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Abstract: A photonic crystal fiber-based sensing head is proposed for strain 

measurements. The sensor comprises a Hi-Bi PCF sensing head to measure interferometric 

signals in-reflection. An experimental background study of the sensing head is conducted 

through an optical backscatter reflectometer confirming the theoretical predictions,  

also included. A cost effective setup is proposed where a laser is used as illumination 

source, which allows accurate high precision strain measurements. Thus, a sensitivity of 

~7.96 dB/mwas achieved in a linear region of 1,200 μ.  
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1. Introduction 

There are a number of applications of practical interest in which the monitoring of strain-induced 

changes is important, such as experimental mechanics, aeronautics, metallurgy and health monitoring 

of complex structures, among others. These applications need continuous monitoring, aiming to 

control and prevent accidents or abnormal states early in time. Through the monitoring of structures, 

maintenance and rehabilitation advice can be provided, opening the possibility to avoid casualties [1]. 

In order to meet the increasing measurement requirements of modern industry, different types of strain 

sensors based on fiber-optic techniques have been developed. Fiber-optics have a number of 
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characteristics that make them very appealing for sensing purposes, such as immunity to 

electromagnetic interference, light weight, remote sensing ability, multiplexing capability, and the 

ability for continuous in situ measurement [2]. Photonic crystal fibers (PCFs) are a recently developed 

class of optical fibers [3], which present a geometry characterized by a periodic arrangement of  

air-holes running along the entire length of the fiber, centered on a solid or hollow-core. The major 

difference between PCFs and single mode fibers (SMFs) relies on the fact that the waveguide 

properties of photonic crystal fibers are not due to spatially varying glass composition, as in 

conventional fibers, but from an arrangement of very tiny and closely spaced air-holes which go 

through the whole fiber length. In contrast with standard optical fibers, photonic crystal fibers can be 

made of a single material and have several geometric parameters that can be manipulated offering 

great flexibility of design. As such, PCFs present a diversity of new and improved features when 

compared to common SMFs, introducing innovative solutions in the sensing field [4].  

Several strain sensors based on PCFs have been developed. Some modal interferometers have been 

accomplished using PCFs to measure strain or displacement: by tapering solid-core silica PCFs [5]; or 

by constructing a sensing head with a sensitivity of ~2.8 pm/μ through splicing a piece of PCF to a 

SMF and interrogating it with a LED and a miniature spectrometer [6]; or even throughout a core 

offset at one of the joints of a SMF-PCF-SMF structure with 0.0024 dB/μm of sensitivity [7]. Other 

authors reported strain sensors that used highly birefringent (Hi-Bi) PCF based Sagnac interferometers 

showing temperature insensitivity, using a wavelength based measurement (~1.11 pm/μ) [8] and a 

power based measurement (~2.7 dB/m to 3.2 dB/m of sensitivity) [9]. Displacement sensors were 

also reported using a Hi-Bi PCF in a Sagnac interferometer with a sensitivity of 0.283 nm/mm [10], 

and using a three-hole suspended-core fiber in a high precision Sagnac configuration (~0.45 μm) [11]. 

In addition, a strain sensor based in a Mach-Zehnder interferometer was accomplished by splicing a 

short length of PCF between two SMFs with collapsed air holes over a short region in the two splicing 

points (sensitivity of ~0.21 μs
−1

/m [12]. A miniature in-line Fabry-Perot interferometer was as well 

obtained for strain sensing by splicing a small length of hollow-core photonic bandgap fiber between 

two SMFs in order to obtain a strain sensitivity of 1.55 pm/μ [13]. Furthermore, a strain sensor was 

obtained based in a birefringent interferometer fabricated by an all-silica Hi-Bi PCF in transmission 

with a sensitivity of 1.3 pm/μ [14]. 

In this work, an in-reflection interferometric Hi-Bi PCF sensing head for strain measurement is 

proposed. A study of the sensing head characteristics is shown, where a theoretical study is in 

accordance with the experimental data obtained through a high resolution optical backscatter 

reflectometer. Strain sensing is carried out using an accessible setup, where the interference signal is 

obtained through an in-line fiber polarizer.  

2. Operation Principle  

The operation principle of the proposed sensing system is based on two main properties of the  

Hi-Bi PCF: high birefringence and low temperature sensitivity. When light is launched into a highly 

birefringent fiber the difference in velocities between the two birefringent axes causes the resultant 

polarization state to vary along the length of the fiber in a controlled manner. The beat length (LB) is a 
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measure of the birefringence, or ability to preserve polarization. The beat length is defined as the 

distance over which the polarization rotates through 360 degrees: 

b
LB




 
(1)  

where  is the wavelength at which the beat length is measured and b is the birefringence of the fiber. 

Since the sensing head works in reflection, the interferometric signal is proportional to twice the fiber 

length and its wavelength dependence can be expressed by Equation (2), where l is the fiber length, A 

is the amplitude and  is the total phase: 
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The total phase is defined as Where 0 is the initial phase and  is the phase  

change induced by external perturbations. When strain is applied to the fiber, the phase variation will 

be given by: 
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(3)  

where l and b are the length and birefringence variations, respectively. 

The low temperature sensitivity characteristic is a direct consequence of single material fabrication. 

Conventional optical fibers contain two different materials with different thermal (thermal expansion 

coefficient) and mechanical properties (Young’s modulus and Poisson’s ratio), which will generate 

high thermal stress when the fiber is subjected to temperature variations, consequently changing the 

birefringence of the fundamental mode. Since the Hi-Bi PCF is made of a single material, it will not 

present thermal stress, and thus, it is not surprising that Hi-Bi PCF temperature associated variations 

were experimentally measured to be negligible [15].  

3. Sensing Head Characterization 

The Hi-Bi PCF sensing head was obtained by splicing one end of ~20.8 cm Hi-Bi PCF to a SMF 

(maximum loss of 2 dB) and cleaving the other end. The Hi-Bi PCF is a polarization maintaining 

photonic crystal fiber (PM-1550-01 from NKT Photonics, Birkerød, Denmark) with a beat length of 

~3.65 mm at 1,550 nm and an attenuation of 1.0 dB/Km (a cross section photograph can be seen in the 

inset of Figure 1). Figure 1 presents the characterization setup using an optical backscattering 

reflectometer (OBR), a linear polarizer, a polarization controller (PC) and the Hi-Bi PCF sensing head. 

The OBR used was developed by Luna Technologies and presents characteristics such as high spatial 

resolution (up to ~10 μm) for different measurable magnitudes, such as amplitude, polarization states 

and return loss in time and frequency domains.  

In the experimental setup depicted in Figure 1, the linear polarizer converts the polarization state of 

the source light into a linear one, while the polarization controller allows one to adjust the alignment 

angle with the PCF. When the light propagates along the PCF, a phase shift is generated between the 

two birefringent axes due to its own birefringence.  
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Figure 1. (a) Schematic of the experimental setup used to characterize the Hi-Bi PCF 

sensing head and (b) optical microscopic picture of the Hi-Bi PCF cross-section. 

 

The reflected light passes again through the linear polarizer producing the interference between the 

retarded component signals. The interferometric signal obtained for the sensing head illustrated above 

(when no external forces act on it) is presented in Figure 2. 

Figure 2. Reflected spectrum of the Hi-Bi PCF interferometer in a relaxed position, when 

no external force is induced on the sensing head. 

 

Since the sensing head is based on a Hi-Bi PCF, it will be sensitive to the angle between the input 

polarized light and the birefringent axes of the fiber. It is expected from theory that if this angle is 0° 

or 90° there is no interference signal, however if the angle is 45° both components will have the same 

optical input and the interference will be maximum. Figure 3 presents the interferometric spectra 

obtained for different angles between the input light and the birefringent axes. These results were 

obtained using the setup illustrated in Figure 1.  
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Figure 3. Interferometer spectra obtained for different polarization controller positions.  

 

When strain variations are imparted to the PCF sensing head, the interference output signal 

(presented in Figure 2) will shift in wavelength. Figure 4 displays the experimental and theoretical 

results obtained for three different strain variations (0 μ, 500 μ and 1,000 μ). As it can be seen in 

Figure 4, the interferometric spectrum presents a wavelength shift when strain variations are forced 

into the sensing head, which is quite in agreement with the simulations presented. Based on this 

characterization, strain measurement can be achieved by monitoring the interference wavelength shift, 

which presents a proportionality behavior with strain variations. 

Figure 4. Experimental results (solid line) and theoretical simulations (dash line) of the 

reflected output signal for three different strain induced variations. 

 

4. Sensor System and Results 

After the characterization of the Hi-Bi PCF sensing head, its response to strain variations was 

measured through a more accessible, intensity based, setup which is presented in Figure 5. The 

experimental configuration consisted of a laser working at 1,554 nm (Ando AQ8201-13), a circulator, 

a linear polarizer, a polarization controller, the Hi-Bi PCF sensing head, and an optical spectrum 
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analyzer (OSA) with a maximum resolution of 10 pm. After passing through the circulator, the laser 

light is linearly polarized and the polarization angle optimized before reaching the Hi-Bi PCF sensing 

head. The interferometric reflected signal will make a pass again through the circulator before  

reaching the OSA.  

Figure 5. Experimental setup for strain measurement with an interferometric in-reflection 

Hi-Bi PCF sensing head. 

 

When strain changes are imparted to the Hi-Bi PCF sensing head, its output signal shifts in 

wavelength (see Figure 4). Using the cost effective system illustrated in Figure 5, the sensing head 

interrogation will be made through the laser, and as so in intensity. Since its interrogation is now made 

with a peak laser the output signal due to strain changes will present power shifts. Since the Hi-Bi PCF 

sensing head is illuminated by the peak laser, the output signal will be obtained only in the part of the 

interferometric signal that is in its cone of illumination. As so, if the sensing head signal is in an 

interferometric minimum the output peak power will be at its minimum value, meanwhile if it is at an 

interferometric maximum the output peak power will be at its maximum value. This will provide a 

visual sensation that the laser line is sweeping the interferometric signal, as the output peak power 

varies between a maximum and a minimum. The observed power shift with strain induced variations is 

depicted in Figure 6, using a stepper motor with increments of 22.2 μThe Hi-Bi PCF sensing head 

response showed a quadratic behavior followed by a linear one; this last with a sensitivity to strain 

variations of 7.96 dB/min an operational region of 1,200 μThe rupture point of the sensor head 

was found to be close to 5,000 μ  

Figure 6. Measured optical power variation with strain. 
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The presented sensing head sensitivity to strain induced variations is higher than other developed 

structures based on this fiber. For instance, when using the Hi-Bi PCF as the sensing element in a fiber 

loop mirror a sensitivity to strain that varied from 2.7 dB/m at 1,530 nm to 3.2 dB/m at 1,545 nm was 

obtained [9]. This interferometric sensing head shows appropriate response to strain variations, opening 

the possibility to obtain even better performance with a proper auto-referenced interrogation scheme 

such as a highly stable in-quadrature dual-wavelength fiber laser [16]. Also, the use of this system  

in-reflection is an attractive choice as a basic sensing element since it is simple, compact and presents the 

ability for remote sensing and multiplexing. Even more, reflective sensors enable the possibility for 

interrogation from a network header using a single fiber, as done in OTDR interrogation systems [17]. 

5. Conclusions  

A simple configuration for an interferometric fiber optic strain sensor was presented and 

experimentally demonstrated. The sensing head is achieved by using a Hi-Bi PCF in-reflection. An 

experimental characterization of this sensing head was made using an optical backscatter 

reflectometer, which was in accordance with the presented theoretical simulations. Using a more  

cost-effective setup, strain variations could be accurately retrieved. The in-reflection sensing head 

presented a sensitivity of ~7.96 dB/mto strain induced variations. Due to the demonstrated strain 

sensitivity, this interferometric sensing head is a very attractive solution for applications such as strain 

measurement in hazard environments and health monitoring of complex structures.  
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