0.119  -0.090  -0.106  -0.116  -0.155  -0.122  -0.116  -0.104  -0.117  -0.131  -0.120  -0.076  -0.110  0.024  

R 0.128  0.083  -0.065  0.168  0.138  -0.092  0.084  0.088  0.087  0.017  0.118  -0.007  0.150  0.154  0.088  0.118  0.138  0.157  0.154  0.098  0.087  0.150  0.138  0.095  0.068  

O:I 
O -0.162  -0.176  -0.191  -0.097  -0.129  -0.088  -0.118  -0.162  -0.088  -0.102  -0.106  -0.172  -0.112  -0.115  -0.099  -0.119  -0.088  -0.201  -0.088  -0.160  -0.172  -0.156  -0.191  -0.134  0.038  

I 0.016  0.014  0.084  0.075  0.009  0.074  0.070  0.089  0.271  0.060  0.084  0.074  0.089  0.271  0.016  0.213  0.271  0.294  0.183  0.237  0.236  0.210  0.074  0.131  0.095  

O:R 
O -0.201  -0.125  -0.142  -0.133  -0.138  -0.124  -0.212  -0.202  -0.201  -0.138  -0.142  -0.231  -0.149  -0.152  -0.135  -0.156  -0.231  -0.210  -0.124  -0.199  -0.211  -0.195  -0.231  -0.173  0.038  

R 0.092  0.037  0.069  0.035  0.087  0.057  0.087  0.237  0.035  0.086  0.033  0.094  0.238  0.200  0.191  0.215  0.254  0.036  0.210  0.254  0.253  0.218  0.238  0.142  0.086  

I:R 
I 0.058  0.086  -0.141  0.014  -0.051  -0.062  -0.029  -0.048  -0.112  -0.130  -0.070  -0.050  -0.007  -0.124  -0.113  -0.178  -0.263  -0.112  -0.179  -0.113  -0.179  -0.196  -0.102  -0.091  0.082  

R 0.164  0.126  0.229  0.270  0.158  0.246  0.156  0.099  0.123  0.127  0.089  0.122  0.086  0.106  -0.004  -0.011  0.080  0.069  0.020  -0.065  0.042  -0.005  0.042  0.099  0.083  

 



Sensors 2013, 13 8035 

 

6.3. Sequential Condition Diagnosis by Possibility Theory 

In this section, we show the method based on possibility theory and sequential inference to identify 

the conditions of the motor bearing under variable operating conditions. According to the sequential 

inference, the whole diagnostic process is divided into three steps. First, the normal state is 

distinguished from the abnormal states using the corresponding possibility of the SSPs. Second, the 

outer-race defect state is distinguished from the other abnormal states using the corresponding 

possibility of the SSPs. Finally, the inner-race defect and roller element defect states are distinguished 

using the corresponding possibility of the SSPs. The diagnostic process and results are presented  

as follows. 

Step 1 of the sequential diagnosis and verification: 

The possibility functions μn(x), μo(x), μi(x) and μr(x) of the SSPs in the normal, the outer-race defect, 

inner-race defect and roller element defect levels, are calculated by Equations (27) and (28), 

respectively. The possibility function of the SSPs in other abnormal level is expressed with μa(x). The 

membership function between the normal and the abnormal states is calculated by: 

μn1(x)+μo(x)+μa(x) = 1 (31) 

μn2(x)+μi(x)+μa(x) = 1 (32) 

μn3(x)+μr(x)+μa(x) = 1. (33) 

The membership functions of each level for the first diagnostic stage are shown in  

Figure 15. 

Figure 15. Membership functions for the first diagnostic step. 
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In order to verify the diagnostic capability of the proposed method, all of the verification signals, 

which are measured in each known state had not been used for the pre-calculated possibility function 

are used. Figures 16 and 17 show the practical diagnosis examples for the first diagnostic step. Here, 

μt1(x), μt2(x) and μt3(x) are the possibility distributions of the SSPs calculated from the verifying signals 

in the normal state. μt4(x), μt5(x) and μt6(x) are the possibility distributions of the SSPs calculated from 

the verifying signals in the outer-race defect, inner-race defect and roller element defect states, 

respectively. The matching degree for each state can be obtained by Equation (30). These degrees are 

normalized as follows: 

WNi+WAi+WOi = 1 (34) 

WNi+WAi+WIi = 1 (35) 

WNi+WAi +WRi = 1 (36) 

Figure 16. The practical diagnosis examples for the test 1. 
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Figure 17. The practical diagnosis examples for the test 2. 
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The verification results for the first diagnostic step are as follows: 

Test 1  

N: O 

Possibility of the normal state: WN1 = 88.7%. 

Possibility of the outer-race defect state: WO1 = 9.4%. 

Possibility of other abnormal state: WA1 = 1.9%. 

Judgment: normal state. 

N: I 

Possibility of the normal state: WN2 = 83.8%. 

Possibility of the inner-race defect state: WI1 =2.4%. 

Possibility of other abnormal state: WA2 = 13.8%. 

Judgment: normal state. 

N: R  

Possibility of the normal state: WN3 = 86.8% 

Possibility of the roller element defect state: WR1 = 1.7% 

Possibility of other abnormal state: WA3 = 11.5%. 

Judgment: normal state. 

Test 2 

N: O 

Possibility of the normal state: WN4 = 0.1%. 
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Possibility of the outer-race defect state: WO2 = 96.9%. 

Possibility of other abnormal state: WA4 = 3%. 

Judgment: outer-race defect state. 

N: I 

Possibility of the normal state: WN5 = 0.5%. 

Possibility of the inner-race defect state: WI2 = 90.5%. 

Possibility of other abnormal state: WA5 = 9%. 

Judgment: inner-race defect l state. 

N: R  

Possibility of the normal state: WN6 = 0% 

Possibility of the roller element defect state: WR2 = 97.5% 

Possibility of other abnormal state: WA6 = 2.5%. 

Judgment: roller element defect state. 

The other fault states can also be distinguished sequentially in a similar manner. The verification 

results for Steps 2 and 3 are as follows: 

Step 2 of the sequential diagnosis and verification: 

Test 3 

O: I 

Possibility of the outer-race defect state: WO3 = 86.4%. 

Possibility of the inner-race defect state: WI3 = 13.5%. 

Possibility of other abnormal state: WA7 = 0.1%. 

Judgment: outer-race defect state. 

O: R 

Possibility of the outer-race defect state: WO4 = 76.2%. 

Possibility of the roller element state: WR3 = 3.8%. 

Possibility of other abnormal state: WA7 = 20%. 

Judgment: outer-race defect state. 

Test 4 

O: I 

Possibility of the outer-race defect state: WO5 = 0%. 

Possibility of the inner-race defect state: WI4 = 97.5%. 

Possibility of other abnormal state: WA8 = 2.5%. 

Judgment: inner -race defect state. 

O: R 

Possibility of the outer-race defect state: WO6 = 0%. 

Possibility of the roller element defect state: WR4 = 97.8%. 

Possibility of other abnormal state (A): WA9 = 2.2%. 

Judgment: roller element defect state. 

Step 3 of the sequential diagnosis and verification: 

Test 5 I: R 

Possibility of the inner-race defect state: WI5 = 77.5%. 

Possibility of the roller element defect state: WR5 = 22.5%. 
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Possibility of other abnormal state: WA11 = 0%. 

Judgment: inner-race defect state. 

Test 6 I: R  

Possibility of the inner-race defect state: WI6 = 33.3%. 

Possibility of the roller element state: WR6 = 66.7%. 

Possibility of other abnormal state: WA12 = 0%. 

Judgment: roller element defect state. 

According to these diagnosis results, the normal, outer-race defect, inner-race defect and roller 

element defect states of the motor bearing can be automatically and correctly identified using the 

possibilities of the SSPs and other diagnosis methods proposed in this paper. 

7. Conclusions 

In this paper, we propose a new fault diagnosis method for motor roller bearings which operates 

under variable conditions, namely, their rotation speed and operating load are always changing. The 

feature of each machine state could be expressed by the PWVD. The extraction method for feature 

spectra was proposed using the RCI, by which the instantaneous feature spectra from time-frequency 

analysis was automatically extracted by a computer in order to identify the conditions of a machine 

under the variable operating conditions. The instantaneous feature spectra caused by the local defects 

were clearly expressed, and they could reflect the characteristic of the signal or the motor bearing 

condition. Moreover, the excellent SSPs for expressing the characteristics of the feature spectra were 

obtained by ACO clustering algorithm. The diagnostic sensitivity of the SSPs was greater than the 

original SPs, and the conditions of the machine could be identified more easily. A fuzzy diagnosis 

method based on sequential inference and possibility theory was also proposed, by which the 

conditions of the machine can be identified sequentially. It is proved that the methods proposed in this 

paper were effective by applying them to the motor roller bearing diagnosis. 
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